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1. Introduction

This paper deals with the boundary behavior of harmonic functions u on a

bounded open set GczRn satisfying

f, Igrad u(x)\pω(x)dx < oo,
G

where p> 1 and ω is a nonnegative measurable function on G. The function ω(x)

is mainly of the form φ(d(x)), where d(x) denotes the distance of x from the

boundary dG and φ is a monotone function on the interval (0, oo). Moreover, G

is assumed to satisfy certain smoothness conditions mentioned later.

Our first aim in this paper is to find a positive function A(x) on G for which

Λ(x)u(x) tends to zero as x tends to the boundary dG. We shall next give

conditions which assure the boundedness of u on G or near a boundary point of G.

In special cases, u will be shown to have a finite limit at a boundary point; our

discussion below will include the proof of the existence of nontangential limits.

We here remark that the case p=l can be treated similarly with a small

modification.

2. Boundary limits of harmonic functions on general bounded domains

Throughout this paper, let G be a bounded domain in Rn satisfying the

following condition: There exist a compact set K and a positive number c such

that any point x in G is joined to K by a piecewise smooth curve x(t) in G having

the following properties:

(CO x(\)eK. (C2) x(0) = x.

(C3) \x(t2)-x(tι)\ύc(t2-tί)\x(O)-x(l)\ whenever O g ί ^ ί ^ l .

(C4) \x(t2)-x(tί)\^c-i(t2-tί)\x{O)-x(\)\ whenever O g ί ^ ί ^ l .

(C5) If ye*(x(ί), 2-1d(x(ί))), then d(x)+\x-y\<cd{y).

REMARK. Condition (C4) implies the following:

(C6) For any yeG, the linear measure of the set of all t such that y e B(x(t),

2-χd(x(t))) is dominated by MIx^-xCl)!
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where M is a positive constant independent of y and x(t). In fact, if y e

2-1ί/(x(ίι.))), / = 1 , 2, then d(^)^2"1d(x(ί ί)), so that | x ( ί 1 )-x( ί 2 ) l^2

d(x(ί2))] ^ 2</(j;). Hence (C4) implies (C6).

EXAMPLE 1. Let φ be a Lipschitz continuous function on R"'1, and define

G(rl9r2)={(x',xn)eRn-1xR1; \xf\<ru φ(x')<xn<r2}. If r2>sup, J c Ί < r iφ(x /),
then G(ru r2) satisfies the above condition on G.

EXAMPLE 2. Let φ be a nondecreasing continuous function on the interval

[0, oo), and define G(ru r2)={(x', xn)eRn~ι xRι;\x'\<rί9 φ(\x'\)<xn<r2}.

If r2>φ(r1), then G(r l 5 r2) satisfies the above condition on (7.

In fact, let e = (0, r3)eG(rl9 r2), where <p( r i)<Γ3< r2> and note that for x e

G(rl9 r 2), x(t) = (\-t)x-\-te satisfies conditions (C 2 )~(C 5 ) .

For any positive numbers a and y, we set Tγ(a) = {x = (x', xn)e R"'1 xR1;

\x'\y <axn}. Then Tγ(a) Π B(0, 1) is a typical example of G, where £(x, r) denotes

the open ball with center at x and radius r.

Our first aim is to establish the following result.

THEOREM 1. Let u be a function harmonic in G and satisfying

(1) Γ |grad u(x)\pd(x)adx < oo
J G

with a real number α. Then

l i m ^ G d(xYn-p+a)/pu(x) = 0 in case n - p + α > 0,

= 0 w case n - p + α = 0

w(x) w bounded on G in case n — p + α < 0.

For a proof of Theorem 1, we need the following lemma.

LEMMA 1. For a piecewise smooth curve x(t), ί e [ 0 , 1], in an open set

", set G(x(t))= Wô srgf B(x(s), 2~1</(x(s))). If u is harmonic in G, then for

any xeG and any piecewise smooth curve x(t) satisfying conditions (C2), (C3)

and (C6),

\u(x)-u(x(t))\
J G(x(t))

for all te [0, 1], where M' is a positive constant which depends only on c and M

in conditions (C3) and (C6).

