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0. Introduction

This paper is concerned with a supersymmetric extension of certain completely

integrable nonlinear systems. .

Supersymmetry is a concept originated from the unification theory in particle

physics. It is a formalism for describing Bose fields and Fermi fields simul-

taneously. It has been imported to mathematics recently. In the first place

V. G. Kac [6] established the theory of Lie superalgebras. Representation

theory of some infinite dimensional Lie superalgebras is studied prosperously

([3, 6, 12] and references cited there). B. Kostant [7], D. A. Leites [10] and

A. Rogers [14] have developed the theory of supermanifolds. Some of nonlinear

integrable differential equations have proved to have supersymmetric extensions.

Among them are the two-dimensional Toda lattice [13], the Korteweg-de Vries

(KdV) equation [9], the Liouville and the sine-Gordon equation [1] and so

on [4, 8]. Yu. I. Manin and A. O. Radul [11] gave a supersymmetric extension

of the one-component Kadomtsev-Petviashvili (KP) hierarchy as the Lax

equations. They also gave the variational formalism.

The KP hierarchy was introduced by M. Sato and Y. Sato (cf. [15, 16, 17]).

It can be seen that the multicomponent KP hierarchy includes, through the

reduction procedure, the KdV equation, the Boussinesq equation, the nonlinear

Schrodinger equation and the Toda lattice. Sato's fundamental theorem says

that the KP hierarchy is a dynamical system on the infinite dimensional Grassmann

manifold UGM .

The KP hierarchy can be treated in various aspects (cf. [2]). Among others

the linearization equations or the Sato equations are most important. They are

the equations

»xW-!)+ (n = l, 2,...; α = 0, 1,..., r-1)

for W=Σj>o wjsχj E <?(tymon (see section 1).
The finite dimensional version of the KP hierarchy is named by K. Ueno

the Grassmann hierarchy. In the theory of Grassmann hierarchies the funda-
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mental role is played by a linear algebraic equation, which is called the Grassmann

equation. Ueno and the author gave in [19, 20] a supersymmetri c extension
of one-component Grassmann hierarchies from the viewpoint of the Grassmann

equation. Our approach is slightly different from [11].
In the present paper we treat a supersymmetric extension of multicomponent

Grassmann hierarchies.

Let θ be a Grassmann number and put Θ = dθ + θdx. Super Grassmann hier-

archies are described by using the super microdifferential operator W=

Σj=oWjΘ~J- Naturally the odd time evolution is introduced as well as the even
time evolution. In the theory of multicomponent super Grassmann hierarchies
the matrix valued super Grassmann equation is the central object.

The plan of this paper is as follows. We review one-component and multi-

component Grassmann hierarchies in Section 1. Section 2 is devoted to the

preliminaries for superanalysis. One-component super Grassmann hierarchies
are reviewed briefly in Section 3. In Section 4 we formulate multicomponent
super Grassmann hierarchies and induce the Sato equations for them (Theorem

4.1). In Section 5 we prove our main theorem (Theorem 5.1) which gives an
expression of solutions using superdeterminants.

It is a great pleasure to express my gratitude to Professors Kimio Ueno and
Masatoshi Noumi for a number of fruitful discussions, and to Professor
Kiyosato Okamoto for his constant encouragement. Thanks are also due
to Professor Masahiro Sugawara for his valuable comments on this manuscript.

1. Grassmann hierarchies

To clarify our motivation, we summarize in this section the theory of
Grassmann hierarchies according to Sato's lecture [16].

Let JΓ be a differential field of one variable x. Namely there is an additive
map dx: JΓ-^JΓ with the property dx(fg) = dx(f)g+fdx(g) for /, 0eJf. Put

^ = {/e Jf; dx(f) = Q}, the constant field of JΓ. Let ̂  = JΓ[dJ, *f = Jf((d;1))
be the ring of differential operators, the ring of microdifferential operators
respectively. The ring structure is defined through the Leibniz rule

where /e Jf, /<v> = dj(/), = n(n-l) (n-v+l)/v!. Let ^(m), £(m) be the

subspaces of ,̂ £ consisting of operators of order less than or equal to m, so

that @ = \jm>Q@(m), <^ = WmeZ<f(w). We denote by ^(m)moπ, <?(m)mon the
subspaces of monic operators of the form d™ +(lower order terms). For an

operator P=ΣnezPnS
n

xe<?, we put (P)+ = Σn>oPnS
n

xe9.
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Fix two positive integers N>m. Let us consider the following linear
equation, which is called the Grassmann equation:

