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1. Introduction

This paper is concerned with the existence of positive entire solutions of
semilinear elliptic equations of the type

(1.1) AN + a A% 'u +---+ ay_du + ayu = f(|x|, u), xeR",

where n23, N=1, a;, 1<j<N, are real constants, 4¥, ISk<N, are iterates of
the Laplacian 4= 7_, 0%/0x%, and f(t, u) is a real-valued continuous function
defined in [0, c0) x (0, c0). By an entire solution of (1.1) we mean a function
u € C2N(R") which satisfies equation (1.1) at every point of R".

The problem of existence (and nonexistence) of entire solutions for higher
order nonlinear elliptic equations was first investigated by Walter [9, 10] in the
late fifties; see also Walter and Rhee [11]. However, a systematic study of
this problem has recently been initiated by Kusano and Swanson [7], and Kusano,
Naito and Swanson [4, 5, 6]. See Usami [8] for further study in this direction.
In particular, it is shown [5] that the particular case of (1.1)

(1.2) ANu = f(|x|, u), xeR", n=3

possesses a variety of entire solutions with different asymptotic behavior at
infinity.

The purpose of this paper is to extend the existence theory of [S] to a more
general equation (1.1) in which the differential operator

L=4N + g4 ' +.--+ ay_ 4 + ay
has a decomposition of the form
L=(A—a%)l’l...(A_a12“)PM,

where a,,, 1 <m <M, are nonnegative constants with a, <---<a,, and p,, 1<m<
M, are positive integers. The unperturbed equation

(1.3) (d—ad)Pr-(4d—a3)PMu = 0

has a set of radial entire solutions
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WX, 0gisp, -1, 1SmsM,

where (i(|x]) behaves as |x]— oo like a positive constant multiple of the function

x| ="' exp(alxl)  for a>0; |x|* for a=0.

We first give conditions under which equation (1.1) has positive radial entire
solutions u(x) which are asymptotic to {! (|x|) at infinity in the sense that the
limit

lim _u@_

b G, (1x1)
exists and is positive.

An interesting problem is to find entire solutions which are asymptotic to
none of the {! (|x|) at infinity. We also study this problem and establish the
existence of four kinds of radial entire solutions u,;(x), u,(x), us(x) and u,(x) for
(1.1) with asymptotic properties

lim ) o im0 o 1<i<p —1;
o 1) — % e Tk T =S Pm
lim . %2%) o qim %) .

ey () MRS o G (7))

lim Cuy(x) 0; li us(x)

xioeo Lo () prios T (lx]y T %

It is known that equation (1.3) has a set of radial solutions
ﬂim(lxD, Oélépm“19 1 éméMy

where ni(|x|) is defined in R"~{0} and behaves as |x|—>oco like a constant
multiple of

Ix|i="2" exp (—alx]) for a>0; |x|2+2-n for a=0.

We show that, under certain conditions, equation (1.1) possesses a decaying radial
entire solution u(x) such that the limit

lim 2
1xi~e ME " (Ix])
exists and is positive.

All the existence theorems are proved in Section 3. In each of the theorems
the desired entire solution is obtained, via the Schauder-Tychonoff fixed point
theorem, as a solution of a suitable integral equation, whose integral operator is
composed of a finite number of integral operators of the forms G, and H,:
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o "% Jo

(H,g) (1) = {,(1) J‘T ‘;;,:{“g!’(‘r')’f‘ J: s"T1L(5)g(s)ds,
where (,() is defined by

= (f2)* _n _
WO =X Spirvtksn > V=3 — b 220

Note that the operators G, and H, were used by the present author [2] to con-
struct entire solutions of second order elliptic equations of the type du —o2u=
f(x,u), xeR", n=3. Basic properties of G, and H, needed in the proofs of
our results are collected in Section 2. An example illustrating the main results
is given 1n Section 4.

2. Fundamental integral operators

In our existence theory to be developed in Section 3 a crucial role will be
played by the integral operators G, and H, (see (2.10) and (2.11) below) giving
rise to radial entire solutions of the linear elliptic equation of the form

Au — o?u = g(|x|), xeR", n=3.

The purpose of this preparatory section is to collect basic properties of these
integral operators.

We begin by considering, for >3 and «>0, the functions

@1 L) = (@) (ar), v= ;’ -1,

_ ® ds
22 m) =00 |
where I,(¢) is the modified Bessel function of order v:
-3 @2
L) k; k'FT'(v+k+1) °
These functions constitute linearly independent solutions of the differential
equation

Using the facts [12, pp. 77-80]
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1 ty
Iv(t) ~ f(;_n)‘ <7> as t— + 0,

I(t) ~ (2nt)"1/%e* as t— o0,

we see that

23) {(t) ~27'T(v+1)"! as t— +0,

(2.4) 1) ~ (=212 T(v+ D™ as - + 0,
(2.5) {0) ~ @m)~1/3(ar)1~m/%ex as  t— o,

(2.6) n.(1) ~ (2m)'/%(20) 7! (t/a) ' "M/2e7t as 1 0,
(2.7) L(On(t) ~ (20)7't'7" as 1 — oo.

It follows that {,(|x|) is a positive entire solution of the equation Adu—oa?u=0
which increases exponentially to co as |x|— oo, and that #,(]x|) is a solution of
the same equation which is defined in R"~{0} and decreases exponentially to
zero as |x|—oo. Put

2.8) Lo =27 T(v+ 1), no(t) = (n=2)"12T'(v+ 1)1?7";

then {o(t)=1im,_, ; o { (1), no()=lim,_, , o 7,(?), and {y(|x]) and ny(|x|) are solutions
of the Laplace equation 4u=0 in R" and R"~{0}, respectively.

Let 4,00, o0), =0, denote the set of all real-valued continuous functions
g(1) in (0, o0) such that

(] ©
@9 [l <o, [T rmmolgold < o

for any 6>0. We define the integral operators G,: C[0, o0)—C?[0, c0) and
H,: 4,0, c0)—C*0, c0) by the formulas

@100 GO =L || iy [ L Oa)ds

= — 00 f SILg()ds + L) j STg(ds, 120,
for geC[0, o0),

@) H)O =L [ [ e eds

= 1) fo ILOds + L0 [ s ins)g(o)ds, 1> 0,

for geA,0, ).
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It is obvious that G,g =0 and H,g =0 for g =0 and that the image of C[0, c0)n
A0, o) under H, is contained in C?[0, c0). Note that if in particular a=0,
then (2.10) and (2.11) reduce, respectively, to

Gog)®) = [ ri=rdr {" sm1g(s)ds

= ! 2f<1— s sg(s)ds;IQO, geClo, ),

and

(Hog) () = j °° Piondy f " r1g(s)ds

= <f< > sg(s)ds+f sg(s)ds> t>0, geA,0, ©);

see Kawano [3] and the present author [1].

