On the differentiability of Riesz potentials of functions

Yoshihiro Mizuta
(Received December 19, 1986)

In the n-dimensional euclidean space R^{n}, we define the Riesz potential of order α of a nonnegative measurable function f on R^{n} by

$$
R_{\alpha} f(x)=\int R_{\alpha}(x-y) f(y) d y
$$

where $R_{\alpha}(x)=|x|^{\alpha-n}$ if $\alpha<n$ and $R_{n}(x)=\log (1 /|x|)$. It is known (cf. [2]) that if $f \in L^{p}\left(R^{n}\right), p \geqq 1$, and $\left|R_{\alpha} f\right| \not \equiv \infty$, then $R_{\alpha} f$ is (m, p)-semi finely differentiable almost everywhere, where m is a positive integer such that $m \leqq \alpha$. In the case $\alpha p>n$, this fact implies that $R_{\alpha} f$ is totally m times differentiable almost everywhere. A function u is said to be totally m times differentiable at x_{0} if there exists a polynomial P for which $\lim _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{-m}[u(x)-P(x)]=0$.

In this note, we are concerned with the case where $\alpha p=n$ and α is a positive integer m, and aim to give a condition on f which assures the total m times differentiability of $R_{\alpha} f$.

Theorem. Let m be a positive integer, $p=n / m>1$ and f be a nonnegative measurable function on R^{n} such that $R_{m} f \not \equiv \infty$ and

$$
\int f(y)^{p}(\log (2+f(y)))^{\delta} d y<\infty \quad \text { for some } \quad \delta>p-1
$$

Then $R_{m} f$ is totally m times differentiable almost everywhere.
The proof of the theorem will be carried out along the same lines as in that of Theorem 3 in [2].

We first prepare the following lemmas.
Lemma 1. If m, p and f are as in the Theorem, then

$$
\int_{E(f)} R_{m}(x-y) f(y) d y \leqq M\left(\int f(y)^{p}[\log (2+f(y))]^{\delta} d y\right)^{1 / p}
$$

for all $x \in R^{n}$, where $E(f)=\{y ; f(y) \geqq 1\}$ and M is a positive constant independent of f and x.

Proof. We may assume that $x=0$. We set

$$
E_{j}=\left\{y ; 2^{j-1} \leqq f(y)<2^{j}\right\}
$$

for $j=1,2, \ldots$. Then we have

$$
\begin{aligned}
\int_{E(f)} R_{m}(y) f(y) d y & \leqq \sum_{j=1}^{\infty} 2^{j} \int_{E_{j}} R_{m}(y) d y \leqq \sum_{j=1}^{\infty} 2^{j} \int_{B\left(0, r_{j}\right)} R_{m}(y) d y \\
& =M_{1} \sum_{j=1}^{\infty} 2^{j}\left|E_{j}\right|^{1 / p}
\end{aligned}
$$

where $B\left(0, r_{j}\right)$ denotes the open ball with center at 0 and radius r_{j} such that $\left|B\left(0, r_{j}\right)\right|=\left|E_{j}\right| \quad(|E|$ denotes the n-dimensional Lebesgue measure of a set $E)$ and M_{1} is a positive constant independent of j. By Hölder's inequality, we obtain

$$
\begin{aligned}
\sum_{j=1}^{\infty} 2^{j}\left|E_{j}\right|^{1 / p} & \leqq\left(\sum_{j=1}^{\infty} 2^{p j} j^{\delta}\left|E_{j}\right|\right)^{1 / p}\left(\sum_{j=1}^{\infty} j^{-\delta /(p-1)}\right)^{1-1 / p} \\
& \leqq M_{2}\left(\int f(y)^{p}[\log (2+f(y))]^{\delta} d y\right)^{1 / p}
\end{aligned}
$$

for some positive constant M_{2} independent of f. Thus the lemma is proved.
Lemma 2. Under the same assumptions as in the Theorem,

$$
\lim _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{-m} \int_{B\left(x_{0}, 2\left|x-x_{0}\right|\right)} R_{m}(x-y)\left\{f(y)-f\left(x_{0}\right)\right\} d y=0
$$

for almost every $x_{0} \in R^{n}$.
Proof. Set $E\left(f, x_{0}\right)=\left\{y ;\left|f(y)-f\left(x_{0}\right)\right| \geqq 1\right\}$ and $F\left(f, x_{0}\right)=R^{n}-E\left(f, x_{0}\right)$.
From Lemma 1 it follows that