(1.1) wΦΞ = 0,

where *=(w, 1, 0,..., 0), w = (wm, wm_ l v.., wO, w7 eJΓ, Φ = exp (xΛN), Λjv =

(δi+ι,j)o<ij<N and ΞεMat(N9 m; ^) with rankΞ = m. We call such a matrix
Ξ an N'dimensional m-frame, and the totality of N-dimensional m-frames is
denoted by FR(N, m; #). The equation (1.1) for the unknown vector H> is
solved uniquely for any ΞεFR(N, m; )̂. We denote by Ahlί...lm_ί the deter-
minant of the mxm-matrix consisting of /rth rows of AeMat(N, m; Jf).
Then the solution is given by

w, = (-X(ΦΞ)01...m_y_1>m_y+1...m/(ΦΞ)01...m_1 O'=l,..., m).

On the space FR(N, m; ^) there is an action of GL(ra; ^) from the right by
multiplication. If Ξ is replaced by Eg (0eGL(m; #)), then (Φ£0)Wι.../w ι =

(ΦΞ')Wl.../m_1(det^). Thus the solution w is invariant under GL(m; )̂. There-
fore we have the one-to-one correspondence :

{M>; solution o/(l.l)} ^ FΛ(N, m;

The right hand side is nothing but the Grassmann manifold GM(m, N — nί).
Next we introduce the time evolution or deformation of w in the Grassmann

manifold, and consider the Grassmann hierarchy. The time variables are denoted
by tί9 t2, t3,.... We give now the time evolution of the frame Ξ by Ξ(i) =
exp (η(t, ΛN))Ξ, where η(t, Λ)= Σn=ι ̂ n The time evolution of w is described as
follows. There exist functions b\n^ (n = l, 2,...; i = 0, 1,..., n) for which the
relations

= 0

hold. These equations are induced from

and from the unique solvability of (1.1). Put W^=Σj=o Wjd%~J (w0 = l) and Bn =
Σi=o fci11^?"'. These operators are monic of order m and n respectively. By
an easy ejaculation we see that

(1.2) dW/dtn = BnW- Wd»x.

More elegant way to obtain (1.2) is as follows. Let ^ = (ι/^0,..., φm-i) be the
0-th row of the matrix ΦΞ(t). The Grassmann equation (1.1) is equivalent to
the equation
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(1.3) W\ί/ = 0.

By differentiating (1.3) with respect to tn, and by using the relation dψldtn =
dnψ/dxn, we get (dW/dtn + Wd$)ψ = 0. By using the division theorem of differential
operators we have

dW/dtn+ Wd$ = BnW+ Rn

for some Bne$(n)mon and RneQ>(m-i). Then we have Rnψk=Q for linearly

independent functions ψ0,...9 Άm-i This says that Rn = Q, and the equations
(1.2) are obtained. From (1.2), the differential operator Bn is rewritten as Bn =

(Wd^W~1)+. The equations (1.2) are called the Sato equations for the Grassmann

hierarchy. Solutions are expressed by

w; = pΛ-3,)((ΦS(0)oι...«-ι)/(ΦS(0)oι....,-ι,

where Pj(t) are the Schur polynomials defined by exp(η(t, ^))=Σ7>oP/0^y and
8t = (dldtl9 2~1d/dt2, 3-^3,...) ([17; p. 269]). Put S0 = '(/„, 0)eFR(N9 m; if).

The determinant τ(ί, £) = (ΦΞ(f))01...m_1=det(ίΞ0ΦΞ(0) is an important quantity
and is called the τ-function. The nonlinear evolution equations (1.2) for w are
transformed to Hirota's bilinear equations for the τ-function ([17; Theorem 2]).

