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§ 1. Introduction

Let (S2, g) be a 2-dimensional sphere with a Riemannian metric g. Let A
be the Laplacian with respect to g, acting on smooth functions on S2. Let λQ =

0<λl<λ2<"' be eigenvalues of A, each of which is repeated as many times as
its multiplicity, and let λ^^λ^g} be the first positive eigenvalue in particular.
J. Hersh [5] showed that

(1) I/A! + 1/A2 + 1/A3 > (3/8π)vol(S2, g)

holds and consequently,

(2) A1(^)vol(S2,^)<8π,

where vol (M, g) denotes the volume of a Riemannian manifold (M, g). The

equality in (1) or (2) holds if and only if (S2, g) is the canonical sphere.
In various studies of spectra of Riemannian manifolds, one direction indicated

by M. Berger is the generalization of the inequalities of (1) and (2) to other mani-
folds X. He has shown that the inequality generalizing (1) is false for X = S"

(n>3) and for X = T2 as follows ([1], n°4): For X = Sn, an n-dimensional sphere
(n > 3), there exists a Riemannian metric g on S" such that

where F0 = the volume of the canonical sphere Sn~l. And for X=T2, a
2-dimensional torus, there exists a flat torus satisfying a similar inequality.

With respect to the generalization of (2), we know several results as follows.
M. Berger in [1], [2] has shown that for X = Tn, an n-dimensional torus,

there exists a positive constant k(Tn) such that

for every left invariat metric g.
P. C. Yang and S. T. Yau in [12] have shown that if X is a Riemann surface

of genus ft, then for every metric g on X9
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H. Urakawa in [10], H. Muto and H. Urakawa in [8] have shown that if X
is a certain homogeneous space stisfying their condition (C'), then there exists a

family of invariant metrics (#r)o<κoo on X sucn that

(3) Λ-ι(0r) > °° when t » oo, and vol (X9 gt) is constant in t.

Compact connected semisimple group manifolds, and real, complex, quaternionic
Stiefel manifolds satisfy the condition (C') for example.

S. Tanno in [9], H. Muto in [7] have shown that for X = Sn, there exists a
family of metrics satisfying (3).

The purpose of this article is to prove that for X = G/K, where G is a compact
connected Lie group and K is the centralizer of a toral subgroup (such X is called

a generalized flag manifold), if X has the reducible isotropy action, then there
exists a family of invariant metrics satisfying (3) (Theorem in §3). A generalized
flag manifold does not satisfy the condition (C').

Throughout this paper, for a real vector space V, its complexification is
denoted by Vc and for a real or complex vector space V, its dual vector space is

denoted by V*.
We wish to express our gratitude to Professor K. Okamoto for his criticism

and encouragement.

§ 2. The Laplacian for the invariant metric

Let (M, g) be an n-dimensional Riemannian manifold and let C°°(M) be

the space of complex valued smooth functions on M. Let (x l9..., xn) denote a
local coodinate system on an open set of M. The Laplacian A with respect to g

is now defined by

Δf = - Σtj 0"(W- Σ* ΓίjdJ), for fe C°°(M).

Here df stands for the vector field d/dxh (gij) is the inverse matrix of (g^) with
g.j = g(di9 dj) and Γfj is the Christoffel symbol of the Riemannian connection for

g as customary.
In this section we review some fundamental facts on the Laplacian and its

eigenvalues for an invariant metric on a compact homogeneous space along the
same lines as [8]. Let M = G/K be a compact homogeneous space where G is a
compact connected Lie group and K is a closed connected subgroup. Let g and
ϊ be the Lie algebras of G and K respectively and let m be a vector subspace of g
such that g =! + m (direct sum) and (Ad K)m = m. Then m can be identified with
the tangent space T0(G/K) at the origin o = {K} in G/K. Every invariant metric on
G/K determines an inner product on m which is (Ad K)-invariant and conversely
every (Ad K)-invariant inner product on m can be extended to an invariant metric