$$
\begin{aligned}
& \int_{E\left(f, x_{0}\right) \cap B\left(x_{0}, r\right)} R_{m}(x-y)\left|f(y)-f\left(x_{0}\right)\right| d y \\
& \quad \leqq M\left(\int_{B\left(x_{0}, r\right)}\left|f(y)-f\left(x_{0}\right)\right|^{p}\left[\log \left(2+\left|f(y)-f\left(x_{0}\right)\right|\right)\right]^{\delta} d y\right)^{1 / p} \\
& \quad \leqq M\left(\int_{B\left(x_{0}, r\right)}\left|f(y)^{p}[\log (2+f(y))]^{\delta}-f\left(x_{0}\right)^{p}\left[\log \left(2+f\left(x_{0}\right)\right)\right]^{\delta}\right| d y\right)^{1 / p}
\end{aligned}
$$

for any x and r, where M is the positive constant given in Lemma 1. Since $\int f(y)^{p}[\log (2+f(y))]^{\delta} d y<\infty$, we have

$$
\lim _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{-m} \int_{E\left(f, x_{0}\right) \cap B\left(x_{0}, 2\left|x-x_{0}\right|\right)} R_{m}(x-y)\left|f(y)-f\left(x_{0}\right)\right| d y=0
$$

for almost every $x_{0} \in R^{n}$.
On the other hand, for any $\varepsilon>0$ we obtain

$$
\begin{aligned}
& \int_{F\left(f, x_{0}\right) \cap B\left(x_{0}, r\right)} R_{m}(x-y)\left|f(y)-f\left(x_{0}\right)\right| d y \\
& \quad \leqq \int_{B(x, \varepsilon r)} R_{m}(x-y) d y+\int_{B\left(x_{0}, r\right)-B(x, \varepsilon r)} R_{m}(x-y)\left|f(y)-f\left(x_{0}\right)\right| d y
\end{aligned}
$$

$$
\leqq M^{\prime}(\varepsilon r)^{m}+(\varepsilon r)^{m-n} \int_{B\left(x_{0}, r\right)}\left|f(y)-f\left(x_{0}\right)\right| d y
$$

with a positive constant M^{\prime} independent of f, x, r and ε. Hence

$$
\begin{aligned}
& \lim \sup _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{-m} \int_{F\left(f, x_{0}\right) \cap B\left(x_{0}, 2\left|x-x_{0}\right|\right)} R_{m}(x-y)\left|f(y)-f\left(x_{0}\right)\right| d y \\
& \quad \leqq M^{\prime} \varepsilon^{m} 2^{m}+\varepsilon^{m-n} \lim \sup _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{-n} \int_{B\left(x_{0}, 2\left|x-x_{0}\right|\right)}\left|f(y)-f\left(x_{0}\right)\right| d y .
\end{aligned}
$$

Since $f \in L_{\text {loc }}^{1}\left(R^{n}\right)$, it follows that

$$
\lim _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{-m} \int_{F\left(f, x_{0}\right) \cap B\left(x_{0}, 2\left|x-x_{0}\right|\right)} R_{m}(x-y)\left|f(y)-f\left(x_{0}\right)\right| d y=0
$$

for almost every $x_{0} \in R^{n}$. Thus the lemma is established.
We are now ready to prove the theorem.
Proof of the Theorem. Let f be as in the theorem. For a multi-index λ with $|\lambda| \leqq m$, define

$$
A_{\lambda}=\lim _{r \rightarrow 0} \int_{R^{n}-B\left(x_{0}, r\right)}\left[(\partial / \partial x)^{\lambda} R_{m}\right]\left(x_{0}-y\right) f(y) d y .
$$

If $|\lambda|=m$, then the limit exists and is finite for almost every x_{0} as is well-known (cf. [4; Theorem 4 in Chap. II]), and if $|\lambda|<m$, then the limit exists and is finite for x_{0} such that $\int\left|x_{0}-y\right|^{m-|\lambda|-n} f(y) d y<\infty$. Thus A_{λ} exists and is finite for almost every $x_{0} \in R^{n}$. In what follows let x_{0} be a point such that A_{λ} exists and is finite for any multi-index λ with $|\lambda| \leqq m$.