Next we consider the multicomponent Grassmann hierarchy. Let r be the

number of components. The Grassmann equation is

(1.4) ?ΓΦrΞ = 0,

where τr = (*(β/ϊ)W<r, *(β» = (H><β'>, δΛβ, 0,..., 0), w<«» = (w^...χ«'>),

vv(«^)ejr? Φr = diag(exp(χylN),...,exp(χylN)) and ΞeFR(rN, rm; if). For a

frame Ξ, which satisfies the condition

(1.5) det (diag ('S0,..., ^0)ΦΓΞ) ̂  0,

the equation (1.4) is uniquely solved by using Cramer's formula. Note that if Ξ
satisfies (1.5), then so does Ξg for g eGL(rra; #). Like the one-component

case we have the following correspondence :

(1.6) {wW\ 0<α, β<r; solution of(lA)} ^

[ΞεFR (rN, rm; if); Ξ satisfies (1.5)}/GL(rm; if).

Recall that the Grassmann manifold GM(m, n) is decomposed into cells:

GM(m, n) = JlyGM(m, n)y,

where 7 runs over all Young diagrams included in the m x n-rectangular Young
diagram (For the cell decomposition of Grassmann manifolds by means of
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Young diagrams, one can find a detailed exposition in [16]). The right hand side
of (1.6) is a subset of the Grassmann manifold GM(rm, r(N — m)). For example,
if r = 2 and m = l, ΛΓ = 2, then the right hand side of (1.6) is the union of cells
GM(2, 2)y, where Y=α, DD, g, gD, and a subset of the generic cell GM(2, 2)*.

We prepare the time variables ί<α) (n = l, 2,...; α = 0, 1,..., r— 1) and define
the time evolution of Ξ by Ξ(0 = diag(expO/(ί<°>, ΛN)),..., exp^f^-1), ΛN)))Ξ.
The τ-function τ(r, Ξ) is defined by the left hand side of (1.5). The diagonal
components w^αα) are expressed as

One can see that there exist rxr-matrices b$ (n = l, 2,...; j = 0, 1,..., n; α = 0,
1,..., r— 1) with b(

n°$ = EΛΛ for which the relations

l7l')^ ("- |-v)(>ljV.r)v) = 0

hold, where we have put Λ(

N

a) = EΛΛ®ΛN, ANtr = diag(AN,..., AN). Putting

W=Σj=oWjdlj and B(

n

Λ) = Σi=o b^dζΓ1, we have

-

Σj=o *jEΛΛdrJ - Σ A [w
+ "V m V^«— 1 C1 i i j (n— v ) Λ v — /

2-j=0 2- v=0 £ΊttW'j σx

ui
niwJ

Thus we obtain the Sato equations for the r-component Grassmann hierarchy:

(1.7) dW/δt^ = B^W- WEmd$.

Here we have B(

n«
)=(WEmd«xW-l)+. Clearly B[^ = Emdx. If r=2, then one sees

^+(wί°1)w(

1

10)-2(wί°0))x) -wi^ + M00^10-^00)-

wί^wί1* -wίoιyιo)
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The (OO)-component of £<0) is, provided that 1̂  = 0 for (α, J?)^(0, 0), nothing
but Bn of one-component theory.

For a solution W of (1.7) we define the Lax operator by L=WdxW~1, and
define C(a) = WEΛΛW~1. Then they satisfy the following Lax equations:

> = [B<α), L],

Taking the formal limit N, m~>oo, one obtains the KP hierarchy.

2. Superdeterminats, superfields, super microdifferential operators

Let <&N be the infinite dimensional vector space over <g spanned by {en}neN.
Put jtf = A(tfN), the exterior algebra of &N. This is a typical example of super-

commutative superalgebras. Namely stf has the decomposition ̂  = jή0]θj/[i],
where jaf[0] (resp. J2/C1]) is the vector space spanned by elements of the form eio/\
eiί^ "^eik_ί with even (resp. odd) k, ^m-^n<^^i+n ([ϊ] denotes ι(mod2)),
and ab = ( — )ijba for αejή f ], be^^. The subspace j/[0] (resp. ĵ ^-,) is
called the even (resp. odd) part of j^. There is a canonical projection ε: ĵ -* ,̂
which is called the body map. An element a e ja/ is invertible if and only if ε(a) Φ 0.
For if ε(a) φ 0, then

converges and gives α"1.
For positive integers m and n, we define

, m; jή v ],

A0ίeMat(m9 n; j/[1 + v]), ^1 0eMαί(n, m;