PROOF. By conditions (C2), (C3), (C6) and the mean value property of

harmonic functions, we have
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|ιι(x) - «(*,)| = \'(dlds)u(Xs)ds
J 0

^ c\x-X,\ Γ (Mx\2-id(XX\-* Γ \gτΆάu{y)\dy) ds

g M2\x - X1\([ Igrad u(y)\ ( f d(Xfds) dy

^ M 3 f |grad u(y)\d(yy-*dy9

J G(Xt)

where Xt = x(t) and M 1 ? M2, M 3 are positive constants which depend only on c

and M. Thus the lemma is proved.

PROOF OF THEOREM 1. Let u be as in the theorem. For ε>0, set Gε =

{xeG; d(x)>ε}. We assume that KaG2ε and xeG — Gε. Take a piecewise

smooth curve x(t) with conditions ( C ^ ^ C g ) , and let ίo = inf {ί; x(t) e G J .

Then, in view of Lemma 1, we find Mι >0 such that

|u(x)-ii(x(fo))l ^ Mi Γ Igrad i i ί ^ l d ω 1 " " ^ .
J G(x(f0))

Since d(y)^ d(x) + \x — y\<cd(y) whenever yeG(x(t)), Holder's inequality gives

( y ) y F(t0)
G(*(f0)) /

αd \l/p'

< d(x)-(n-P+a)/P if π - p + α > 0,

^ M3F(ί0) x [logίlMx))]1/^' if n - p + α = 0,

[ d-(«-p+α)/p if n _ p + α < 0,

where F(ίo) = (Ύ Igrad u(y)\Pd(y)*dyY/P, l / p + l / p ' = l , d=sup{ | jc-y | ;
VJ G(x(ί0)) /

x, yeG} and M2, M 3 are positive constants independent of x. Consequently,

in case n — p + α>0, we obtain

lim s u p ^ e G d(xyn-p+aVp \u(x)\

Igrad u{y)\Pd{yYdy) ,

G — Gjε /

which implies that the left hand side is equal to zero. The remaining cases can

be treated similarly, and thus Theorem 1 is established.
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Here we deal with the best possibility of Theorem 1 as to the order of

convergence, when we restrict ourselves to the case G is a cone Γ(a) = T1(a).

PROPOSITION 1. Let h be a nonincr-easing positive function on the interval

(0, oo) such that \imri0 h(r) =co. Then there exists a nonnegative measurable

function f such that

fiyYWdy

and

where Γ(a) = {-y;yeΓ(a)}, A(xn) = x<n»-p+*Vp if n - p + α > 0, A(xn) =

(log(1/*„))-'/*' / / n - p + α = 0, A(xn)=l if n-p + ot<O and u{x)= f (xn-
J I (α)

REMARK. If — 1 <oc<p— 1, then, in view of [5; Lemma 1],

(x)K|xM|^x ^ M§f(yy\yn\*dy < oo

with a positive constant M independent off

PROOF OF PROPOSITION 1. First we consider the case n - p + α = 0. Let

{aj} be a sequence of positive integers such that 2aj<aj+1, and take a sequence

{bj} of positive numbers such that \imJ^00bjh(2-2aJ+1)=oo and Σ y ^ i ^ ^ 0 0 -

We now define f(y) = bj\y\-1(\og\y\-ί)~1^ if yet (a) Π £(0, 2~aJ)-B(0, 2~2aJ)

and / = 0 otherwise. Then we see easily that the function u defined as in the

proposition satisfies

l i m ^ o ^ , ! h{xn)A{xn)u(x) = oo

with A = KJf=ί{xeΓ(a);2~2aJ<\x\<2-2aJ+1}. On the other hand we have

J f(y)p\yn\*dy^M Σΐ=ι bp:<oo with a positive constant M (cf. [5; Proof
Rn

of Proposition 8]).

The case n — p + α^O can be treated similarly, by suitably modifying the

definition of/.

The boundedness of u is obtained under a weaker condition as stated below.

THEOREM 2. Let g be a nonincreasing positive function on the interval

(0, oo) such that I giryi^-p^r'^drKoo. Let u be a function which is harmonic
J o

in G and satisfies
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(2) Γ \gmάu{x)\Pg{d(x))d(xy-ndx < oo.
J G

Then u(x) is bounded on G.