The following result is an easy consequence of (2.10), (2.11) and the polar
form of 4 —a?:

d
N lc (1) dt

A—o2= 1 ()2 S t = |x|.

dt [HON

Lemma 2.1. G, and H,, =0, have the following properties:

(i) [(A—a*)G,g1(Ix])=g(|x]), x € R" for all g € C[0, 00).

(i) [(A—a*)H,g1(|x])=—g(lx]), xe€R*~{0} [resp.xeR"] for all ge
A0, o) [resp. g € C[0, o) n A0, 0)].

For >0 and i =0 we define
(2.12) (i) = (GLL) (), ni(t) = (Hin,)(1),
where G! and H! denote the i-th iterates of the operators G, and H,.

LemMMA 2.2. For a>0 and i=0 the functions {i(t) and ni(t) have the fol-
lowing properties:

(i) ¢t eC[0, ) and
(2.13) i) ~ _< 2a> ((t) as t— .

(i) (@) If0=<i<[(n—3)/2], then nie A0, o©) and

-!»-

(2.14) m0 ~ 5 (5 ) 10 as 1o,
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2r(v+1) (2042

(2.15) ni(t) ~ = 2) (=2 =2) as t— +0.

(b) Ifnis even and i=(i_1/2)— 1, then ni € A,(0, o) and
: l t (n/2)-1
(2~16) ’la(t) ~ (k(nilé)*—ilq)y' (zx‘) n,(t) as t— oo,

Q@17 A0 ~ 2%(51%;)11)1)']2.103(1/:) as t— +0.

(¢) If i=[n/2], then ni e C[0, o) n A0, c0) and (2.14) is satisfied.

Proor. (i) It is clear that (! e C[0, o) for all i=0. Since {9=(,, (2.13)
holds for i=0. Suppose that (2.13) is true for some i=0. Then, by (2.10),

G0 = =m0 LSS + L0 [ s nosds
= 1) + 1.

Using I’Hospital’s rule, (2.2), (2.7) and (2.13), we obtain

— | s (S)C‘ (S)ds
}l-»lg tr;lllc%‘)(t) lilg t’ﬂ{f S: 1C (s)z ’:’1
=1im g —t_"l“ca(t)%g) —
(| )+ et (L et

VAR P O O
= ;1 () tim O RO T

and

[} sma@eads
o I, (t) -0 titt o
- ", (D) _
m G i (H—l)' <2zx> ’

which shows that (2.13) with i replaced by i+ 1 is true.  Therefore (2.13) must
hold for all i =0.

(ii)) (a) Suppose that nie A0, ) and (2.14)-(2.15) hold for some i
0=ig[(n—3)/2]—1). Then xi*'eC(0, cv) is obvious. In view of (2.11)
we get
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Q2.18) ni*i(1) = n,(1) f LS + L0) f” s" I (sIni(s)ds
= K,(t) + K,(®).

L’ Hospital’s rule, together with (2.5), (2.6) and (2.14), implies that

f L) ds

o KM _im Joo B
i iy =l
— i {" lCa(t)na(t) 1 l >i+l
=hm i e o =GR (2a

and

"5t (o) s)ds

lim - fz(t) e lim J“ 5 0:7 (s)n (s)> 5
t—00 t' (t) t—0 tH.lf B ds -
e s, (5)?

- (Hl)tif W'A'W'CS(S)Z ()2

= ’?li" <,2,1,_>i lim .~ L' ()N, (1) ]?
i «

pitd

oo [+ 1)1 (D, (1) — ¢ ’

proving the truth of (2.14) with i replaced by i+1.
Noting that 2t "—o0 as t—+0 and pi(t)~c;t?i*27" as t— +0, where
¢;=2"T(v+1)/24i(n—2)---(n—2i—2), and using (2.3), (2.4) and (2.18) we have

v n—1
K 2””?“){ L () ds
(=40 t2i+4_" (=40 (n 2)t2l+2
i 2TOEDTLORO _ e,
dm T h=2) Q425 T (n=2)(2i+2)
n—1 i
KGO f EOTHOr
(540 t21+4 n (240 2 r(v+1)t21+4 n

- lim — 1" I, (t)ni(t) - e
mto 2 T(v+1)(2i +4—n)r2it3=n (n—2)(n—4-2i) ’

and consequently

e e
N e = Qi) (=4 =20

proving that (2.15) is true for i replaced by i+ 1. Thus, we have ni*! € A4,(0, o).
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Since 75, € 4,0, c0) and (2.14)~(2.15) are trivial for i=0, it follows that nie
AL0, o0) and (2.14)~(2.15) are true for 0= i<[(n—3)/2].

(b) Let n be even and i=(n/2)—1. Then, (2.16) is obtained by applying H,
to (2.14) with i=[(n—3)/2] and proceeding exactly as in the derivation of (2.14)
in (a). The functions K,(¢) and K,(¢) in (2.18) with i replaced by i—1 satisfy in
view of (2.3), (2.4) and (2.15)

i K ZTOHD [ 0 ods
t-+0 log(l/t) =40 (n— 2)[" 210g(1/t)
2°L(v4 1)1 ()ni (1)

= A =2 [(n =27 log (1) — 7T
= lim - =0
i=+o (n=2)[(n— 2) Tog (1)~ 1]
and

K T G)ds

lim ? = lim Yt

»+0 log (1/1) — iov0  2°T(v+1) log(1/1)

= lim 15 M1 Cocy 2’r(v+1)

to 2 T(v+ 1)1t n—-2 T 272 [((nf2) = 1)1

which shows (2.17). Therefore, ni e 4,0, o).