Cn, π; j/[v])}

for v = 0, 1, and put Mαί(m| n; jtf) = Mat(m\ n; jtf)m@Mat(m\ n;

Define

; j?/) = {XeMat(m\n; ja^)[0]? ^.zs invertible}.

The invertibility of (Xα/?)eMαί(m | n; ^)[0] is equivalent to that of ε(A00) and
ε !̂!). We define the super determinants of X = (AΛβ) e GL(m \ n; sέ) by

sdetX =

The following remarkable property of the superdeterminants is of importance in
our argument.
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PROPOSITION 2. 1 ([10]). Let X, Γe GL(m | n j/). Then X 7e GL(m \n\st)

and 1) sdetXY=(sdetX)(sdety), s-1detχy=(s-1detX)(s-1det Γ), 2) (sdetX)

(s~1detJ!0 = l.

For positive integers M>m, N>n, define

FR(M\N, m\n; rf) = {Ξv =(Ξaβ)0<<Xiβ<2; Ξ00eMat(M, m; j*[0]),

Ξ0ίeMat(M, n; j/tl]), Ξ1QeMat(N, m; j/tl]),

ΞίίeMat(N9 n; ĵ [0]), rankε(Ξ00) = m,

rank εCEj i) = n} .

An element FR(M \N9 m \ n j^) is called an M | N-dimensional m \ n-

superframe. On the space F#(M | N, m | n jaf ) there is an action of GL(m | n Λ/)

by the right multiplication. Therefore we can define the super Grassmann

manifold by

GM(m I n, (M- m) | (W-n); J/) = FR(M \N9m\n; ^)/GL(m | n; ̂ ) .

Let θ be an abstract Grassmann number, i.e., 02 = 0. We assume that

= θx. Denote JΓ [θ] = JT 0 Jfθ. We consider the superalgebra 6f =

of superfields. A superfield / is of the form

/ = /oo + 0/01 +/ιo + 0

where /ooj/iiec^*®^],^!,/^^.^®^!]. Put

The derivation de acts on & and on Mat (r, r )̂ by dθ(/) =/01 +f±l. We define

a square root of dx by Θ = dθ+θdx: ^[V]-*^[i+v] Namely

=/ιι + 0(/ιo), +/oι

We often use the notation / instead of <9(/). One easily checks that Θ2 = dx.

The inverse element of Θ is given by Θ~i = θ + dθd~l. For an integer π, the super

Leibniz rule reads

for /e^[v]. Adding (9"1 to the superalgebra ,̂ we get the space of super

microdifferential operators ^1'1=t9
5>((6)~1)), which plays a role of the ring

of microdifferential operators <f. We consider if1'1 itself and Mat(r, r;
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The product of two elements is defined through the super Leibniz rule. The

Z2-gradation ^>1l1 = ̂ 1l1

[0]Θ^1|1

[i] is given by

We put ^1'1(m) = ̂ [[Θ~1]]Θm for meZ, so that

There is a subsuperalgebra ^1'1 = ̂ [Θ], whose element is called a super

differential operator. Through the direct sum decomposition ^>1I1 = ̂ 1'1©

^1'1( —1), any element Pe^1'1 is uniquely represented as P = (P)++(P)_,

where (P)+e^1!1 and (P)_ e^1'^-!). An operator P=Σ/,ezPπ0Πe

^1'1(m) (resp. Mat(r, r; ^1l1(m)) (pm^0) is invertible if and only if pm is

invertible in 9* (resp. Mat(r, r; &*)), and in that case P"1 e^1'^ —m) (resp.

Mat(r, r; ^1'1( —m)). We remark that the operator FK= Σy>o wy®"y with
w0 = l (resp. w0=J) is always invertible.