First eigenvalue on a flag manifold 507

on G/K. Let £/(gc) denote the universal enveloping algebra of gc. Then £/(gc)
is naturally isomorphic to the algebra of left invariant differential operators

on G. Let U(QC)
K denote the subspace of (Ad X)-invariants in U(QC). Let

C°°(G)κ denote the space of all the elements fe C°°(G) such that f(gk)=f(g) for

g e G, k E K. Then C°°(G)K can be naturally identified with C°°(G/K). Under
this identification the algebra of invariant differential operators on G/K is iso-

morphic to the algebra of restrictions (D | C^G)* | D e U($c)
κ} (see [4], p. 390).

LEMMA 1. Let g be an invariant metric on G/K and let A be the Laplacian

with respect to g. Let ( t̂ )?=ι be a basis of in. Put gij = g(Xi, Xj) and let
( g i j ) be the inverse matrix of(gij). Then

For the proof, notice that the expression Σij9iJXiXj is independent of the
choice of a basis and see Theorem 1 and its Corollary in [8].

Let L2(G/K) denote the ZΛcompletion of C°°(G/K) with respect to the
invariant Riemannian measure. The Laplacian A can be extended to a self-

adjoint operator on L2(G/K). For a finite dimensional G-module V, V* denotes

the dual G-module and Vκ denotes the subspace of X-fixed vectors in V. The

Peter- Weyl theorem for a compact homogeneous space states that

where λ in the summation runs over the representative set of all equivalence

classes of irreducible unitary G-modules (see [11], p. 118, 5.3.6). An element

v®f in Vλ(S>(V*)κ is identified with the smooth function ( v ® f ) ( g ) = f ( g ~ l v ) on
G/K. Hence we have Δ(v®f) = υ®Δf\ in the right hand side A acts on (V*λ)

κ

as an element in U(QC)
K. From these facts we have the following lemma on the

eigenvalues of A.

LEMMA 2. The set of all eigenvalues of A on L2(G/K) coincides with the

set of all eigenvalues of A on V%'s where λ runs over the representative set of

all finite dimensional irreducible unitary G-modules.

§ 3. The Laplacian on a generalized flag manifold

Let G be a compact connected semisimple Lie group and g its Lie algebra.

Let T! be a toral subgroup of G and let K be the centralizer of Γ, in G. Then

the homogeneous space GjK is called a generalized flag manifold. We recall

another construction of a generalized flag manifold (cf. [11], p. 149, 6.2.10).

Let Tbe a maximal torus of G and t the corresponding subalgebra of g. Denote
by R the roots system of the pair (gc, tc). Let R+ denote a positive system of R



508 Hideo Doi and Hiroshi KAJIMOTO

and Σ tne set °f simple roots contained in R + . Let ( , ) denote the Killing
form of gc. Also ( , ) stands for the bilinear form on tc or the dual t* induced
by the Killing form. One can choose a root vector Eα with α e K as follows:
(£α, E_α)= 1 and conj Eα= — E_α where conj denotes the conjugation of gc relative
to g. Let S be a proper subset of Σ and let Rs denote the set of roots which
are linear combinations of elements in S. Put 9s = tc+£ CEΛ where the sum-

mation is over α e Rs and put f s = gs n g. Put ts = {H e t \ α(//) = 0 for all α e S}.
Let Ks and Ts be the analytic subgroups of G corresponding to !s and ts re-
spectively. Then Ks is the centralizer of a torus Ts in G and G/KS is a generalized

flag manifold.
Let ns denote the subalgebra of gc spanned by £α's with α e R+ — Rs and put

n~s = conjns. Notice that gc = gs-hns-l-rrs (direct sum), [gs, n
s]c:ns and

[gs, n~5] c n~s. Put m = (ns + n~s) Π g. Then m makes an (Ad K5)-invariant
complement to ls in g, and ns is isomorphic to m as a fs-module by the map
X*-*(X + con$ X)/2 (Xens). The remainder of this section is devoted to the
proof of the following theorem.