(c) By the definition of nin/2X(y),
nlr/2)(t) = (1) J‘r s1E (s)n'n=3/2(s)ds
0

00 [ st xs)ds

if n is odd, and
[n/Z](t) - ﬂa(t)f §n- 1C (S)”(n/l) l(S)dS

+ ca(t)f, ST D=1 (s)ds

if n is even. This, combined with the relations (see (a) and (b))

- 2y F(v+1)
(n—3)/2 -+
N (1) ~ =21 as t 0 (for n odd),

2T(v+1)

R o (T NICe

-log(1/t) as t— + 0 (for neven),



Higher order semilinear elliptic equations 569

implies that yl"/21e C[0, cv). The proof of (2.14) for i=[n/2] is similar to that
of part (a), and hence ni'e C[0, c0) N A0, o0) for i=[n/2]. This completes
the proof of Lemma 2.2.

Repeated application of G, and H, starting from (2.8) yields the explicit
expressions for {i() and ni(1).

LemMma 2.3, (i(t) and ni(t) are given by

iy = 2 TOv+D™ s
(2-19) 0 = pijy(nraizay 0 12

@20 w0 = 3 _22€("(J;1_) 2=y P 1S i< (=32

It should be noticed that 5i(#) cannot be defined for i=[(n—1)/2], since
nhn=321 ¢ A4(0, o0) by (2.20).
We employ the notation

.21) Li[0, ) = {g € C[0, o0): f :tn—ln;(t)|g(t)|dt< oo}

for =0, i20. Obviously L2[0, c0)=C[0, o0) N 4,0, o).

LEMMA 2.4. If g(t) and h(t) are nonnegative functions in A0, o), a=0,
then

2.22) f: =\ h(1) (H,g) (f)dt = f : = \(H,h) (D)g ()d.

The verification of this lemma is straightforward on the basis of the second
expression for H, in (2.11). Note that the integrals in (2.22) may converge or
diverge.

LEMMA 2.5. Let 20 and j=1. If geLi~'[0, o), then for any i=0

(2.23) (GiHig)®)| = L&) J: s"1nl=1(s)lg(s)lds, 20,
and

. (GLHIg)(1) _
(2.24) }Lrg 0] 0.

ProOF. We first consider the case where i=0. Since {,(t) is increasing
and n,(¢) is decreasing, we have from (2.11)

(H.g)0! S (Hlgh 0 < 00 [~ i) lglds, 12 0.
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From the relation

(2.25) (”C'%))(’) = fo ’gg; S ()g(s)ds +f 57 In(s)g(s)ds,

we see, via the Lebesgue dominated convergence theorem applied to the first
integral in (2.25), that lim,_  (H,g)(t)/{(t)=0. Thus (2.23) and (2.24) are true
for i=0and j=1. Assume that truth of (2.23) and (2.24) for i=0 and some
j=1. Then, if g € Li[0, ), using Lemma 2.4 we have

I(Hi*'g)n)l = Ca(t)f: "~ 'ni 7 (s) (Hlg)) (s)ds

0 f: s ni(s)lg(s)lds, 120,

and

(HIYg) (1) _ . (HiHg)() _
im-Sr gy Thm Sy S =0

Thus induction shows that (2.23) and (2.24) hold for i=0 and all j=1.
Now let j=>1 be fixed, and assume the truth of (2.23) and (2.24) for some i = 0.
That (2.23) and (2.24) with i replaced by i+ 1 hold is seen as follows:

(G Hg)(D| = (G.GiHg)1)| = (GIGLHg)) (1)

<(Gc)(t)j s"1ni=1(s) |g(s)|ds
= o[ s lglds, 120,
Lo dr f’sn )G Hlg) (5)ds

lim - (G'Jrl g)(t) = lim AJ‘O - IC (")2

e LT o fo P 162:(,)2 fr sm ‘C (v)C‘(s)ds

_ S U = lm

o f 5717 () Li(s) dis e G0

It follows that (2.23) and (2.24) hold for all i=0 and j=1.

— lim JorreoGn©ds gy

REMARK. In view of Lemma 2.3, if «=0 in Lemma 2.5, then the integer j
must not exceed [(n—1)/2]. A similar remark applies to the subsequent lemmas
in which the function n{(t) appears.

LEMMA 2.6. (i) If g(t) is a nonnegative function in C[0, o), then for
a=20and i1
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G e
(2.26) }L‘B (C'qux) _fo s"n(s)g(s)ds.
(i) If g(t) is a nonnegative function in Li~'[0, c0), =0, j=1, then for
i=1
2.27) tim (GHOO. _ [ o195

Note that the integrals in (2.26) and (2.27) may converge or diverge.

Proor. (i) By (2.10), (Gag)(;)/cu(t) is nondecreasing and

i G [ e [ 10w

= [ s moads

proving (2.26) for i=1. If we suppose that (2.26) holds for some i=1, then we
have via I’Hospital’s rule

t

tim (90O _ jim _fo e Cord L@
1= t) 1> t dr r
el [}l s [ om0 ) ds

o rICL(r)?
I R SO IC L |

1—0 Jt)su 1 ()¢ 1(s)ds om =ity

which shows that (2.26) is true for all i>1.

(i) If geLi~'[0, o), then H} 7g is well defined (see Lemma 2.5), and
from (2.26) (with g replaced by Hig) and Lemma 2.4 it follows that

tim (GO0, _ [ ooty ) 1119 (5)ds

= J " Ind(s)g(s)ds.
0
This completes the proof.

LEMMA 2.7. Leta>f20,i=1 and j=O0.
(i) If geC[0, o) and lim,,  g(t)/li(t) exists in the extended real line
R U {+ 0}, then

@0 _ 1 g g0
(2.28) Im 00 T - gy M iy -
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(i) If g€ A0, o) and lim,_, , g(1)/{4(1) exists in R, then

. (Hig) () _ 1 g(1)
(2.29) Im Va0 T ey W e

(it) If g€ A0, ) and lim,_, ,, g(1)/nj(1) exists in R, then

(Heg)(1) _ 1 g(1)
) Zpry M)

ProoF. (i) Suppose that f>0. That (2.28) holds for i=1 is verified as
follows:

(2.30)

! dr -
lim (G _ fo 1 p(r)? f s" 1 g(s)g(s)ds
1o (/(t) 10 CJ(’)/C/](I)

= lim -

1o (a/ﬁ)(""5/2([/2d)je(a—ﬁ)r
'

=l e By By R 2y

2nj! J:) s () g (s)ds

= BRI 2T

i, 2UNTGWe0)
e (@2 = f2)(@B) (1 [ 2) e

= lim - .- zﬂj!t"—ICﬂ(t)Ci(lz__ lim g(t)
o (a2 = B2 (af) (2 [2a) et o Li(t)

b e 9(n)

=2 M iy
Here I'Hospital’s rule, (2.5) and (2.13) have been used. Using this result, we
see that if (2.28) holds for some i =1, then

im (G590 _ . (G,Ghg)(1)

P "Cf(t) T e @)
I im G9)(0) m 90

= . = li
g I = e e Gy
showing the truth of (2.28) with i replaced by i+ 1. Therefore (2.28) holds for
all i1 if f>0. A similar computation with the use of (2.8), (2.19) and (2.20)
shows that (2.28) also holds if f=0. This completes the proof of (i).