3. One-component super Grassmann hierarchies

In this section we review briefly the theory of one-component super
Grassmann hierarchies according to [19, 20]. Equations in this section will
be generalized in section 4 to the multicomponent case.

We start with the following super Grassmann equation:

(3.1) wΦΞ = 0,

where w=(w, 1,0,..., 0), w = (wm,..., Wj), WjEuf, Φ = Qxp(ΘΛN + xΛ%) and

Ξ-(£ij)o<i<Nto<j<m eMat(N,m; j<) with ξtj ε^υ+n and rank ε(Ξ) = m. For the
sake of simplicity we assume that N and m are even numbers. For a matrix

X = (Xij)o<i<K,o<j<L£Mat(K>L;&') with x^ε^+y], denote Xv =(XΛβ)o<<x,β<2,

where XΛβ = (x2i+Λ92j+β) Ή1611 Ξv e FR(N/2 \ N/2, m/2|m/2; j^) and equation
(3.1) is rewritten as

(3.2) (wm, wm_2,..., w2, 1, 0,..., 0; w^, ww_3,..., w l f 0,..., 0)ΦV£V = 0.

This equation is uniquely solved so that w, e ^J y] for any N/2 \ JV/2-dimensional
m/21 m/2-superframe Ξv. Solutions are expressed by means of the super-
determinants. From Proposition 2.1 (1), one obtains the correspondence:

{w>; solution of (3.1)} ^ GM(m/2|m/2, (ΛΓ-m)/2|(AΓ-m)/2; jaf).

We introduce the time evolution and consider the super Grassmann hierarchy.

The even time variables are denoted by t2, Ϊ4, t6,... and the odd ones are denoted by
in *3» t59.... We assume that they satisfy the commutation and anticommutation
relations [ί2π, fj=0, [t2n_l9 ί2 w_J+=0. Put ΓJV=((-)ί+1^/+1J)o</J<JV, which

has the properties Γ%=— Λ% and [ΓN, AN~\+=0. The time evolution Ξ(f) is
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defined by Ξ(t)= exp (η(t, ΓN))Ξ. Define the differential operators ([11])

Θ2n = d/dt2n9 Θ2n-i = 3/0*2.-! + Σm>l t2m-idldt2n + 2m-2

for n^ 1. These operators satisfy the bracket relations:

(3.3) [β,β2J = [β,β2..1]+=0,

[02*, ^m] = 0, [02.-!, 6>2m-l]+ = 26>2m + 2m-2 .

Define an even operator W=Σj=oWj@~j (wo = l) f°Γ the solution H> of the
super Grassmann equation H>ΦΞ(0 = 0. The Sato equations for the super Grass-
mann hierarchy have the following form ([19, 20]):

(3.4) Θ2n(W) = (-)»(B2nW-

Θ2n-ί(W) = (-γ+^^W

where Bn = (WΘnW~1)+. Here we give some Bn's.

Bί = Θ + 2wί9 B2 = Θ* ( = dx),

B3 = <93 + 2w{0
2 - W i θ + (2w3

We define the Lax operator by L=WΘW~l. Note that this is an odd operator
and that ύ± H-2w2 = 0 if L= Σi>o ufi1'1. The time evolution of L can be calcu-
lated as follows.

(3.5) Θ2n-,(L) = Θ2n

Similarly we have

(3.6) Θ2n(L) = (-)»lB2n,L].

Here we remark that Bn=(Ln)+. Equations (3.5) and (3.6) are the Lax equations
for the super Grassmann hierarchy.

Solutions of (3.4) are expressed by means of the superdeterminants. Define
the j-th reference point in FR(N/2 \ N/2, m/2 1 m/2; tf) by
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(3.8)
'Ξj 0

0 'Ξ0

where ('S;)tt=δft for 0<ζi<m/2-j, =δi+1>t for m/2-;</<m/2 (0<fc<N/2).

Put τ(ί, Sv) = sdet('S£Φv3v) and τ/f, Ξv) = sdet('Ξ£,.ΦvΞv) for S=Ξ(ί).
Here we state the fundamental result of [19, 20].

