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1. Introduction

We consider the following first order differential equations

*'(0 + KO/WO) = q(f), t ^ a , (1)

and

*'(0 + K O / M O ) = 0, t ^ a , (2)

where peC[[a, oo), K], qeC[[a, oo), K] and feC[_R, K], R = (-oo, oo). A
solution x(t) of (1) is called oscillatory if x(t) has zeros for arbitrarily large t;
otherwise, a solution x(t) is said to be nonoscillatory. Equation (1) is non-
oscillatory if every solution of (1) is nonoscillatory. The oscillatory properties
of the first order functional differential equation

*'(0 + P(t)f(x(t-T)) = q(t) (3)

are investigated by some authors (Cf. [3] and [4]). But there is scarce litrature
on the ordinary case of (1) (Cf. [5]). In this paper, we mainly propose a theorem
for nonoscillation of (1).

2. The unforced case

THEOREM 1. Suppose that f(x) = 0 for x = 0,/(x)#0 for x^O and \p(t)\>0
on [a, oo). Then every solution of (2) has at most one zero.

PROOF. Assume that x(t) is a solution of (2) which has two consecutive zeros
tl9t2 with the property

x(tx) = x(t2) = 0 for a ^ t 1 < t 2 .

Let \x(t)\ > 0 for tt < t < 12. By Rolle's theorem, we can take a T such that x'(x) = 0,
tx <T< t2. From (2) we obtain
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By this and \p(t)\>0 for te[a, oo) we have X(T) = 0. This is a contradiction.
Q.E.D.

EXAMPLE 1. Consider the ordinary differential equation

x'(t) - 9(cos 0(sin f)7*(01/9 = 0, t ^ T. (4)

The conditions of Theorem 1 are violated. In fact a solution x(i) = (sint)9 of
(4) is oscillatory.

EXAMPLE 2. Consider the differential equation

x'(t) - x(01 / 3 = 0, t^O. (5)

A solution x(t) = (2t/3)3/2 of (5) has one zero at t = 0, which is seen by Theorem 1.

EXAMPLE 3. Consider the differential equation

= 0, t^-5. (6)

A function x(f) = tan (t2/2 — n/6) is a solution of (6) and has zeros more than two.
Since/(x)=l + x2, (6) is not examined by Theorem 1.

3. The forced case

THEOREM 2. / / there exist ae(0, 1] and K>0 such that

\f(u)\^K\u\* for all ueR, (7)

J J \p(t)\dt < a), I j J q(t)dt I < oo (8)

and

lim infU* I £ q(s)ds | / ( JJ \p(s)\ds^ = p,pe (0, oo], (9)

then every local solution o/(l) is extendable to + oo and euery nontrivial solution
of(i) is bounded and nonoscillatory.

PROOF. I) Extendability

The case ofoc=l: Let x(t), t e [f0, T)-+R, to^a, be a local solution of (1)
with T(<oo) the right-end boundary point of its maximal interval of existence.
Integration of (1) from t0 to t, to^t<T9 yields

WOI ^ M'o)l + ^ K\p(s)\ \x(s)\ds + K x , (10)
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where K1 = \\ q(t)dt . An application of Gronwall's inequality in (10) implies
I Jto

\x(t)\ ^ (IxfoOI+XOexp {j^X|p(s)|ds} . (11)

This inequality implies that the solution x(t) of (1) is extendable to the point
t=T. This is a contradiction. That is, all local solutions of equation (1) are
extendable to + oo. From (8) and (11), we obtain

\x(t)\ t* (IxftOI + K^xp {JX|p(S)|dsJ < K2 < oo, (12)

for t^t0, where K2>1 is a constant.
T/ie case of 0 < a < 1: By the same argument as the case of a = 1, we obtain

to
\["q(s)ds
\Jto

| \x(s)\*ds, (13)

where 4̂ = max j(|x(fo)| + I \°° q(s)ds I J , l l and B=max {K, 1}.

By applying of Lemma of Dhongade and Deo [1] as v> 1 in it, we have

for t^t0, (14)

where 1^(0=1 (l+s)~'ds. This inequality implies that the solution x(t)
Jto

of (1) is extendable to the point T. This is also a contradiction. Thus all local
solutions of equation (1) are extendable to + oo. From (8) and (14) we obtain

( ^ ^ K3 < + oo (15)

for t^.t0, where K3> 1 is a constant.
(II) Nonoscillation
The case of 0 < a ^ 1: Suppose that x(t) is an oscillatory solution of (1). Let

{*»}?=i b e the zeros of x(t). From (1), we obtain

x(0 = - T p(s)f(x(s))ds + T q(s)ds. (16)
Jtn Jtn

By using (7), (12) and (15), we have

T \p(s)f(x(s))\ds ̂  K^K [ \p(s)\ds,
Jtn Jtn
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where K4 = max{K29 K|}, and the last integral converges as t-*oo. Equation
(16) implies

* ( « ) ) = -

where x(cx)) = lim^00 x(r). Since x(f) is oscillatory, we must have x(oo) = 0.
This means that

q(s)ds = T p(s)/(x(S))ds, for n = 1, 2,... . (17)

Moreover, for a y, 0<y</?, there exists fx such that

K\x(t)\*<y for f^*^0. (18)

From (17) and (18), we obtain

I r ^(sys ^ r xip(s)i ix(5)i-ds < 7 r I P ^ I ^

for sufficiently large n, say tn^t*. This means that

Um i n f ^ (I J(" q(s)ds I ) / ( £ |p(s)|ds) ̂  y,

which is a contradiction to (9). Q. E. D.

