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Introduction

Ahlfors and Beurling [1] gave a characterization of the removable singularities
for the class of analytic functions with finite Dirichlet integral, in terms of extremal
distances on the complex plane. This result was generalized and extended to the
d-dimensional euclidean space R¢ (d = 3) by many authors (see [3], [6], etc.).

Hedberg [3] gave some characterizations of removable sets for the class HD?

of all harmonic functions u with g |PulPdx < oo and for the subclass FD? of HD?

consisting of functions with no flux. In [6] the author considered the notion of
null sets for extremal distances of order p, namely, NED,-sets, and characterized
such null sets by the removability for a class of solutions of the Euler equation
for the variational integral S |Pulpdx.

In this paper we shall consider some classes consisting of solutions of the
Euler equation for the variational integral S Y(x, Pu)dx, where Y(x, 7): R4x R¢—
R is strictly convex and continuously differentiable in t and Y(x, 7)~|t|?, and
define the removable sets for these classes. More precisely, for any bounded
domain G containing a compact set E, we shall consider the class s#25(G—E)
(resp. " 24(G—E); %5(6—&) of all p-precise functions u (for p-precise
functions, see [4, Chapter IV], [8]) such that

S CPA(x, Pu), Pddx = 0
G—E

for every ¢ in CF(G—E) (resp.in {¢ € CF(G); V=0 on some neighborhood of
E};in CP(G)). A compact set E is said to be removable for s# 27 (resp. #" 2%;
%5) if for some bounded domain G containing E every function in s# 24(G —E)
(resp. # 25(G—E); %Q(G—E)) can be extended to a function in # 25(G).
We shall see that E is removable for %5 if and only if E is an NED,-set
(Theorem 1). This result is an improvement of [6, Theorem 2]. We shall
show that E is removable for 527 if and only if E is removable for HD?/(P~1)
(Theorem 2) and that E is removable for 2" 27 if and only if E is removable for
FDr/(P=1) jn case p=2 (Theorem 3). The proofs of these theorems are based
on the results obtained by Hedberg [3]. In the case that y(x, t)=|t|? for all
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(x, 7)€ R4 x R4, Theorem 3 is shown in [S].

§1. Preliminaries

Let p be a finite number such that p>1 and let G be a domain in R¢. For
feLP(G), let | f|, ¢ be its LP-norm, and for a vector field v=(v;, v,,..., v,) On
G we define |v],c by [lvll,c. We denote by CF(G) the family of infinitely
differentiable functions with compact support in G.

Let I" be a family of curves in R%. A non-negative Borel measurable function

f is called admissible in association with I if S fds=1 for each yeI', where ds
is the line element. The p-module M (I') is dyeﬁned by inf fS fPdx, where the

infimum is taken over all functions f admissible in association with I" and dx is
the volume element. A property will be said to hold p-almost everywhere (= p-
a.e.) on I' if the p-module of the subfamily of exceptional curves is zero. For a
domain G and a compact subset K <0G, we denote by I'((K) the family of all
curves in G each of which starts from a point of G and tends to K.

A real valued function u defined in a domain G is called a p-precise function,
if it is absolutely continuous along p-a.e. curve in G and |Fu| belongs to L?(G).
We denote by 2,(G) the class of all p-precise functions on G. Every p-precise
function u on G has a finite curvilinear limit u(y) along p-a.e. curve y in G (see
[4, Theorem 5.4]). The following results are known:

(1.1) Let u be a p-precise function on G such that u(y)=0 for p-a.e. ye
I'¢(0G). Then there is a sequence {¢,} in C3(G) such that |[F(u—d¢,)[,c—0
as n— oo (see [4, Theorem 6.16]).

(1.2) Let I be a family of curves in G. Let uy, u,, u,,... be p-precise
functions on G such that u,(y)=const. for p-a.e. ye I’ for each n=1 and ||F(u,—
u,)|l,,c—0 as n—>oo0. Then uy(y)=const. for p-a.e. yeTI (see [5, Lemma 1]).

Let : R4 x R4— R satisfy the following (a)—~(c):

(a) Y is continuous.

(b) For each xeR? the function t—y(x,t) is strictly convex and
continuously differentiable.