In case g(r) = r~δ with <5>0, Theorem 2 is an immediate consequence of

Theorem 1.

PROOF OF THEOREM 2. Let x e G and take a piecewise smooth curve x(ί)

satisfying conditions ( C ^ ^ C g ) . In view of Lemma 1, we have

\u(x)- u(x(l))| ^ A^ f |grad
J G(x(l))

^ M 2 ( Γ |grad
\J G(x(l))

\JG(X(1

with positive constants Mί and M 2 . Since d(j)<(i(x) + |x —y|<crf(y) for

Γ
J G

S M 3 [
d g(d(x) + r)~P lP(d(x) + r)-1dr ^ M 3 P * g{r)-p'lPr~xdr

Jo Jo

with a positive constant M 3 . Thus the theorem is obtained.

PROPOSITION 2. Let ξedG, and assume that there exists a sequence {B(xj,

δj)} °f balls such that XjeG, ξeB(Xj, δj) for each j , lim^oo^—O and any xe

G Π B(xj, δj) is joined to Xj by a curve x(t) in G Π B(Xj, δj) satisfying conditions

(C3), (C4) and (C5)for some c>0. Ifu is a function harmonic in G Π B(ξ, r) and

satisfying

(2)' Γ |grad u(x)\pg(d(x))d(x)p-»dx < oo
J Gΐ\B(ξ,r)

for some r > 0 , where d(x) denotes the distance of x from the boundary dG as

before, then u(x) has a finite limit as xeG tends to ξ.

PROOF. We may assume, without loss of generality, that B(xί9 δ^czBiξ,

r/2). Then, by Lemma 1 and the above proof we see that supxeGΐ]B(Xjδj) |w(x) —

u(Xj)\ tends to zero as j->oo. Hence, it follows that {u(xj)} is bounded. If
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\imk^aou(xjk) = £9 then u(x) tends to £ as x-+ξ, xeG. Therefore the required

assertion follows.

The following two results are easy consequences of Proposition 2.

COROLLARY 1. Suppose G is a bounded Lipschitz domain in R". Let u be a

function which is harmonic in G and satisfies (2). Then u is extended to a con-

tinuous function on G U dG.

COROLLARY 2. Let G=Tγ(a)(]B(0, 1). // u is a function harmonic in

G f) B(0, r) and satisfying (2)' with ξ = 0 for some r > 0 , then u(x) has a finite

limit as xeG tends to the origin.

PROPOSITION 3. Let G be as in the above Corollary 2. If u is a function

harmonic in G and satisfying I |grad u(x)\pg(xn)xζ~ndx<co (which is a
J G

condition weaker than (2)), then u(x) has a finite limit as x tends to the origin

along Ty(b)for any b, 0<b<a.

PROOF. For simplicity, write G(a, r)=Tγ(a) 0 B(0, r). Let 0<b<a and

xeG(b, 1/2). For ε with 0<ε<l/8, let xε = (0, ε)eTγ(a). If x(t) = (l-t)x + txa9

ίe[0, 1], then we can find b' such that b<b'<α and G(x(ϊ))αTy(b'). Conse-

quently, we have by Lemma 1

\u(x)-u(xε)\ ^MA |grad u(y)\y),-dy
J G(ί>',4e)

|grad u(y)\>>g(yn)yp

n-
π dy

G(b' ,4ε)

(Ύ 9(ynY
p'l

\jG(b',4ε)

y/p
Igrad u(y)\pg(yn)yζ~ndy ,

b'Aε) /

since M 3 y n <d(y)<y n for yeG(b\ 1/2), where b<b'<a and Mi M 2 , M 3 are

positive constants. Hence it follows that u is bounded on G(b, 1/2) and l im ε i 0
suPxeG(6,ε) |w(x) — w(xε)| = 0. If we take a sequence {ε7} of positive numbers

such that ε ^ O and u(xEj)-+£ as7-^00, then w(x) tends to £ as x-»0 along Ty(b).

Thus the required assertion follows.

This proposition gives the following result, which was already shown in

[3; Theorem 6].

