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1. Introduction

Consider the forced differential equation

(1) Lnx+f(t,x) =

and the corresponding unforced equation

(2)

where n^2 and Ln is the general disconjugate differential operator defined
recursively by L0x(t) = a0(t)x(t) and

Lkx(t) = flfc(0(Lfc-ι*(0)'> k = 1, 2,..., n.

We shall assume without further mention that the functions a£t\ i = 0, 1,..., w,
are positive and continuous on [f0, oo) and the operator Ln is in the first canonical

form in the sense that

(3) fV
J to

In what follows, the set of all real-valued functions y(t) defined on [ty, oo) and such

that LfXO, i = 0, 1,..., n, exist and are continuous on [ty, oo) will be denoted
by D(Ln).

The purpose of this paper is to examine the oscillatory behaviour of solutions
of Eq. (1) by comparing with that of the associated unforced Eq. (2). More
precisely, we shall show that the oscillation of solutions of Eq. (1) follows from the
oscillation of solutions of Eq. (2) provided that the forcing term h(t) is the n-th

"quasi-derivative" of the function p(t) for which L0p(t) is strongly bounded in

the sense that it assumes its maximum and minimum on every interval of the

form [T, oo), T^t0 (cf. [17]). This means that we can derive oscillation criteria

for Eq. (1) from other similar ones which are known for Eq. (2).

Comparison results of this type in the case a0(t)= = an(i)=l were first

given by Kartsatos [9-12] for the forcings h(i) with the following properties: there

exists a continuous function p(t) such that p(n\t) = h(t) on [ί0, oo) and either

(I ) lim^^ p(0 = 0 and p(f) is oscillatory in [ί0, oo); or
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(II) there exist sequences {t'n}™=1, {OίΓ=ι and constants qί9 q2 such that

l im^ί l iπv^f^oo, p(t'n) = q1, p(t"n) = q2 and qi^p(t)^q2 for ί^ί0

Obviously, the class of strongly bounded functions contains the above types of

forcings but it is not restricted to them. For example, the functions p(t) = (l +

1/0 sin t and p(t) = e\p(sm t/t) are strongly bounded but they satisfy neither

(I) nor (II). In this spirit our main result unifies some earlier Kartsatos' results

on the maintenance of oscillations under the effect of a "small" or "periodic-like"

forcings and at the same time extends them to more general forcing functions.

For other related results concerning Eq. (1) and corresponding functional

differential equations and inequalities we refer the reader to the papers of Chen
and Yeh [2, 3], Foster [4], Grace and Lalli [5, 6], Jaros [7, 8], Kawano, Kusano

and Naito [13], Kusano et al. [14-16], McCann [17], Onose [18, 19] and True

[21].

2. Preliminaries

In proving our results we employ a technique developed in [9-12] to change

Eq. (1) into an equation of the form (2). In order to obtain more general results

and for technical reasons, it is more convenient to work with the differential
inequality

(4) X(L

and the equation

(5)

where n^2, Ln is as above and for the functions /f and hi9 i = l, 2, the following

conditions are assumed to hold :

(a) fi G C([ί0, oo) x R, R) and x/Xf, x) > 0, i = 1, 2, for x Φ 0 and every fixed t ̂  f0,

(b) /ifeC([ί0, oo), R) and there exist functions pieD(Ln), ΐ = l, 2, such that

Lnpi(t) = hi(t) and L0pj(t) are bounded on [ί0, oo).

The results for Eqs. (1) and (2) follow then as immediate corollaries of corre-

sponding comparison theorems for the inequality (4) and Eq. (5).

As usual, we restrict our considerations only to those solutions x(ί) of (4)

(or (5)) which exist on some ray [tx, oo), tx^tθ9 and satisfy

sup{|x(s)|: sΞ>f} > 0

for every t e [ίx, oo). The oscillatory character of such solutions is considered

in the usual sense, i.e. x(t) is said to be oscillatory if it has arbitrarily large zeros
in [tx, oo) and it is said to be nonoscillatory otherwise.
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We begin by analysing the asymptotic behaviour of the possible nonoscillatory
solutions of (4). We consider only the possible positive solutions since the
negative solutions have the analogous properties and the corresponding results
for such solutions can be proved similarly.