EXAMPLE 4. Consider the equation

0 = - (I/*2) - (I/*4), * ̂  10. (19)

By using Theorem 2, we see that every nontrivial solution of (19) is nonoscillatory.
In fact, x(r)= 1/* is such a nonoscillatory solution of (19).

EXAMPLE 5. Consider the equation

x'(0 + (l/0*(0 = - t~* sin t, t^n. (20)

Since the conditions of Theorem 2 are violated, equation (20) may have an oscil-
latory solution. In fact, x(r) = r1(cos t— 1) is such an oscillatory solution of
(20).

EXAMPLE 6. Consider the equation

x'(t) + ( r 1 sin t)x(t) = r2(sin t-1), t^n. (21)

This equation has an oscillating forcing term, but x{i)=\jt is a nonoscillatory
solution of (21).
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THEOREM 3. Suppose that uf(u)>0 for u^O, p(t)>0 for t^a,

l imsup^ 0 Og a (0= + oo and l iminf,^ Qa(t)= - oo, where Qa(t)= \ q(s)ds for
J a

any fixed constant a ^ a . Then every solution x(t) o/( l ) is oscillatory.

PROOF. Suppose that x(t)>0 for sufficiently large t, say t^T. From (1),
we obtain

x'(t) = q(t) - KO/WO) ^ q(t) for ^ T.

By integrating this we have

0 < x(t) ^ x(T) + QT(t) for r ^ T.

This is a contradiction, since lim inf ,^ QT(t)= - oo. If we suppose that x (0<0 ,
then we obtain

0 > x(t) ^ X(T) + QT(0 for t ^ T.

This also leads to a contradiction, since lim sup^^ <2T(0= + °o- Q- E- D-

EXAMPLE 7. Consider the equation

x'(i) + rx(01/3 = t sin r + 3 (sin 2r)cos r for t ^ T. (22)

Since the function

6a(0= \ q(s)ds= \ (u sinw + 3 (sin2
 M)COS w)dfw

= — r cos t + sin f + sin3 r —sin3 a — sin a 4- a cos a

satisfies the condition of Theorem 3, every solution of (22) is oscillatory. In
fact x(0 = sin31 is such an oscillatory solution.

4. Kartsatos's conjecture

Consider the differential equation

* (n ) + Z^hPn-tiU x, x',..., x<»-1>)x<|) = 0. (23)

Recently, Kartsatos [2] gave an interesting nonoscillatory result on equation
(23) as follows.

THEOREM 4 ([2], Theorem). Let Pn_t: R+xRn^R, where R = ( - o o , oo)
and R+ = [0, oo) be such that the functions Pn-i(t, ul9 u29...9un)ui+i are
continuous on R+x Rn. Moreover, let

\Pn-i(t,ul9u29...,un)\^Fn_i(t),
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where Fn_f: R + ^>R+ are continuous and such that

00 tn-letFn.i{i)dt < oo.
o

Then every local solution of (23) is extendable to +oo and every nontrivial
solution is nonoscillatory.
In the paper, he proposes a conjecture that his result may remain true without
the factor ex in the integral condition of Theorem 4. In this section, we note
that the conjecture is true in the case of n= 1. Now, we consider the following
first order differential equation which is a special case of n = 1 in (23).

x\i) + p(t, x(0)M0la sgn x(t) = 0, t e [0, oo), (24)

where a is a constant with 0 < a g 1.

THEOREM 5. Let p: R+xR-+R be such that the function p(t9u)u is
continuous on R+xR. Moreover, let

\p(t,u)\^F(t)

where F: R + ^>R+ is continuous and such that

P F(t)dt < oo.
Jo

For the case a = l , every local solution of (24) is extendable to +oo and every
nontrivial solution is bounded and has no zeros in its interval of existence.
For the case o / 0 < a < l , every local solution of (24) is extendable to +oo and
every nontrivial solution is bounded.

PROOF. The case a = l . Let x{t\ te\_t0, T)^R be a local solution of (24)
with T( < oo) the right-end boundary point of its maximal interval of existence.
Integration of (24) from t0 to t, to<^t<T9 yields

MOI ^ |x(fo)| + r W5> x(»)l \x(s)\ds- (25)
Jto

An application of Gronwall's inequality in (25) implies

MOI ^ W*0)|exp {£ F(s)ds} . (26)

This appraisal implies that the solution x(t) of (24) is extendable to the point
t=T. This is a contradiction. Hence, all local solutions of the equation (24)
are extendable to + oo and bounded on t e [f0, oo). Now, we assume that x(t)
is a solution of (24), and there exists tx e [f0, oo) such that x(t1) = O. Taking this
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t! instead of t0 in (26), we have

WOI^O for all te[tuoo).

This is a contradiction.
The case of 0 < a < l : Let x(t), fe[f0, T)->K be a local solution of (24).

By the same argument as in Theorem 2, we have

M \ F(s)ds) < X 3 < oo

where G(f) = \ (1+^)""^ , K3 and Ao are positive constants. This shows
Jto

that all local solutions of (24) are extendable to + oo and bounded on t e [f0, oo).
Q.E.D.

EXAMPLE 8. Consider the equation

x'(0 - ((3 sin 2r)/2)x(01/3 = 0, * ̂  0. (27)

The conditions of Theorem 5 are violated. In fact, x(f) = sin3 t is an oscillatory
solution of (27).

EXAMPLE 9. Consider the equation

x\t) - x(t) = 0, t^ 0. (28)

The conditions of Theorem 5 are violated. In fact, the unbounded function ex

is a solution of (28).

REMARK. Theorem 2 is valid for the case of g(f)#O in (1) and Therorem 5
is valid for the case of q(t) = O in (1).
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