(c) There are constants 0<a < < co such that

a7l SY(x, 1) < PltlP

for all (x, 7)€ R4 x R4.
By (b) the gradient F(x, 7) of  with respect to 7 exists. The following
inequalities are known:

1.3)  <Py(x, 1), Ty —1) SY(x, 1) —Y(x, 7) for all 7, 7, € R4,

where ( -,- ) denotes the inner product in R¢. In particular
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(1.4 alt|P={Fi(x, 1), ),

(1.5) | Py¥(x, D)Zc|t|P~! for all (x,t)e R4x R4, where ¢ is a constant
depending only on d, p and B (see [2, Lemma 3.5]).

§2. Removable sets

Let E be a compact set in R? and G be a bounded domain containing E.
Throughout this paper we shall always assume that E is a compact set such that
my(E)=0 (m, denotes the d-dimensional Lebesgue measure) and E€ is a domain.
Let

CY(G; E) = {¢ € C3(G); V=0 on some neighborhood of E}.
We denote by s#2}(G~—E) (resp. ¥’ 25(G—E); %5(G—E)) the class of all
u € 2,(G—E) satisfying the condition that

[ <Pue P, Poydx =0

for every ¢ in CF(G—E) (resp. CP(G; E); CF(G)). From the relations CF(G—
E)c CP(G; E)c C3(G), it follows that every removable set for s# 2%, is removable

N
for " 2%, and every removable set for »#" 24 is removable for # 2.
Let Q=G —E, and let X(Q) be a linear subspace of {¢|,; ¢ € CF(G)}, where
|, is the restriction of ¢ to Q. Let

u(y)=0 for p-a.e. ye I'x(0G),
X, (Q = [ u e 2,(Q); there is a sequence {¢,} in X(Q) such that
“V(u _¢n)”p,9_>0 (n—’OO)

LEMMA 1. Let X(Q) be as above. Then any fe 2,(Q) can be decomposed
into the form f=uqy+v,, where ug, € X (Q) and v, satisfies the condition that

[ <P, Pog) Pgdax =0
for every ¢ in X(Q).
PrOOF. Let I,,,(g)zg Y(x, Pg)dx for ge 2, Q) and choose u,e X, (Q)
such that. °
I(f-u,) — a=inf {I,(f-u); ue X(Q)} (n—>0).

By (¢), {IIF(f—u,)ll,,e} is bounded. Hence by standard arguments in LP-theory
(Banach Saks’ theorem, etc.) and by [4, Theorem 4.21] (also cf. [8, Theorem 4.3]),
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we find vy € 2,(Q) and a subsequence {u,} of {u,} such that F(f—u,)—-Vv,
weakly in LP(Q) and

17 (f=v0) = (Pt + - + P up )kl pg —> 0 (k—>c0).

Since (u,,+--+u,)keX,(Q2), we may assume that vy(y)=f(y) for p-a.e.
y € F'g(0G) (see (1.2)), so that ug=f—v,€ X (). By (1.3) and (1.5), we see that

which means that I,(f—uo)=a. Since X () is a linear space, it follows that v, =
f—uy is a solution of the Euler equation for I, (cf. [2, Theorem 3.18]). The proof
is completed.

We say that CP(G—E) (resp. CY(G; E)) is dense in WE(G) if for each ¢ e
C3(G) there is a sequence {¢,} in CF(G—E) (resp. CT(G; E)) such that ||F(¢p—
Ol .60 as n—co.

LEMMA 2. If E is removable for # 2% (resp. ¥ 2%), then CF(G—E)
(resp. CY(G; E)) is dense in W2(G) for some bounded domain G containing E.

PROOF. Suppose that E is removable for #92%. Then there is a bounded
domain G containing E such that every function in s#2§(G—E) can be extended
to a function in s# 24(G). Take fe C§(G). Let fo=f|s_¢ and X(G—E)=Cg(G
—E). By Lemma 1, f, can be decomposed into the form f,=u,+v,, where
uoeX,(G—E) and vye #D5(G—E). Then vy(y)=0 for p-ae. yels_gdG).
By assumption there is a p-precise function , in s 25(G) such that v,=%, on
G—E. Therefore

XG CPa(x, 7o), Pddx = 0

for every ¢ in C§(G). Since 7€ 2,(G) and #y(y)=0 for p-a.e. yeI'¢(6G), by
using (1.1) and Hélder’s inequality we have

[ <P, 7o), Poyax =

Hence §,=const. a.e. in G by (1.4), and the constant must be 0. Hence f, €
X ,(G—E), i.e., there is a sequence {¢,} in C(G — E) such that |[F(f,—@,)l PG-E=
0 (n—00). Since myE)=0 we see that [V (f=¢n)lyc=17(fo—dulpc-£—0
(n—> ). Thus we conclude that C¥(G —E) is dense in W%(G).