So, let x(0 be a positive solution of (4) defined on [f0, oo). Put u(t) =

x(i) — Pι(i) Then we can rewrite the inequality (4) as

(6) LXO + Λ(ί, ιι(ί) + p^O) gO, t ^ t0 .

In view of (b) and the positivity of x(t)9 we obtain that Lnu(t)<0 for t^tQ which

implies that Lku(t), fc = 0, !,...,« — !, have to be eventually of constant sign, say

for t^tι^t0. In particular, u(t) is either positive or negative for t^tί.
It is well-known that if

y(f)Lny(i) < 0 (resp. XO^XO > 0)

for all sufficiently large ί, then according to a generalization of a familiar

Kiguradze's Lemma (see [20, Lemma 2]) there exist an integer /, Og/g«, n + l is
odd (resp. n + / is even), and a t^ ̂  t0 such that

(7) XOL,XO>0 on |Λ, αo) for i = 0, 1,..., /,

(8) (-1)'-'XOL,XO>0 on fΛ, oo) for i = /,/+!,...,«.

Since in our case x(t) is positive and L^p^t) is bounded, that is, L0u(0 cannot
be unbounded from below, from (7) and (8) it follows that L^u(t) is always positive
on [ίl9 oo) regardless to the positivity or negativity of u(t) or possibly Llu(t)<(^

for n odd and L0x(0 bounded on [tί9 oo). Consequently, we have the following

modifications of Kiguradze's lemmas for the positive solutions of the forced
inequality (4).

LEMMA 1. Let n be even. If x(t) is a positive solution of (4) for t^tί^tθ9

then there exist an odd integer /, I g / g n — 1, and a t2^tl such that for t^t2 the
function u(t) = x(t) — p1(t) satisfies

(9) L lιι(0>0 for i = l,2,...,/

and

(10) (-l) ί+1LMO>0 for i = l, /+!, . . ., π.

LEMMA 2. Let n be odd. If x(t) is a positive solution of (4) for t^t^tQ,

then either L0x(t) is unbounded on [tί9 oo) and there exist an even integer /,

2<;/gn-l, and a t2^tί such that for all t^t2 the function n(0 = *(0-.Pι(0
satisfies (9) for ί = l, 2,..., / and
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(11) (-1)< LMO>0 for i = /,

or L0x(0 is bounded on [tί9 oo) and there exists a t3^tί such that (11) holds on
[*3, co) for ι = l, 2,..., n.

3. Comparison theorems

In this section we shall be concerned with the relationship between the
nonoscillatory solutions of the inequality (4) and the equation (5). As an appli-
cation of these results, the oscillation of the differential inequality (4) is compared
to that of the equation (5). We again consider only the eventually positive
solutions of (4) and (5) since the corresponding part of our results concerning
eventually negative solutions can be formulated and proved in an analogous way.

THEOREM 1. Let n be even. In addition to the conditions (a) and (b)
suppose that

(c) Mt9x)^f2(t,x)forx>0

and f2(t, x) is nondecreasίng in x for every fixed t^tθ9

(a) Lop^f) is strongly bounded from below in the sense that for every T^t0

there is a T^Tsuch that

(e)

If the inequality (4) has an eventually positive solution x(ί), then Eq. (5) has an
eventually positive solution y(t) such that y(t)^x(t) for all large t.

PROOF. Assume that there exists a solution x(t) of (4) which is defined and
positive on [tl9 oo), t1^t0. From Lemma 1 it follows that there are an odd
integer /, 1 g / g n — 1, and a t2 ̂  tί such that the function u(i) = x(t) — p^t) satisfies
(9) and (10) for t^t2.