I
COROLLARY. // u is α function harmonic in Γ(a) Π 15(0, 1) and satisfying

Igrad w(x)|pg(|x|)|x|p~"dx<oo, then u(x) has a finite limit as x->0
Γ(a)f\B(0,l)

along Γ(b), 0<b<a.



On the boundary limits of harmonic functions 213

REMARK 1. In the above Corollary we can not take g ( r ) = l . In fact,

according to Remark 4 in [4], for given y > l we can find a function u on D =

{ ( X 1 , . . . , X Π ) G R Π ; X « > 0 } satisfying the following conditions:

( i ) t/ is harmonic in D.

(ii) Γ | g r a d M ( x ) | ^ ~ M ^ < 0 0

J Tγ(a)
(iίi) u has a nontangential limit at 0.
(iv) lim supΛ._,0)Λ.eΓy(6) u(x) = oo for any b with 0< /? <a.

REMARK 2. In the Corollary to Proposition 3, u may fail to have a finite

limit at 0 along Γ(a). In fact, according to the proof of Theorem 8 in [3], we can

find a nonnegative measurable function / such that / = 0 on Γ(α), R2f(x) =

Γ R2(x-y)f(y)dy tends to oo as x->0 along Γ(a) and Γ |grad R2 f (x)\p\x\P~n

dx<co, where R2(x) = \x\2~n in case n ^ 3 and JR2W = log(l/|x|) in case n = 2.

Thus, if I g(r)rP-γdr<oo, then I I ( X ) = Σ J ^ I ( - 1 ) ^ 2 / / ^ - ^ ) i s determined to

satisfy the required conditions, where {xj} is a sequence of points on dΓ(a) tending

to 0 and/y=/on B(0, rj) and/ y = 0 elsewhere.

3. Boundary limits of harmonic functions on Ty(a)

In this section we are concerned with boundary limits at the origin for

harmonic functions defined in Tγ(a) and satisfying a condition weaker than (2).

THEOREM 3. Let u be a function which is harmonic in Tγ(a) Π B(0, 1) and

satisfies

(3) Γ \graάu(x)\px$dx < 00.
J Tr(α)ΠB(0,l)

IfO<b<a, then

lim^o.xeTyίft) ^ W Φ ) = 0, in case n - p + α ^ 0,

limJ C_+ 0 > Λ.e T y ( & ) M(X) exists and is finite, in case n — p -b α < 0,

where Λ(xn) is as in Proposition 1.

PROOF. Let 0<b<a and xε = (0,...,0, ε) with 0 < ε < l / 8 . As in the proof

of Proposition 3, we can find V such that b<V<a and for any x e Ty(b) Π #(0,

1/2) = G(b, 1/2),

\u(x)-u(xε)\ SMΛ \grad u(y)\d(yy-»dy
J G(b' ,4ε)
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with a positive constant Mί which is independent of Λ: and ε. Since there exists
M 2 > 0 such that d(y)>M2yn whenever yeG(b\ 1/2), applying the proof of
Theorem 1, we obtain

\u(x)-u(xε)\^M3F(ε)x

χ-(n-p+a)/p jf n _

[log (I/*,)]1/*' if " -

Igrad wOOIO d̂y ) and M3 is a positive constant
Tγ(a)ΠB(0,4-ε) /

independent of x and ε. Thus, the case n — p + α^O is proved. The case n — p +
α<0 follows from Proposition 3.

REMARK 1. In Theorem 3, A(xn)u(x) may not have a finite limit as x-+0
along Tγ(a).

We shall give an example of such u in case y= 1. First we consider the case
n — p + a>0 and p<n. We shall show that there is a nonnegative measurable

function/on Rn such that/=O on Γ(a), I f(y)p\yn\
ady< oo and

(4) lim sup^ 0 > J c e P y A(xn)u(x) = oo,

where u(x)= Γ ( x n - ^ ) | x - ^ | - " / ω ^ and Py = {χ = (χ', χM); |xΊ + |xΊ y<fl^}