The statements (ii) and (iii) can be proved analogously.
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We now introduce the notation:

(2.31) V(1) = min {{(0), n(0)}, >0,
(2.32) I(1) = max {{,(1), n,()}, t>0,
and

(2.33) i) = (Hiy,) (1), t>0,

where >0 and j=0. Let L, [0, o), a=0, denote the set of all functions ge
C[0, o) such that

(2.34) I: "I (s)|g(s)|ds < oo.

It is clear that L,[0, c0)< L,[0, o).

LemMA 2.8. If g(t) is a nonnegative function in L [0, ), =0, then for
all j>1

@39 A0 e < Hig

<0 [ e, 120,

and

(2.36) lim (,gé;{’(?})i? =f: sn=1¢ (5)g(s)ds.

Proor. We prove this lemma by induction on j. By (2.11) and (2.31)
we have

2.37) (H.9) (1) 2 7.00) f "t g(sds, 120,

for ge L,[0, oo) with g(£)=0. On the other hand, (2.11) together with the
monotonicity of {(¢) and n,(t) implies that

(Hg) (1) < camf: 5" 1n(s)g(s)ds
< ca(t)f: 1T (s)g(s)ds, 120,
(Ha) ) S 10 [ 1 ()g(5)ds

< 1) f ST g(s)ds, 120,
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which shows that

(2.38) ()W) S 7.0 [ T (5)g(9)ds, 120,
0

From (2.37) and (2.38) we see that (2.35) holds for j=1. That (2.36) holds for
j=1 follows from the relations:

LD = [ 10, ()g()ds + L0 [, ()g(5)ds

and

05 L [ mm9g(sds < [ 515190
na t) t t
Suppose that (2.35) and (2.36) are true for some j=1. Then, applying the
operator H, to (2.35), we obtain (2.35) with j replaced by j+ 1, and using (2.36)
we find
~ [Pl [Lm e g s
lim H @) _ gy e TR o P ET
-0 ni(t) P fw dr J" s ()1 (s) ds

LR Jo

[ s ds _ lim (Hi9)(®)

= dm e - = lim = 5y
| st omizr sy ds :
0

proving (2.36) with j replaced by j+1. This completes the proof.

3. Existence of positive entire solutions
In this section the existence of positive radial entire solutions will be
established for the elliptic equation

3.1 d—-a?)pr--(d—a})PMu=f(|x|, u), xeR", n =3,

where o;, 1 <i< M, are constants such that 0o, <o, <---<oay, and p;, 1 ZiSM,
are positive integers. Hypotheses on f(¢, u) will be selected from the following
list.

(f,) f: [0, o0)x (0, co)—R is continuous.
(f,) There exists a continuous function f*: [0, o0) x (0, c0)—[0, c0) such
that

| f(t, w)| < f*(t, u) for (t, u)e[0, o0) x (0, c0).
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(f;) (Superlinearity) u~!f*(t, u) is nondecreasing in u e (0, o0) for each
fixed =0 and satisfies

lim u™'f*(¢,u)=0, t=0.

t—+0

(f,) (Sublinearity) wu~!f*(t, u) is nonincreasing in u € (0, oo) for each fixed
t =0 and satisfies

limu='f*(t,u)=0, t=0.

t—0
(fs) f*(t, u) is nondecreasing in u € (0, o) for each fixed t=0.
(fs) f*(t, u) is nonincreasing in u € (0, o) for each fixed t=0.

Noting that the functions {{% (¢): 0<i<p,—1, 1Sm=<M} defined by (2.1),
(2.8) and (2.12) yield the positive entire solutions

(32) im(!XD, 0 é i é Pm — ]’ I1=m é M

of the unperturbed elliptic equation
(3.3) (4—a3)pi.--(4—a?)PMu =0, xeR",

we first discuss the situation in which equation (3.1) possesses positive radial
entire solutions u(x) which are asymptotic to (% (|x|) as |x|— oo in the sense that

im _#(x)
(34) .11,'3,0 ORI

for some positive value 7.

Let S denote the set of all positive radial entire solutions of (3.1), and define
the subsets S(¢¢ ) of S and the subsets T({¢ ) of (0, co) as follows:

S(Li,) = {ueS: u(x) satisfies (3.4) for some finite value 1>0},

T(Li,) = {te(0, o0): there exists a u € S such that (3.4) holds}.

In what follows we use the notation F and F* to denote the Nemytskii
operators corresponding to the functions f(t, u) and f*(¢t, u) in (f,)—(f,):

(Fy)(1) = f(t, (1)), (F*y)(1) = f*(1, (1)), yeC[0, ).
Our first results are the following two theorems.

THEOREM 3.1.  Suppose that (f,), (f,) and (f;) are satisfied. Let a,, be one
of the numbers a,,. ., oy appearing in (3.1) and let i be an integer such that
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0<i<p

=!=VFm

-1 if a,>0,

3.5) )
max {09 pm_i_ngl —"} é'épm_ 1 lf am=0'

If there exists a positive constant A such that
(3.6) F*(AL%, ) e LEn=i1[0, w),

then T((%,) contains an interval of the form (0, 1), that is, there is a 1,>0 such
that equation (3.1) has a positive radial entire solution u(x) satisfying (3.4)
for every t€(0, 10).

THEOREM 3.2. Suppose that (f)), (f,) and (f,) are satisfied. Let o, be one
of the numbers a,,..., a0y appearing in (3.1) and let i be an integer satisfying
(3.5). If (3.6) holds for some A>0, then T((.,) contains an interval of the form
(1, ), that is, there is a 1,>0 such that equation (3.1) has a positive radial
entire solution u(x) satisfying (3.4) for every 1 €(t,, o).

PrOOF OF THEOREM 3.1. Let C[0, o) be the locally convex space of all
continuous functions in [0, co) with the topology of uniform convergence on
every compact subinterval of [0, c0). Define

(3.7 9.0 =00, &0=00+00 for izl
Let 7€ (0, 24/3) and consider the closed convex subset Y, of C[0, o) defined by
(8) Y= {yeClo, 20): ) e ()SH(1) S 3 tEL, (1), 120} .