Now, integrating (4) n-times and using (9) and (10), we get

J t T Γsι 1 Γs»-ι 1 Γ°° 1

¥T7T T7ΓΓ" TOT a <s ) -ί2

 aί\Sί) J t2

 a2\S2) J t2

 al\Sl) J si al+l\Sl+l)

Γ°° /ι(j, x
a (.J Sn-i "n\S

for t^t2.
Choose t* ̂  t2 such that
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Then we have

(12) L0x(0 ̂  c - LoPί(t)

for f^ f* , where c = L0x(f*)>0. Since lim^^ L0p2(0 = 0, there is a ίa^ί* such
that

(13) c = T + L°P2(0 > °

for t ̂  t3. From (12), (13) and (c) we obtain

L0x(0 ^ + Lop2(ί) + Φ,(ί, t3;f2(t,

for t^.t3. Using a result of Canturija [1], we conclude that there exists a con-
tinuous solution y(t) of the integral equation

(14) L0y(t) = ± + L0p2(t) + Φ,(f, f 3 /2(

such that

L0x(0 ^ L0XO ̂  4- + LoP2(0 > 0

for ί^J3. Differentiating (14) n-times, we see that y(t) is the solution of (5) with
desired properties.

THEOREM 2. Let n be odd. In addition to (a) and (b) suppose that the
conditions (c) and (e) of Theorem 1 are satisfied. If the inequality (4) Λas an
eventually positive solution x(t) such that

(15) lim,^ (LoxίO-Lo^W) = const > - q*

where ^# = liminf f_ 0 0 LQpγ(i), then Eq. (5) has an eventually positive solution
y(t) such that lim^^ L0y(t) = const >0.

PROOF. Assume that there exists a solution x(ί) of (4) which is positive on
[ίly oo) and such that (15) holds. By Lemma 2, there is a t2^tί such that the
inequalities (11) hold for t^t2 and i=l, 2,..., n.

Integrating (4) n-times and using (11), we obtain

where c^lim^^ LQu(t) and t^.t2

Now, in view of (15), there is a t3^t2 such that
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c + LoPl(ί) S= £±2*. > 0

for ί ̂  ί3 and taking (e) into account we further have

£+at * «+a*. + i^CO > o

for all sufficiently large t, say
Therefore

L0x(0 ^ ̂ ±

for ί^ί4 and using the results of Canturija [1] again, we conclude that there
exists a continuous solution y(t) of the integral equation

(16) LoXt) = - L + Lop2(t) + ψ(t f2(t,

with property

0

for ί^ί4. It is easy to see that y(t) is also a solution of Eq. (5) and that lim^^

L0XO = const >0. This completes the proof.
From Theorems 1 and 2 and the analogous results for eventually negative

solutions, we obtain the following comparison theorem concerning oscillation.

THEOREM 3. Consider the differential inequality (4) and the equation (5)
subject to the conditions (a), (b), (e) and:
(c') IΛ(ί,x)UI/ 2(ί,x) |/orx^O

andf2(t, x) is nondecreasing in x for every fixed t,
(d7) Lop^ί) is strongly bounded on [ί0, oo) in the sense that for every T^t0

there are T*, T# ̂  Tsuch that

LoPι(T*) = minίe[Γ>00) LQp^(t\ LopΛT*) = maxf6[Γ}0θ) Lop^t) .

Suppose, moreover, that for n even, every solution y(f) of (5) is oscillatory and
for n odd, every solution is either oscillatory or satisfies limf _> ̂  L0y(t) = 0.
Then, if n is even, every solution x(t) of (4) is oscillatσry, while if n is odd, every
solution is either oscillatory or such that

(17) lim^00(L0x(0-L0p1(0)= - 4* or - q*,

where q^ = Hmt^ao (minτe[f)00) Lop^τ)) and ζjf* = limί_>00 (maxte[fj00) LOP^T)).