THEOREM 3.1. 1)
2)

Especially,
3) w1

(τ(t, Sv))=6>1(τ(ί, Ξv)).
2v),

t/ί, Sv))/2τ(ί, 2*).

Let us consider the body part ε(JF)=Σ7=oε(w2y)d; >', β(B2π)
ε(W)~ί)+, and kill the odd time variables. Then, from (3.4), after changing the

signature and indices t4n-+t2n, t4n+2-^-t2n+i, w2j-+Wj> B2n~^B^ the Sato
equations (1.2) for the ordinary Grassmann hierarchy are recovered.

4. Multicompoennt super Grassmann hierarchies

In this section we generalize the equations in the preceeding section to the
multicomponent case. We should consider the matrix (w< α/0)0<α>/?<r for the

r-component case. Recall that Wye^ ] in the super Grassmann equation (3.1).
There are two choices in the generalization to determine the parity of w^ α/?).
The first one is vv^e^ , for all α and β, the second is w^ α/?) e^u+Λ+βγ We
adopt here the second one. The r-component super Grassmann equation is of
the following form :

(4.1)

where ιT = (*<"»)0<βi/l<r, w

rm;

= (ίί+ιj)o<ί<Λrfo<y<rm if s witn

, rN; )̂,

<ί<N>0<j<rm if α is even,
and rank 8(5) = rm. Set

For a matrix

? where
= (x^)) with x[j)ee^[ί0<a<r,0<i<x,o<y<L e[ί+J.],

+v)?

 so tnat entries in Jί00, X

denote Xv =
are even and

entries in X0ί, X10 are odd.

For the sake of simplicity we take even r, AT, ra for a while. We introduce
the even time variables t(

2"\ t(

4«\... and odd ones t{Λ\ ί!>α),... for 0<α<r. They

satisfy [ί2«>, ίίf>] = 0, [4ί)-ι^2jί,)-ι]+=0 for n, m>l, 0<α, j5<r. The time
evolution of Ξ = Ξ(0) is defined as usual by
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Ξ(ί) = diag(expOKί(0), Γw)),...,
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We consider the r-component super Grassmann equation (4.1) for Ξ=Ξ(t).
For a superframe Ξv eFR(rN/2\ rN/2, rm/2| rm/2; j^) which satisfies the
condition

(4.3) diag(^. ;L<Ξo)ΦΓ

vΞv e GL(rm/21 rm/2;

(Ξ0eFR(N/29 m/2; ̂ ) is defined as in section 1), the equation (4.1) is uniquely
solved. Hence we have the correspondence :

{wW\ 0<α, β<r; solution of (4.1)} ̂

{Ξv e FR(rN/2 \ rJV/2, rm/2 1 rm/2; j/); Ξv sαfis/ϊβs (4.3)}/GL(rm/2 1 rm/2; j^) .

Define the differential operators

2m-l2n+2m-2

They satisfy the same bracket relations as (3.3), and ifa^β, then [β^α), βίf}]+ =0
for odd n, m, and [6)iα), βif}] = 0 otherwise.

Now let us calculate some fundamental quantities for the simplest case,
i.e., r = 2, N = 4 and m = 2. First we have

n(ct)

where
write

) = - p(x)

0

= p^=-t^ and t^t^. We can

Φ2Ξ(f) = Φ2(ί)S = diag (

0
1

, «=0, 1)S,

where a<" > =
and c<α>= . We see that

6)(Φ2(ί)) = Λ4ι2Φ2(t), Θ(

1«
)(Φ2(ί)) = Γi«>Φ2(ί) ,

where Λ4>2=diag(/l4, ΛJ, rl«>=diag(rA0, Γ4<5αl). Differentiating (4.1) by
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and by Θ, we get

(4.4)

(4.5)

where 7 "̂* denotes the matrix obtained form if
the odd elements. If we put

2w<o°><5α0 -w<°

(6>ία)(-)r)+ιr*Γiί[))Φ2(ί)S = 0,

(0or)+τr*,ι4,2)Φ2(ί)s = o,

by changing the signature of

then we can see that in the equation

Ξ = o,

the matrix in the braces is of the form &=(f("β'>)o<«,β<2> where ΐ('β)=(r{aβ\...,
r[xβ), 0,...,0). By the unique solvability of (4.1), the matrix J must be zero.
We define W=I + w1θ-ί + w2θ-2 (wj=(w<j*l>\<aitf<2) and B^ = E^θ + b[ \
Then, by the super Leibniz rule,