THEOREM. Let G be a compact connected simple Lie group and let G/KS

be a generalized flag manifold. Assume that the linear isotropy representation

of Ks on G/KS is reducible. Then there exists a family of invariant metrics

(#r)f>o on G/KS which has the following properties.

(1) The Riemannian volume vol(G//Cs, gt) is constant in t.
(2) The first eigenvalue λ^gj is not bounded.

REMARK. If G is semisimple, then the generalized flag manifold G/K is
decomposed as G/K = Gl/Kί x ••• x Gn/Kn, where each Gt is simple and each GJKi
is a generalized flag manifold. If every linear isotropy representation of GJKi

is reducible, then the above conclusion holds for G/K.

PROOF. We employ the above notation and consider ns as a gs-module by
the adjoint representation. Then the assumption in the theorem means that ns

is reducible. Since gc is simple, R+ has a unique maximal root y. Let S' be the
subset of S defined by the following condition: { — y} U 5' is a connected component
of { — γ} U S in the extended Dynkin diagram of R. Let R' be the set of roots

which are linear combinations of elements of { — 7} U S'. Put R'+ = R' n R +. Then
R+ becomes a positive system of R'. Let g^. stand for the subalgebra of gc

generated by Ea with αe/*'. Nowg^. is a simple Lie algebra because its Dynkin
diagram is connected. If αe{ — 7} U S' and βεS — S', then a±β are not roots.
Hence [gs, g^.] c= g^.. One can see that g^. n ns is an irreducible gs-submodule of ns.
In fact it is generated by a root vector Ey as a gs-module. We extend an inner
product on m to a Hermitian inner product on mc = n5-f n~s. By Lemma I
and the root space decomposition of mc, one knows that there exists a family of
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invariant metrics (^fX>o on G/KS which has the following properties (cf. [10],
p. 2 19, (4.1)):

(1) det#, is constant in f, where det# means det(0/7 ) for a metric g.
(2) The Laplacian At of #, has the form

where α runs over all the roots in R+—RS whose root vectors belong to §'c Π ns

and β runs over the rest roots in R+ — Rs, and r is a positive constant determined
by(l).

Let ( , )' denote the Killing form of Q'C. Since Q'C is simple, one can put
( , ) ' = & ( , ) , where k is a positive constant. Let C be the universal Casimir
element of gc and C' that of §'c. Let Vλ be a finite dimensional irreducible G-
module with the (K + -extreme) highest weight λ (cf. [11], p. 90, 4.4.2). Let Vξ
denote the subspace consisting of K-fixed vectors of Vλ. Elements of QS act trivially
on Vξ*, so that we see C= Σβ(EβE_β + E_βEβ), kC = Σ«(EαE _, + £_,£,)
as operators acting on Kfs, where β runs over all roots in R+—RS and α runs
over the roots in R+—RS whose root vectors belong to §'c Π ns. Hence we can
rewrite Δt in the form At = (Γr — t)kC' + tC. We know that the Casimir element
C acts by a scalar (λ, λ + 2p) on Vλ where p is half the sum of R + . As for C' we
need decompose Vλ into (^-primary components. Note that (μ, μ)f = k~1(μ, μ)
for a linear form μ on tc Π $'c. Therefore one knows that each eigenvalue of Δt

on V$ s is of the form

Eλ,μ = (rr-t)k(μ, μ + 2p'Y + t(λ,

= (r' -Oίμ, /ι+2p') + t(λ,

where μ is a tc-weight of an ^V-^xtreme highest weight vector in a g^-primary
component in Vλ generated by V^s and pf is half the sum of R'+. Since (A, λ) —
(μ, μ)>0 and (λ — μ, 2p)>0, we obtain that