Condition (3.6), together with (f,) and (f;), implies that Fye LE=~i~1[0, oo) for
every ye Y. Let us define integral operators 4, B and C by

(39) A=GP.--GIm-t, B=Gi Hlm=i, C = HBms1...HPy,

Am-1° aAm” " Am Am+1

Since, by Lemma 2.5,
(BoXDI S Tt (0 [ s tnzar ') lg(0)ds, 120,
for g e LEm=i~1[0, ), using Lemma 2.4 we obtain for ye Y,
I((BCFy)®)| = i, (D f: s""Inem =i 1(s) [(CFy)(s)lds
< 4,0 [ s O T O RIS, 120,

where C*=H}M..-Hjm+! and hence

Am+1°
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(10)  (ABCFY)OI < (AL [ s 1Conzzr ) 6 (o) (s, 12 0.
Noting that

lim (423,) (01, (0) =TI (@3 —ad)y >+ > 0
and

M
im (C*nZm= =) (/g1 () = 11 (ef—o2)™Px >0
-0 k=

m+1

by Lemma 2.7, we see from (3.10) that there is a constant ¢ >0 such that

(ABCFy)®)| < cli (1) f” sn=1g2n=i=1(s) (F* ) (s)ds
(3.11)

IIA

et (D I:S"_‘ﬂgx_i"(s)f*<s, g téf;m(s)> ds, t=0,

for yeY.. 1In view of (3.6) and the fact that lim,, .o t7'f*(t, 37/2)&;, (1))=0,
t=0, by (f;), we have

(3.12) lim J~f $n=1 Pt (5) £ <s, 3 ‘r.f};m(s)> ds =0

=+0 T Jo
with the aid of the Lebesgue dominated convergence theorem. From (3.11)
and (3.12) it follows that there is a constant 7, >0 such that

(3.13) (ABCFy)D)| < 564, (0, 120,

forall ye Y, and 0<1<1,.
Fix 7, 0 <1 <1y, and consider the mapping ®,: Y,—C[0, o) defined by

(3.14) (@ () = &, (0 + (—D(ABCFy)(1), 120,

where p=p,,+ - +pp—i. By (3.13)itis clear that & maps Y, into Y,. If {y,}is
a sequence in Y, converging to ye Y, in the C[0, «) topology, use of (f,), (f3)
and (3.6) together with the dominated convergence theorem shows that {(®,y,)(?)}
converges to (®,y)(¢) uniformly on compact subintervals of [0, c0), implying the
continuity of &,. Ascoli-Arzela’s theorem can be used to show that @(Y,) is
relatively compact in C[0, c0). The Schauder-Tychonoff fixed point theorem
then guarantees the existence of y € Y, such that y=&.y. Put u(x)=y(|x|), x € R".
Applying Lemma 2.1 repeatedly, we conclude that u(x) is a positive entire solution
of equation (3.1). Since CFye L{mi1[0, o) for y € Y,, we have
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lim BN _ o ey,

Py (1)
by Lemma 2.5, and hence

(3.15) lim 14?2%5)( ) —0, yev,

by (i) of Lemma 2.7. Thus the solution u(x)=y(]x|) has the desired asymptotic
property: lim,, , u(x)/L% (Ix])=1.

PrOOF OF THEOREM 3.2. Let 7>24, and define Y, and @, by (3.8) and (3.14),
respectively. We observe that Fye LZ=~i71[0, c0) for yeY,; in fact, in view
of (f,) and (f,), we have

RAUSIQ)

1S, yO)L o ¥, y(2))
y(2) = y(1)
< S DG, 0) o [rEAE,0)
= (z/2)¢&,.(2) - AgL(ey =7
and hence

1yl S 3 (1 3 8,.0) S 35 £10 08, (1), 120
It follows that there is a constant ¢>0 such that
(16)  ABCFYOI S elty, ()7 stz (s, 5 €4, (5) )ds. 120,
]

for yeY,, where A, B and C are defined by (3.9). Since lim,_  t7'f*(1,
(7/2) &, (1)=0, t=0, by (f,), we have

lim 1 r) s (s) f* <S’ 2 ¢ (S)>ds N
0 2 I

T—00

which, combined with (3.16), implies the existence of a 7,>24 such that (3.13)
holds for all T>7, and all ye Y,. We then conclude that, for any fixed > 1,
the mapping &, has a fixed element ye Y,, which gives rise to a positive entire
solution u(x)=y(|x|) of equation (3.1). To verify the asymptotic property of
u(x) it suffices to observe that (3.15) also holds in this case. This completes
the proof.

CoRrOLLARY 3.1. Suppose that (f)), (f,) and (f3) hold. Let o, be one of the
numbers ay,..., o« appearing in (3.1), and suppose that p,<[(n—1)/2] if «,,=0.
Then, S(i, )# ¢ for all i, 0Zi<p,—1, if there exists a constant A>0 such that

(3.17) F*(AL5m=1) e LY, [0, ).
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COROLLARY 3.2. Suppose that (f,), (f,) and (f,) hold. Let «, be one of
the numbers a,..., &y appearing in (3.1), and suppose that p,<[(n—1)/2] if
o,=0. Then, S({} )Y#¢ for all i, 0Si<p,—1, if there exists a constant 1>0
such that

(3.18) FX(AL,,) € LE»=1[0, oc).

PROOF OF COROLLARY 3.1. Leti, 0<i<p,—1, be fixed. Since, by Lemmas
2.2 and 2.3, i (1)< E="\(1) for sufficiently large ¢, say t=1,, (f;) implies that
MO, 28,(0) S 8 (Df*(, 205m71(1), t2t.

Am

Using this and the relation
b (ONEm™ 1) ~ cLom= (), (1) as t— o0

for some constant ¢ >0, which also follows from Lemmas 2.2 and 2.3, we see from
(3.17) that F*(AL%,) e LE=~i=1[0, o0), so that S({i )#¢ by Theorem 3.1. Since
i is arbitrary, the conclusion follows.

PROOF OF COROLLARY 3.2. Let i be as above. Let ¢, be such that {{ ()=

aAm

L, (1) for t=1t,. We also have F*(A{i )e L?2=~i~1[0, <o), because (f,) implies
G (DX, 28, (1) = &, (0%, AL, (D), 121,
and Lemmas 2.2 and 2.3 show
En(OMERT N0 ~ L, (O (1) as t—> o
for some ¢>0. Hence S({}, )#¢ by Theorem 3.2.