PROOF. Let n be even. Assume to the contrary that there exists a nonoscil-
latory solution x(t) of (4). Without loss of generality, we may assume that this
solution is positive on [tl9 oo), t^tQ. From Theorem 1 it follows that there
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exists an eventually positive solution of (5), a contradiction.
Let n be odd. We can exclude the existence of a nonoscillatory solution

x(f) of (4) such that L0x(ί) is unbounded since this leads to the existence of a
nonoscillatory solution y(i) of (5) such that lim^^ L0y(t)^0 (the proof is similar
to that of Theorem 1 and we omit it). So, the only interesting case is the case
of a possible nonoscillatory solution x(t) of (4) for which L0x(ί) is bounded. Let
this solution x(t) be positive on [ft, oo), t^tQ. From Lemma 2 it follows, in

particular, that L1u(ί) = L1(x(ί)-Jpι(0)<0 on [ί2, oo) for some ί2^
ίι Conse-

quently, lim^oo L0u(i) = c, where c is a constant.

Denote ^1(ί) = minτe[ί)0θ) LQp^(τ) and put z(ί) = L0u(f) + <h(0 Then we have

lim,^ z(ί) = lim,^ (L0ιι(0 + βι(0) = c + q+ = d.

If d<0, then L0u(t) + qί(t)<0 for sufficiently large t, say t^T^t2. By (e'),
there exists a T* ̂  T such that

= L0x(T*) > 0,

a contradiction.
If d > 0, then we use Theorem 2 to conclude that there exists a positive solution

y(t) of (5) such that lim^^ LoXί) = const >0> which is again a contradiction.
Thus, we conclude that J = 0, which implies

A parallel argument holds if we assume that (4) has a negative solution x(f)

with L0x(ί) bounded on [ίl5 oo). In this case we prove that

This completes the proof.
When specialized to Eqs. (1) and (2), the above theorem yields the following

result according to which the oscillatory character of Eq. (2) is maintained by
adding a "strongly bounded" forcing term.

COROLLARY. Consider Eqs. (1) and (2) subject to the following conditions:

(Ό /: [*()> oo)x.R->.R is continuous, x/(ί, x)>0 for every x^O and f(t, x) is
nondecreasing in x for every fixed t,

(g) there is a function peD(Ln) such that Lnp(t) — h(i) and LQp(i) is strongly

bounded on [ί0, oo).

Suppose, moreover, that for n even, every solution x(f) of (2) is oscillatory and
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for n odd, every solution is either oscillatory or satisfies lim^^ L0x(ί) = 0.
Then, if n is even, every solution x(t) of (I) is oscillatory, while i f n is odd, every
solution is either oscillatory or such that

(18) lirn,^ (L0x(t)-L0p(t)) = - p* or - p*,

where /?ί|t = limf^00 (minte[ί>00) L0p(τ)) and /?* = limί_00 (maxt6[r>00) L0p(τ)),

REMARK 1. We remark here that Theorem 3 and Corollary actually hold
for bounded solutions if the assumptions concern only the bounded solutions of
Eq. (5) (or (2)).

REMARK 2. The above results can easily be extended to the functional
differential equations

(19) Lπx(0 +f(t, x(dl(t)),..., x(gmm = h(t)

and

(20) Lnx(0 +/(ί, xG/ΛO),..., xfaΛO)) = 0,

or, more generaly, to the functional differential inequality

(21) x(0{Lπx(0+Λα xGhW),..., *(0,»(0))-fcι(0} ^ 0

and the equation

(22) Lny(t)

where Ln, h, hi and h2 are as before and:

( i ) 9i' E^OJ oo)-*^, l^ϊ^^ij are continuous and lim^^ gι(t)=ao, l^ί^m;
(ii) /: [ί0, oo)x.Rm-^JR is continuous, xίf(t, x l v..,xm)>0 if x1xί>0, l^ i rgm,

and/(ί, x lv.., xm) is nondecreasing in each xf for every fixed t^t0',
» f2' [t0, oo)xRm-+R are continuous, x^/ί, x1?..., xj>0, 7 = !, 2, if

O, Igi^m, |/i(i, x1,...,xm)|^|/2(ί, x l5...,xm)| if x^^O, l^ϊ^m,

and/2(ί, *!,..., xm) is nondecreasing in each xf for every fixed t^.t0.

The details of this extension are left to the reader.
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