On account of Lemma 4 in [2], $\int_{B(0,1)} R_{m}(x-y) d y$ is infinitely differentiable in $B(0,1)$. We let $B_{\lambda}=0$ if $|\lambda|<m$ and $B_{\lambda}=\left.(\partial / \partial x)^{\lambda} \int_{B(0,1)} R_{m}(x-y) d y\right|_{x=0}$ if $|\lambda|=m$. As in [2; Theorem 3], consider the numbers $C_{\lambda}=A_{\lambda}+f\left(x_{0}\right) B_{\lambda}$ and define

$$
P(x)=\sum_{|\lambda| \leqq m}(\lambda!)^{-1} C_{\lambda}\left(x-x_{0}\right)^{\lambda} .
$$

Letting $K_{\ell}(x, y)=R_{m}(x-y)-\sum_{|\lambda| \leqq \ell}(\lambda!)^{-1}\left(x-x_{0}\right)^{\lambda}\left[(\partial / \partial x)^{\lambda} R_{m}\right]\left(x_{0}-y\right)$, we write

$$
\begin{aligned}
\mid x- & \left.x_{0}\right|^{-m}\left\{R_{m} f(x)-P(x)\right\} \\
= & \left|x-x_{0}\right|^{-m} \int_{R^{n}-B\left(x_{0}, 1\right)} K_{m}(x, y) f(y) d y \\
& +\left|x-x_{0}\right|^{-m} \int_{B\left(x_{0}, 1\right)-B\left(x_{0}, 2\left|x-x_{0}\right|\right)} K_{m}(x, y)\left[f(y)-f\left(x_{0}\right)\right] d y \\
& -\left|x-x_{0}\right|^{-m} \sum_{|\lambda| \leqq m}(\lambda!)^{-1}\left(x-x_{0}\right)^{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \times \lim _{r \downarrow 0} \int_{B\left(x_{0}, 2\left|x-x_{0}\right|\right)-B\left(x_{0}, r\right)}(\partial / \partial x)^{\lambda} R_{m}\left(x_{0}-y\right)\left[f(y)-f\left(x_{0}\right)\right] d y \\
+ & f\left(x_{0}\right)\left|x-x_{0}\right|^{-m}\left(\int_{B\left(x_{0}, 1\right)} K_{m-1}(x, y) d y-\sum_{|\lambda|=m}(\lambda!)^{-1} B_{\lambda}\left(x-x_{0}\right)^{\lambda}\right) \\
+ & \left|x-x_{0}\right|^{-m} \int_{B\left(x_{0}, 2\left|x-x_{0}\right|\right)} R_{m}(x-y)\left[f(y)-f\left(x_{0}\right)\right] d y \\
= & I_{1}+I_{2}+I_{3}+I_{4}+I_{5},
\end{aligned}
$$

since $\int_{B(0, r)-B(0, s)}(\partial / \partial x)^{\lambda} R_{m}(x) d x=0$ for any $r, s>0$ and any λ with $|\lambda|=m$.
We first note that I_{1} tends to zero as $x \rightarrow x_{0}$ since $\int(1+|y|)^{m-n} f(y) d y<\infty$, which follows from the condition that $R_{m} f \not \equiv \infty$. If $\lim _{r \downarrow 0} r^{-n} \int_{B\left(x_{0}, r\right)} \mid f(y)-$ $f\left(x_{0}\right) \mid d y=0$, then, as in the proof of Theorem 3 in [2], we see that I_{2} and I_{3} tend to zero as $x \rightarrow x_{0}$. Further, the definition of B_{λ} implies that I_{4} tends to zero as $x \rightarrow x_{0}$. Finally, in view of Lemma 2, I_{5} tends to zero as $x \rightarrow x_{0}$ for almost every $x_{0} \in R^{n}$. Thus, we infer that $R_{m} f$ is totally m times differentiable at almost every x_{0}.

Remark 1. In the case $p=1$ and $m=n$, if we modify the condition on f in the Theorem, then we obtain the total n times differentiability of $R_{n} f$. Indeed, if f is a nonnegative measurable function on R^{n} such that $\left|R_{n} f\right| \not \equiv \infty$ and $\int f(y) \log$ $(2+f(y)) d y<\infty$, then $R_{n} f$ is totally n times differentiable almost everywhere.

Since our definition of differentiability is different from that of [1], we give a sketch of a proof. Instead of Lemmas 1 and 2 we can establish the following results in a way similar to these lemmas, and carry out the proof along the same lines as the proof of Theorem 4 in [3].