We will show that the conclusion of Theorem 3.2 can be strengthened if
more restrictive conditions are placed on the nonlinearity of equation (3.1).

THEOREM 3.3.  Suppose that (f,), (f,), (f,) and (fs) are satisfied. Let a,, be
one of the numbers a,..., oy appearing in (3.1) and let i be an integer satisfying
(3.5). Suppose moreover that

(3.19) (=Drf(t,u)=20  for (t,u)e[0, o) x (0, 0),

where p=p,+---+py—i. If (3.6) holds for some 2>0, then T((}, )=(0, o0),
that is, for any given t1>0 there exists a positive radial entire solution u(x) of
equation (3.1) satisfying (3.4).

ProoOF. Fix >0 arbitrarily and define

Y, = {yeCl0, ©0): & (NS y() S 08, (1), 120},
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where 6 >max {7, 1}. If yeY,, then in view of (f,), (f,) and (fs)
(_ l)pf(t’ }’(t)) :<—_ f*(t’ y(t))
S f*(t, 08l (1)) < (a2 f*(t, 28 (1), t=0,

which implies that (—1)?Fye Lf»=i-1[0, ov). Letting A, B and C be as in (3.9)
and arguing as in the proof of Theorem 3.2, we see that there is a 6, =max {t, 4}
such that

(3.20) 0 = (=DYABCFy)(1) < g- (0, 120,

am

for all 6 =0y and yeY,,.

Put ¢* =max {21, g,}, and consider the mapping &, defined by (3.14). From
(3.20) it follows that & _maps Y, . into itself. The continuity of @ and the
relative compactness of ®(Y,,.) are verified without difficulty, and hence @,
has a fixed element y € Y, ,. by the Schauder-Tychonoff theorem. The function
u(x)=y(|x|) then gives a positive entire solution with the desired asymptotic
behavior at infinity. This completes the proof.

The following theorem establishes a conclusion similar to Theorem 3.3
for the case where f(¢, u) is bounded by a function which is nonincreasing in u.

THEOREM 3.4. Suppose that (f,), (f,) and (fg) hold. Let a,, i and p be as
in Theorem 3.3 and suppose that (3.19) is satisfied. If (3.6) holds for all >0,
then T((}, )=(0, o), that is, for every 1>0 equation (3.1) has a positive radial
entire solution u(x) satisfying (3.4).

ProoF. Let >0 be any fixed constant, and consider the set

Y. = {ye C[0, 00): &, () S y() S(P(7&;, (), 120},

am

where @, is given by (3.14); Y, is not empty because of (3.19). Hypotheses (f,) and
(f,) imply that

(=1D2f(t, p(0) =¥, y(1) = fX(8, 7L, (D), 120,

for ye Y,, and so @, obviously maps Y, into itself. Application of the Schauder-
Tychonoff theorem completes the proof.

In what follows we are concerned with the problem of existence of positive
entire solutions of equation (3.1) which are not asymptotic to any of the entire
solution i (|x]), 0i<p,—1, 1=m=<M, of the corresponding linear equation
3.3).

THEOREM 3.5. Let o, be one of the number a,,..., ay appearing in (3.1)
and let i be an integer such that
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1§l§pm—l ifam>03

max {1, p,,,-[l;%]} <igp,—1 if a,=0.

In addition to (f) suppose that

321 f*t,uw=(-1)f(t,u) =20  for (t,u)el[0, o) x (0, o),
where p=p,,+ -+ py—I, and f*(t, u) satisfies (f,) and (f5). If
(3.22) FXED & Lgnm'[0, ) and  F*(CL,)e Lini7'[0, o),

then equation (3.1) has a positive radial entire solution u(x) such that

oo u(x) i u(x)
(3:23) R T (£ RN M (F2)

THEOREM 3.6. Let m be an integer with 1<m<M—1. In addition to (f,)
suppose that (3.21) holds for p=p, i+ +py, and f*(t, u) satisfies (f,) and
(fs). If

(3.24) F*(m™Y) ¢ L2,[0, ) and F*(,,,)eLin:1 [0, ),

then equation (3.1) has a positive radial entire solution u(x) such that

3.25 li _oulx) d 1 ou(x) 0.
(3:25) R 1) M R oy (B

PrROOF OF THEOREM 3.5. For each 121, define a set Y, by
Y, = {y e C[0, o0): &, (= () =& (D) + L (1), 1=20}.

Since EE-1(1) < (i (1) for sufficiently large ¢, (f5) and the second condition of (3.22)
imply that (—1)?Fy e LE=~i71[0, o) for y € Y,, and it follows that

(= DP(ABCF)() S el (1) [ s inzam =) %, y(5)ds
< i (1) f s )46, WENO L (s, 120,

for some constant ¢ >0, where 4, B and C are given by (3.9) (see (3.11)). We now
choose 7,21 so large that

(3:26) (—=D(4BCFy)() < (. (1), 120,

for all t27, and yeY,. This is possible because lim,. ,t='f*(t, (& () +
i (D)=0, t=0, by (f,), which implies
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tim L stz o164, 110+ 8 (D)5 = 0.

oo T
Fix 1=1, and define &, by
(@) (1) = & N1 + (= DY(ABCFy)(1), t20.

Am

Then it follows from (3.26) that &, maps Y, into itself, and it is easy to show
that &, is continuous and ®(Y,) is relatively compact. Consequently, there exists
a fixed point y € Y, of @, giving rise to entire solution u(x)= y(|x|) of equation (3.1).

It remains to study the asymptotic behavior of u(x) at infinity. Note first
that the proof of the second relation in (3.23) is the same as in Theorem 3.2.
Application of Lemma 2.6 shows that

tim (~DUEEINW. — (py [z (CRy) s

(3.27) = (=1 [T O ) (F) (s
0
2 (= 1y [ sz ) (F) (s
0
for some constant ¢>0, where C*=HiM...Hlm+1, and Lemma 2.4 and (iii) of
Lemma 2.7 have been used. Since
(=DP(Fy) (1) 2 (=D)rf(, 21 (10), 120,

the last integral in (3.27) is equal to oo, so that from (i) of Lemma 2.7 it follows
that

P am (1)

am

w’

which establishes the first relation (3.23). This completes the proof.
PROOF OF THEOREM 3.6. We define Y, and @, 1>0, by
Y, = {yeCl0, 00): w2 (S y() S e (D) +L,,,, (1), 120}
and

(@) (1) = w&in= (1) + (—1D(DEFy)(1), 120,

am

where D=G?%!---Gi» and E=H&m+i...HiM.  As in the proof of Theorem 3.5

Am+1

it can be shown that there exists a 7, =1 such that

0 = (=DADEFy)() = 1{,,,,,(1), 120,
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for all t=1, and ye Y,. With such a choice of 7, @, is shown to be continuous
and to map Y, into a compact subset of Y, and hence @, has a fixed element y € Y..