In the case that E is removable for " 2%, we let X(G—E)=C¢(G; E).
Then the result for C{(G; E) is established in the same manner.
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§3. Relations between removable sets

In [6] the author considered the notion of null sets for extremal distances
of order p. A compact set E is called an NED,-set if M, (I')=M (I'y) for all
pairs of disjoint continua F, and F, in E°¢, where I' (resp. I'y) is the family of all
curves connecting F, and F, in R4 (resp. E¢). The following lemma is known:

LemmA 3 ([6, Theorems 1 and 2]). The following statements are equivalent
to-each other:

(1) Eis an NED,-set.

(2) For some bounded domain (or any bounded domain) G containing E,

every function in 2,(G—E) can be extended to a function in 2,(G).

&) S g,‘: dx=0 (i=1,2,...,d) for every u in 2,(E°) which vanishes
Ec i

identically on a neighborhood of {0}.

N
THEOREM 1. E is removable for # 9% if and only if E is an NED,-set.

N
ProoF. Suppose that E is removable for s#2}. Then there is a bounded

domain G containing E such that every function in %ﬁ(G—E) can be extended
to a function in #2%(G). Let fe 2,(G—E) vanish identically on a neighbor-
hood of 0G and let X(G—E)={¢|g-g; $€CF(G)}. By Lemma 1, f can be
decomposed into the form f=uq,+v,, where u, € X (G—E) and v, € %5(6 —E).
Then vy(y)=0 for p-a.e. ye I';_g(0G). By assumption there is a p-precise function
¥y in #25(G) such that vy=7, on G—E. Since #, is an ACL function (cf.
[4, Theorem 4.6], [8, Theorem 4.4]) and m(E)=0, by Fubini’s theorem we have

v, _S oy .
SG_E Pogx=| Toax=o.

On the other hand there is a sequence {¢,} in Cg'(G) such that ||/ (uo—¢,)l, -~
0 as n—»oo. Since myE)=0 it follows that

g Ou, dx = S @"—dx + SG_EMH_)_dx

G-E 0X; 6-E 0X; 0x;

=g %qs—"dx+ S Oo=0.) gy 0 (n— ).
G :

X G-E Xi

Thus we conclude that

S idx:() (i=1, 2,..., d)‘

G—E 6x,-

Next, let ue 2,(E°) vanish identically on a neighborhood of {oo}. Set
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u,=max (—n, min (u, n)) for n=1,2,.... Take a function ¢e CF(RY) such
that supp ¢ =G and ¢ =1 on a neighborhood of E. Since the restriction of ¢u,
to G—E is a p-precise function on G — E which vanishes identically on a neighbor-
hood of 0G, by the above result we obtain

[ w40 g
G—E

0x;
On the other hand, by Fubini’s theorem we have

[ 2l=6) gy o

Ox;
Hence
S aun dx = g a(¢un) dx + g a(un(l ——¢)) dx = 0.
Ec ax,- G-E 6xi Ec &xi
Set F,={x € E°; |u(x)|=n} for n=1, 2,.... Since myF,)—0 as n— oo, we have

g Ou dx=g de=g Ou dx — 0 (n— ).
EC

Ec ax,— 6.xi Fn axi

Thus we conclude that

ou _ .
.SEC 0x; dx =0 (i=12,.,4d).

From Lemma 3 ((3)=(1)), it follows that E is an NED -set.
Conversely we suppose that E is an NED,-set. By Lemma 3 ((1)=(2)) we
can take a bounded domain G containing E such that every function in #,(G—E)

N
can be extended to a function in 2,(G). Let ue #29(G—E). Then there is
a p-precise function # on G such that u=4 on G—E. Since my,(E)=0 we have

§ CPab(x, Pii), 7 pddx = S CPab(x, Pu), P dydx = 0
G G—E

N
for every ¢ in C3(G). This implies that E is removable for £ 27%.