Lemma 1'. There exists a positive constant M such that

$$
\int_{\{y ; f(y) \geqq 1\}} R_{n}(x-y) f(y) d y \leqq M F \log (1 / F)
$$

for any nonnegative measurable function f on R^{n} such that $F \equiv \int f(y) \log (2+$ $f(y)) d y<e^{-1}$.

Lemma 2^{\prime}. If f is a nonnegative measurable function on R^{n} such that $\int f(y)$ $\log (2+f(y)) d y<\infty$, then

$$
\lim _{x \rightarrow x_{0}} \int_{B\left(x_{0}, 2\left|x-x_{0}\right|\right)}\left|f(y)-f\left(x_{0}\right)\right| \log \left(\left|x-x_{0}\right| /|x-y|\right) d y=0
$$

for almost every $x_{0} \in R^{n}$.

Remark 2. We can find a nonnegative measurable function f on R^{n} such that $\int f(y)^{p}[\log (2+f(y))]^{p-1} d y<\infty$ and $R_{m} f$ is not totally m times differentiable at any point of R^{n}, where m is a positive integer and $p=n / m>1$.

For the construction of such f, take a sequence $\left\{x_{j}\right\}$ which is everywhere dense in R^{n}. For a sequence $\left\{r_{j}\right\}$ of positive numbers, define

$$
f_{j}(y)=\left\{\begin{array}{lc}
\left|y-x_{j}\right|^{-m}\left[\log \left(1 / \mid y-x_{j}\right)\right]^{-1}\left[\log \left(\log \left(1 /\left|y-x_{j}\right|\right)\right)\right]^{-1} & \text { on } B\left(x_{j}, r_{j}\right) \\
0 & \text { elsewhere }
\end{array}\right.
$$

If $r_{j}<e^{-e}$, then it follows that

$$
\int f_{j}(y)^{p}\left[\log \left(2+f_{j}(y)\right)\right]^{p-1} d y \leqq M\left[\log \left(\log \left(1 / r_{j}\right)\right)\right]^{-p+1}
$$

for a positive constant M independent of j and $R_{m} f_{j}\left(x_{j}\right)=\infty$. If $\left\{r_{j}\right\}$ is so chosen that $\sum_{j=1}^{\infty} j^{2 p-1}\left[\log \left(\log \left(1 / r_{j}\right)\right)\right]^{-p+1}<\infty$ and $\max _{k \leqq j} f_{k}(y) \leqq f_{j+1}(y)$ on $B\left(x_{j+1}\right.$, $\left.r_{j+1}\right)$, then $f=\sum_{j=1}^{\infty} f_{j}$ satisfies the required conditions. In fact, $R_{m} f\left(x_{j}\right)=\infty$ for each j and

$$
\begin{aligned}
& \int\left(\sum_{j=1}^{N} f_{j}(y)\right)^{p}\left(\log \left(2+\sum_{j=1}^{N} f_{j}(y)\right)\right)^{p-1} d y \\
& \quad \leqq \sum_{k=1}^{N} \int_{B\left(x_{k}, r_{k}\right)-U_{\ell>k}^{B\left(x_{\ell}, r_{\ell}\right)}}\left(\sum_{j=1}^{N} f_{j}(y)\right)^{p}\left(\log \left(2+\sum_{j=1}^{N} f_{j}(y)\right)\right)^{p-1} d y \\
& \quad \leqq \sum_{k=1}^{N} \int_{B\left(x_{k}, r_{k}\right)}\left(k f_{k}(y)\right)^{p}\left[k \log \left(2+f_{k}(y)\right)\right]^{p-1} d y \\
& \quad \leqq M \sum_{k=1}^{N} k^{2 p-1}\left[\log \left(\log \left(1 / r_{k}\right)\right)\right]^{-p+1}
\end{aligned}
$$

which implies that $\int f(y)^{p}[\log (2+f(y))]^{p-1} d y<\infty$.

References

[1] C. P. Calderon and J. C. Lewis, On the differentiability of functions of several real variables, Illinois J. Math. 20 (1976), 535-542.
[2] Y. Mizuta, Semi-fine limits and semi-fine differentiability of Riesz potentials of functions in L^{p}, Hiroshima Math. J. 11 (1981), 515-524.
[5] Y. Mizuta, Study of the behavior of logarithmic potentials by means of logarithmically thin sets, Hiroshima Math. J. 14 (1984), 227-246.
[4] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

> Faculty of Integrated Arts and Sciences, Hiroshima University