(4.6)

t,(ιo)

— wίoι)η

0

j .odd

w (ιo) _

where we have put J=E00 — Eli. The above argument says that the right hand
side of (4.6) is nothing but -Θ["\W)= -Σ;=o Θ[*\WJ)Θ-J. Thus we have
obtained the time evolution Θ(Λ\W) of the super microdifferential operator W.
This argument is valid for the general case as follows.

THEOREM 4.1. For a solution ίΪΓ of the super Grassmann equation (4.1),
put W=Σj=oWj®~j (̂  = (wί.α/?))0<α^<r, w0=/). Then the time evolution of W
is given by the following Sato equations.

(4.7; a) θft(W) = (-)n(B%W- WEΛΛΘ
2n),

(4.7; b) θft-άW) = (-Y+™(B^W-(-γjWEΛΛΘ*»-i),

where J= ΣSo (-)"£««• The operators B(*} are given by

(4.8) B&> = (WEΛΛΘ
2»W-i)+9 Btf-i = (^yj(WEaΛΘ

2n-1W-l)+ .

PROOF. Since B(

2

Λ^=EΛΛΘ
2n~l+(l.o.t.), we have
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(l.o.t. = lower order terms). Here

EXXW*Θ2"-1 - (-γjWEnθ2*-1 = (-)« Σ, u^02

where u^=((u^y^)0<βty<r, with (ιιJ«))W^=(-V+»wJ«»
On the other hand, from the equation

= 0,

we get

(/.o.r.) = 0.

The super Leibniz rule implies (4.7; b). The equation (4.7; a) can be obtained
similarly. Multiplying W~l from the right, we have

The left hand sides are operators of negative order. Thus the super differential
operators B^ are obtained by taking the differential operator part of the right
hand sides as desired. |

We see

*£«> = Eαα6>2 + (-)«

for r = 2, and

jB(

1«
) = £ββθ+ -w

0

0 w (01) ~| o

ctO

_wωι) _

W(!10) 0 0

_ w(

1

20) 0 0

W(01)W(10)_W(02)WJ20)

w(ιo) + w(ιo)w(oo)

Θ

IV^

^vί1

_ ( 0 1 ) ( 1 0 ) ( 0 2 ) ( 2 1 )W 0 1 W 1 0 + w 0 2 w
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- W2

W(10)VV(02)

wί20)wi°2)

for r = 3.
These examples suggest the following equality.

PROPOSITION 4.2. Σα=o #2α) = dx-

PROOF. If we put W'1 = Σj>o VjΘ~~j, then we see that υQ =/, t^ = — w1 and

ι;2 = — w2 + Wί wf. Hence

= <92 + (Wi + t;1)<9 + (^2 + ̂ ii f + w2)

= δ..

5. r -functions

In this section we define the τ-function of the multicomponent super Grass-

mann hierarchy and prove a representation formula of a solution.

Put X = ΦrΞ(i). Using the check operator ( V ), we put

diag CΞ0(m/2), .. . , ̂ 0(m/2))Xv if m is even,

)? 'g0((m -

if m is odd,

where Ξ0(fe) = *(Ik, 0) e FR(N/29 k if). We consider the superframe £v for which
X 0eGL(rm/2|rm/2; )̂ if rm is even, e GL((rm + 1)/2 1 (rm - 1)/2 )̂ if rm is

odd (cf. (4.3)). Then we can define

(5.1) τ(ί,£v

which does not vanish.

We set, for S(0 = '('S<°>(0,-., i5(

^ ί («U))o<i<N,o<y<rm (α is even),
)(0= / . ^^

I («i+ι,Λ<ί<N,o<y<r« (α is odd).