, 2p)-0ι, 2p')}

t{(λ, 2p)-0ι, 2p')} = ί{(λ-A

Note that since Kf s,is contained in KJ, elements of V%s are of tc-weight zero.
Hence μ is a nonnegative integral linear combination of roots in R'+. Since μ is
KV-dominant, one can see by inspection of the table of fundamental weights
(cf. [3] or [6]) that μ is a positive integral linear combination of elements of Σ'
if μ 7^0. Here we denote by Σ' the set of simple roots in R+. We will show
that 2p — 2ρf is /^-dominant and non-zero. Then one sees that £Λμ>(a positive
constant) -t if μ^O. This shows in particular that the first eigenvalue
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is not bounded.
Let β be the lowest weight (root) of a gs-module $'c Π ns relative to R+ Π Rs.

Then it is easy to see that Σ ' = {/?} U S'. For a root α, let αv denote the coroot
2α/(α, α). Notice that (2p-2p', αv) = (2p, αv)-(2p', 2α')'/(α, α)' = 2-2 = 0 for
αeS' and (2p-2p', βv) = (2p, βv)-2. Therefore it is sufficient to prove that

(2p, /?v)>3. Let Σ = {<*!>•••> «/}• For a root α = Σ i Λ i α * » define h tα=Σ. w/
We first prove the following Lemma.

LEMMA 3. ns is an irreducible Qs-module if and only if Σ~ S consists of
one simple root whose coefficient in the maximal root γ is equal to one.

PROOF OF LEMMA 3. We first recall the gs-module structure of ns. γ is the
maximal root in R + , so that we may write y = n 1 α 1 H ----- h π / α / where all nt are

positive and yeR+-Rs. If oίeR+—RS9 βeR+ and α + βeK + , then α + βe

R+-RS. For oceR+-RS9 put R(a) = {u + βeR+\βeRs}9 n(α)=Σfea ( β ) CEβ.
Then n(α) is a gs-submodule of n5. Assume that ns is irreducible. Take oίί in

Σ-S Then nfoHn5, R(<*ί) = R+-Rs. Hence Σ-S = {*ι} Since y e

R(αx), y is of the form y = ai + n2a2-\ ----- h w / α / Assume conversely that Σ— S =
{αj and γ = aί + n2a2-\ ----- hw/α,. If αf eS then a t — af is not a root. Hence α t

is an extremal (the lowest) weight of ns. ns is generated by EΛl as a gs-module,
and thus ns is irreducible (see [6], 20.2 and 6.3).

Now assume that gc is of the type Ah Dh or EL. Then all the roots are of

the same length. Hence (2p, βy) = Σ n£2p, ^ ) = 2 ht β if /? = Σ w^. Because /?

is of the form β = γ~Σ M/ (αie^) and ns is a reducible gs-module, the con-
traposition of Lemma 3 implies that ht β>2. Hence we have (2p, βy)>4.

Next we assume that gc is of the type Bl (I > 3), Ch F4. Note that (2p, j9v) >
ht jS when rank gc>3. So it is enoguh to show that ht /?>3. In the case of Bh

we get the following pairs of Sf and β with the help of the table in [3] :

Sf = { α v . . , α } (/?</-!) and ]8 = α + 2 α + 1 +-+ 2α 9 or

S' = {α2,...,αp}(p</-l) and β = α t +-+ αp + 2αp+1 +.»+ 2α /.

Also the table shows that these are the only possible pairs of S' and β which can
occur. Note that />3. Hence we obtain (2p, βv)> ht β>3. The same
checking process goes through in the case of Ct and F4.

Finally we assume that gc is of the type B2 or G2. In the case of B2 the
contraposition of Lemma 3 implies that the only one pair S' = 0 and β = γ = al +
2α2 occurs. Hence we obtain that (2p, βv)>ht β = 3. In the case of G2 we know
that the only two pairs occur:

S' = 0, β = γ = 3αx + 2α2, hence (2p, βv) = 6 or

^ = 3αt + α2, hence (2p, )5V) = 4.
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