In [3], Hedberg considered the following classes of harmonic functions. For
a domain G in R4, denote by HDP(G) the class of all harmonic functions u on G
with [|Fu|,c<oo0, by FD?(G) the class of all ue HD?(G) with no flux, i.e.,

S *du=g 0u/0vdS=0 for all (d—1)-cycles ¢ in G. For a compact set E its
p-capacity is defined by
C,E) = inf {|F |} ra; we CP(R?Y), =1 on E}.

In the case p=d w’s are restricted to CZ(B) for some fixed large ball B containing
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E in its interior. Throughout the rest of this paper we let g=p/(p—1). Hedberg
proved

THEOREM A ([3, Theorems 1.a and 2]). The following statements are equi-
valent to each other:

(1) C/E)=0.

(2) CP(G—E) is dense in Wi(G) for some bounded domain G containing E.

(3) E is removable for HD4.

THEOREM B ([3, Theorem 1.b]). C(G; E) is dense in W2G) for some
bounded domain G containing E if and only if E is removable for FD1.

LemMa 4. If E is an NED-set and is removable for HD? (resp. FD9), then
E is removable for s# 27, (resp. X" 2}).

PrROOF. Suppose that E is removable for HD4. By Theorem A, C¥(G—E)is
dense in W2(G) for some bounded domain G containing E. Therefore, for each
¢ € C3(G) there is a sequence {¢,} in CF(G—E) such that [|[F(¢—¢,)l,c—0 as
n—oo. Since E is an NED -set, by Lemma 3 ((1)=>(2)) every function u in ¥ 2}
(G—E) can be extended to a function @ in £,(G). By using Holder’s inequality
we have

[ <P pa), rgyax = tim,. | <ras, pi), 7,y

= lim, ., XH (PW(x, Pu), P >dx = 0.

Hence il € # 2%(G). This implies that E is removable for s 25,

In the case that E is removable for FD4, CP(G; E) is dense in W2(G) for some
bounded domain G containing E by Theorem B. The result for »#" 2% is esta-
blished in the same manner.

THEOREM 2. E isremovable for s# 2% if and only if E is removable for HD1.

Proor. The only-if part follows from Lemma 2 and Theorem A ((2)=(3)).

Conversely, assume that E is removable for HD4. By Lemma 4 it is enough
to show that E is an NED,-set. Let F,, F, be disjoint continua in E¢ and let I’
(resp. I'g) be the family of curves connecting Fy and F, in R (resp. E¢). Take a
bounded domain Q disjoint from F, and F; such that Q5 E. Since C,(E)=0 by
Theorem A, we can take a sequence {w,} in C{(Q) such that w,>1 on E for each
n and |Fw,l,.—0 as n—oo (see, e.g., [7, Lemma 4.2]). Obviously [Fw,| is
admissible in association with I'—I'y. Hence M (I'—I'g)=0. From the ine-
qualities M (I'g) SM (I SM(I'g)+M(I'—Tg), it follows that M (I'g)=M (I').
This implies that E is an NED ,-set.
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In the case that Y(x, t)=||? for all (x, 1) € R4 X R4, we omit the subscript  in
N
o 2% and #2%. The following lemma is a relation between the removability
for o 2P and that for FD4.

LemMA 5 ([5, Theorem 11]). If p=2, then E is removable for 2" 2* if and
only if E is removable for FD1.

THEOREM 3. If p=2, then E is removable for X 2% if and only if E is
removable for FD1.

Proor. The only-if part follows from Lemma 2 and Theorem B for 1<

p< 0.
Conversely, assume that E is removable for FD1. By Lemma 5, E is

N
removable for 2" 92?. Hence E is removable for s#2P. From Theorem 1 it
follows that E is an NED,-set. By Lemma 4, we see that E is removable for
A DY,

REMARK. Theorems 1, 2 and 3 show that the removability for each of the
N
classes o 2%, # 2% and # 2% does not depend on the choice Y as long as it
satisfies (a)—(c) in §1.
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