Using Lemma 2.5, we see that y(f) satisfies lim,_,,, (— 1)?(EFy)(1)/(,,..,()=0,
whence, applying (i) of Lemma 2.7, we find lim,_, , (—1)?(DEFy)(1)/¢,,,. (t)=0.
This proves the second relation in (3.25). On the other hand, in view of Lemmas
2.6 and 2.4 and (iii) of Lemma 2.7 we have

tim (SRR — 1y [ st (9 EF) 6)ds

(3.28) =f:° s"1(E*n,) (s) (F*y) (s)ds

> cf: §= 1, (5) (F*y) (s)ds,

where E*=HIM...Hi~+' and ¢>0 is a constant. This, combined with the
first condition in (3.24), implies that the last integral in (3.28) diverges, and so
repeated application of (i) of Lemma 2.7 shows that

: yao
im =iy =

It follows that the function u(x)=y(|x|) is an entire solution of (3.1) with the
required asymptotic property. Thus the proof is complete.

THEOREM 3.7. In addition to (f,) suppose that f(t, u)=0 for (t, u) € [0, o0) x
(0, o0) and f(t, u) is nonincreasing in u. If

(3:29) FQA&EN™Y) ¢ L,,[0, c0)

for every constant >0, then equation (3.1) possesses a positive radial entire
solution u(x) such that

o u(x)
(3.30) I er=i([x])

Proor. Fix 7>0 arbitrarily and define
(@)(1) = 12~ + (GFy)(1), 120,
where G=G%!---G2¥, and
Y. = {y e C[0, 00): 7822~ (1) S p(1) S (P(eZx ~))(1), 120} .

In view of the nonincreasing nature of f, @, maps Y, into itself. The continuity
of @, and the relative compactness of ¢ (Y,) are easily verified. Therefore there
exists y € Y, such that y=¢_y. Now, Lemma 2.6 shows that
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lim (GoMEVI() _ f” 5711, (5) (FY) (s)ds,

o (EMTI(E)
whence, via (i) of Lemma 2.7, it follows that

lim 20 =y him (GENO)

e () e (1)
M—1 S
=t T1 @) |5, () (F) 5)ds.
k=1 ]

If this limit is finite, then there exists a constant ¢>0 such that y(1)<c(E%1(1)
for 120, so that (Fy)t)=(F(c{2~1))(t), t=0, by the nonincreasing nature of f.
Therefore, by (3.29),

fw 11, (5) () (s)ds gfm $1 11,0, (8) (F(eL24 1)) (s)ds = oo,
0 0

which implies lim,, , y(1)/{f¥~!(t)=c0, a contradiction. Thus, u(x)=y(|x|) is
an entire solution of (3.1) satisfying (3.30). This completes the proof.

The following theorem shows that a class of higher order sublinear elliptic
equations may possess positive entire solutions which decay to zero at infinity.

THEOREM 3.8. In addition to (f,) suppose that
3.31) fHt,u)=(—=1Drf(t,u)>0 for (t, u)e[0, o) x (0, o0),
where p=p,+---+py- Suppose that f*(t, u) satisfies (f,), (fs) and
(3.32) "l_iglo u ¥t u) = o0, t=0.

Suppose moreover that p, S[(n—1)/2] if a; =0.
(1) If there is a constant 1>0 such that

(3.33) F*(A{,)e LE:-1 [0, o),

then equation (3.1) has a positive radial entire solution u(x) such that

3.34 lim -4 _ o,
(339 A ()

(ii) If there is a constant 2>0 such that
(3.35) F*(yk"e L, [0, ),

then equation (3.1) has a positive radial entire solution u(x) such that

im  4)
(3:36) AT (7
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for some constant u>0.
Proor. (i) We first note that the relations

lim o~ 'f*(t, 6{, (1)) =0 and lim t7f*(z, ty5:71(¢)) =
a0 —=+0

which follow from (f,) and (3.32), respectively, imply that

(3.37) tim L [ st ) %G5, oL (s)ds = 0
g0 0

and

(3.38) lim L f” 5719, (5) (s, Ty 1(s))ds = oo.
—+0 T Jo

Let t>0 and o >0 be constants such that
(3.39) Ty B71(1) < 0, (1) for t=0
and consider the set
Yoo = {yeCl0, c0): oy~ (N = () =0l (1), 120}
and the mapping
(3.40) (@y)() = (=DAHFy)(1), t=0,

where H=H?"i.--H?™. Letting H=H".--H? and A*=H?¥...H?2, and using

a

Lemmas 2.5, 2.4 and 2.7, we see that for any ye Y.,
(= DAHF) O £ L0 [ 50 AR (5)ds
= 00 s () (F*) (5)ds
(3.41) < e, [ sz 6 () (9)ds

S el [ RIS, ol (s, 120,

where ¢; >0 is a constant. On the other hand, from Lemmas 2.8 and 2.7 we
have

(=DAHFY @ 29270 [ 57192,6) AP s)ds

=2 ) O F*) 5)ds
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(342 2 0 [ O E) s

> cpyn () f 5113, () 4, YR (s)ds, 120,
0

where ¢, >0 is a constant. Here we have used the fact that y,(t)=n,(¢) for large
t to botain the second inequality in (3.42). Combining (3.41) and (3.42) with
(3.37) and (3.38), respectively, we infer that there exist a >0 (sufficiently large)
and a 7> 0 (sufficiently small) such that (3.39) holds and

e () = (=DAHFy)(0) = 0f,,(), 120,

forall ye Y,,. This shows that, for such ¢ and 7, @ maps Y, , into itself. ~Since
& is continuous and @(Y,,) is relatively compact, ¢ has a fixed point yeY,,:
y==®y. Lemma 2.5 implies that this y satisfies lim,_ ,, (—1)?(HFy)(t)/{,,(t)=0.
Therefore we conclude that u(x)= y(]x|) gives an entire solution of (3.1) satisfying
(3.34).