Clearly one has

(5.2) θ(αίj>) = a&.j,



Super Grassmann hierarchies 391

Put

where

„(.*> = f (w»β/l)' *"-*"•' W^)} f°Γ M = °'WM ~ ((*<&>, *&&..., wία/0) for ω = i*
if m is even, and

if m is odd. Then the super Grassmann equation is equivalent to

/^ 3\ 'W'^X = (A )

where AQO = (a%$j)9 Aoί=(a%«2\+1l Aio = (a%+£) and All=(a™ϊ$k+l) with
0<α<r/2 (resp.O<α<(r+l)/2), 0<jS<r/2 (resp. 0<0<(r-l)/2)) if r is even

(resp. odd), and 0<;<rm/2 (resp. 0<./<(rw + l)/2), 0</c<rm/2 (resp. 0</c<
(rm — 1)/2) if rm is even (resp. odd).

Now we can state our main theorem.

THEOREM 5.1. wίαα) = (-)α<9ία)(logτ(f, Ξv)) /or 0<α<r.

For the proof of this theorem, we use the following lemma.

LEMMA 5.2. Let Z = (zαί,)0<fl)&<M be an even matrix and Y=(yab)o<a>b<M be
an odd matrix. If Θ(Z)=YZ for an odd vector field Θ, then <9(detZ) =
(tr 7) (det Z).

PROOF OF LEMMA 5.2. Denote Zab the (α, ί?)-cofactor of Z. By using the

chain rule of the differentiation, one sees that

<9(detZ) = Σ

= (tr7) (det Z). I

PROOF OF THEOREM 5.1. We give a proof for the case that r and m = 2s are
even and that α = 0. Other cases are, mutatis mutandis, verified.



392 Hirofumi YAMADA

In the following we use the indices which run over integers with the con-
ditions: 0</?<r; l<j/<m, odd; l<v<rm, odd;0<;<rm-l, even; 2[/?]</c<
w + 2[j8], even, where [j?] = jβmod2.

Put 6 = detA and G = D-CA^B = \\g^...^(g^)).

We denote by G\_g(^^p^\ the matrix obtained by substituting the vector pη =

(pηv) instead of the row vector g(

η

β) = (g(

η

β

v

)) in G. Putting Λ"1B = Q~l(fiv)9 we
have

n(β) —
9ηv —

We put

which is equal to zero, because of the trivial identity B — A(A~1B) = Q.
By Cramer's formula the solution w^00) is expressed as

wωo) = _ ρ-i det GE^Λ-^^/s-Met X0 .

Now, by differentiating by Θ{0) the equation ^^v

) = 0, we have

Notice that Q'1 Σ7 <*(fffjv = akβJ Therefore the following matrix equality holds:

Thus we have the matrix equality

(5.4) Θ<?\QA-1B)

where G<°) = '('(g$), Ό,. . ., Ό). Next we calculate Θ^>\g^).

(5.5)

where we have put

e™ = Q-l

The rs x rs-matrix £, which has e^ as entires, is expressed as

(5.6) E = ρ-1{<9(ι°

From (5.4) it follows that
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CΘ[°\QA-1B) = C

= - Θ{°\Q)(D-G) -

Substituting the above to (5.6), we get

(5.7) E = Q-^θ

where we have defined hf) by CA~l = Q~1(hίff). If we put
(/j'$>), then hlff= -h'<fl and h'fl = 0 for /MO.

We show that

(5.8) β-1 det Glg^gWl = θ^(Qrl det G) .

The right side is equal to

= (ίfce te/f Λαmί side) - (rs + ί)Θ^\Q)Q~2 det G

Using Lemma 5.2, putting Z = A and Y=(h'(η

βj}), we have

(ίfce ίftird ίerm) = Q-2{rsΘ[°\Q)+ Ση *i(,°,-i} det

= (rs + l)Θ(

1

0)(β)β-2detG.

Finally we use (2) of Proposition 2.1 to obtain

It is plausible that, taking the limit N, m^oo, one would obtain the super
KP hierarchy. We hope that the link between the super KP hierarchy and
the Lie superalgebra gl(oo | oo), which is constructed in [18] by means of the
free field operators, will be revealed in the near future.
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