(ii) We now define the set Y, , by
Y,, = {yeC[0, o0): 1)) < W) S ay2=1(1), 120},

where 6=>1>0. It is easy to verify that the following inequalities hold for all
yeY,, and t=0:

(= 1P (HFy) (1) < y2(0) f” 1L, (s) (AIF* ) (s)ds
=m0 [ ) O F (9ds
(3.43) < eyn(0) f: S"L (5) (F*y) (s)ds

< cyn(0) f“’ ST, () *(s, oy2=\(s))ds,
0

(=DHF) O 2 7270 [ 5719, (5) (AP ()ds
= 270 ) 6) (P ()ds
@44 2 e 0 [ s 6 P s
2 ') [ s (P, (s

whete ¢, >0 and c,>0 are constants. In (3.43) and (3.44) the first inequalities
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follow from Lemma 2.8, the next equalities are imliped by Lemma 2.4 and the
second inequalities are consequences of Lemma 2.7. Noting that

lim L0, (05, oy (O)s = 0
0

ind ]

and

tim L {5719, () %(s, 2 (o)ds = O,
o]

—+0
we see from (3.43) and (3.44) that >0 and >0 can be chosen so that
a0 S (=DA(HFy) (1) S oypi7 (1), 120,

for all yeY,,. The above observation shows that the mapping ¢ defined by
(3.40) possesses a fixed element y in Y,,. Since it follows from Lemma 2.8 that
lim,., , y()/nE~1(t)=const. >0, the function u(x)=y(|x|) is a desired decaying
entire solution of equation (3.1). This completes the proof.

4. Example

To illustrate our main results presented in the preceding section, we consider
the fourth order semilinear elliptic equation

4.1) A%u — 2a4u + bu = q(|x))u?, xeR", n =3,

where a and b are nonnegative constants, p is a constant with p# 1, and ¢q(1) is
a continuous function in [0, oo). In this case f(t, u)=q(t)u?, for which (f;) is
satisfied. Assumption (f3) or (f;) holds according as p>1 or p<1, and (fs) or
(fs) holds according as p=0 or p=<0.

We assume throughout this section that a2= b, in which case we have

42 —2a4 + b= (4—-a?)(4—-p?),
where
a2 =a — (a?—b)'/2, B2 =a + (a2-b)'/%
The unperturbed linear equation
A%u — 2ad4u + bu =0
has the positive entire solutions

{GxD), LIxD} if a® > b
{&AxD, LxD}y if a? = b,
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and the positive solutions

{nIxD), np(Ix)} if a2 > b;
{nx), ni(IxP} if a2=0b

in R"~{0}. The asymptotic behavior of these functions is described in (2.3)-
(2.6) and Lemmas 2.2 and 2.3.

(i) Suppose that a2>b. 1t is easy to see that the condition F*(A{,)e LL[O0,
o0) is equivalent to

(4.2) fm s~ (=1 (=1)/2(=Vas|g(s)|ds < o0 for b >0,

4.3) J%slq(s)lds <w for b=0,
and the condition F*(A{s) € L§[0, o) is equivalent to
4.4) J‘w §TP=H(=D/2e(p=DBs|g(s)|ds < 0.

Therefore, Theorems 3.1 and 3.2 show that, for equation (4.1),
T() N T >(0,79) for p>1,
T() N T(p) 2 (19, 0)  for p<1,

provided conditions (4.2)-(4.4) are satisfied. From Theorems 3.3 and 3.4 it
follows that, under (4.2) or (4.3),

T,) =(,0) if p<1 and q(t)=0 for t=0,
and under (4.4),
T(y) =(0,00) if p<1 and q(t) =0 for t=0.

According to Theorem 3.8 we see that if 0<p<1 and ¢(t)>0 for t=0, then con-
dition (4.2) or (4.3) guarantees the existence of a positive radial entire solution
u(x) of (4.1) such that lim,, |, ,, u(x)/{,(]x])=0. Note that the condition F*(1y,) e
L,[0, o) reduces to

4.5) f " o= 00=1/2-0-Vas|g(s)|ds < 0 for b >0,
(4.6) f ¥ g-1-p-D|g(s)lds < o0 for b =0,

Theorem 3.8—(ii) implies that if 0<p<1 and g(t)>0 for =0 and if (4.5) or (4.6)
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holds, then equation (4.1) has a radial decaying entire solution u(x) such that
lim, ., u(x)/n,(|x|)=const. >0. On the other hand, the conditions F*(1{,) ¢
L9[0, oo) and F*(A{p) ¢ LY[0, o) become

4.7) r s~ (-DO=-1/260-Vas|g(s)|ds = 0 for b >0,
(4.8) f “slq(s)lds = 0 for b =0,

and

(4.9) ‘[‘00 s"(P‘I)(”"1)/2e(P“1)ﬂS|q(s)|ds = w,

respectively. In case O<p<1 and ¢q(t)<0 for t=0, Theorem 3.6 implies that,
under condition (4.4) and either (4.7) or (4.8), equation (4.1) has a radial entire
solution u(x) such that lim, ., u(x)/{(Ix])=00 and lim ., u(x)/{s(|x])=0.
Finally, in case p<0 and ¢(t)=0 for t=0, Theorem 3.7 shows that (4.9) is a suffi-
cient condition for (4.1) to have a radial entire solution u(x) with the property

limy ) o u(x)/{p(1x[) = c0.

(ii) Suppose that a?=b. Then, the conditions F*(1{,)e Ll[0, o0) and
F*(ALY) e LI[O, oo) are equivalent to

o0
f S1=@=D-1/260-Vas|g(s)|ds < 0 for b > 0,

fm s3lq(s)|ds < o for b=0 and n =5,

and

fw P~ (=D (=112 Das|g(s)|ds < 0 for b >0,
fms'+2P|q(s)|ds < for b=0 and nZ=35,
respectively, while F*(Ay!)e L,[0, o) is equivalent to
f * D -D12g=0-Vs|g(s)ds < 0 for b >0,
fm sn1=P(n=H)|g(s)|lds < oo for b=0 and n=>=5.
With the help of these integral conditions one can establish criteria for the existence

of positive entire solutions of equation (4.1) with various asymptotic properties,
as described in Theorems 3.1 through 3.8. The details are left to the reader.
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