7>1. For this purpose, take a sequence {x(7)} of points in dΓ(a) such that

|χ(i)| =2~j, and find a sequence {aj) of positive numbers such that lim sup J^o0jaj =

oo and Σ7=i α y < 0 0 ^ e n o w

for yeBj = B(χ(J\ 2~J-2)-Γ(a); we also define/(y) = 0 outside wy=1 ^ . Then
it is easy to see that

with a positive constant Mx. Further we have for t such that 0<t<2~J~3

0,0)^Λ#2 Γ

where Γj = {yeBj\ \(x(J) — y)'\<a(xU) — y)n} and Λί2, M3 are positive constants
independent of j and f. Hence if γ>i and t = 2~Jy, then M(x(0)^M3(r-l)fl7

p+*)/p, from which (4) follows. In case n-/? + α = 0 and p<n, the above
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function u satisfies u(xU) + (0, t))^M4ajjl+e for ί = 2~ / exp(- i /
1 + ε ) with ε>0,

so that

(5) lim supJ C_0 > x e Q ε Λ(xn)u(x) = oo,

where Qε = {(x\ *„); | x ' | [ l+exp(-( log Ix'Γ1)1"1"8)] <<**„}> if {α,.} is taken so that

lim supj^ooj
εaJ= oo.

Next we consider the case p = n. In this case, let Bj = B(xu\ 2~j~2) — B(xu\

2~2J~2) — Γ(a) and take {α7} such that \imsupj^aojaj = co and Σ j ? = i . / α ? < 0 0

Then the function u defined as above satisfies (4) or (5) with ε = l according as

n — p + α > 0 or n — p + α = 0.

Finally, in case p>n, let Bj = B(xu\ 2~j-2)-B{x^\ 2-J-3)-Γ(a) and take

a sequence {aj} such that lim supy^oo7^=00 and Σf=i tfy<°o. Then the same

conclusion as above holds.

REMARK 2. Let M be a function which is harmonic in Γ(a) n β(0, 1) and

satisfies I \gΐadu(x)\pxζ~ndx<oo. Then w(x) has a finite limit as
J Γ(α)Πβ(O,l)

x->0 along Γ(b), 0<fc<«, if there exists a sequence \xU)} having the following

properties:

( i ) {x ( j l )}cf(fl') for some a' such that 0 < α r < α .

(ii) x o ) ->0 asj-^oo.

(iii) |x ( 7 ) | < M | x ( / + 1 ) | for any 7, where M> 1 is a constant.
(iv) {M(X(</))} n a s a finite limit as J-+00.

To prove this fact, it suffices to note the following fact as was seen in the

proof of Theorem 3: if xeΓ(b), 0<b<a, and Λ f - M x ^ l ^ W ^ M I x ^ l , then

Γ \gmd u(y)\dy

Igrad u (y)\pyp

n~
n

^ I

where Γj = {yeΓ{a)\{2M)-χ\x^\<\x\<{2M)\x^\} and Mί9 M2 are positive

constants.

REMARK 3. According to Remark 2, if u is a function which is harmonic in

Γ{a) and satisfies I \gxdiάu{x)\pxp

n~
ndx<Qθ, then we have (cf. Jackson [2])

J Γ(a)

C(w, £0) = C(u, Γ(b)) for any b with 0 < b < a,

where £0 = {(0, t); t>0} and C(M, F) = n r > 0 cl {M(X); x e F , x n < r } . Here

cl E denotes the closure of a set E in Rn.

REMARK 4. The conclusions in Remarks 2 and 3 are not necessarily true if
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we replace Γ( ) by Ty( ), γ > 1, in view of Remark 1 given after the Corollary to

Proposition 3.

Finally, in the two dimensional case, we give a result on the cluster sets for

harmonic functions defined in the cone Γ{a).

THEOREM 4. Let n = 2 and u be a function which is harmonic in Γ(a) Π

B(0, 1) and satisfies (3) with γ=l and oc = p — 2. Then there exists a sequence

{rj} having the following properties.

(i) 2-J<rj<2-J+ί.

(ii) // x<J>eΓ(a) Π dB(0, r, ), then C(u, Γ(b)) = C(u, {xu>}), for any b with

0<b<a.

In case p = 2, Theorem 4 was proved by Bercovici, Foias and Pearcy [1],

PROOF OF THEOREM 4. Let tan0 o = α~x, 0<Θ0<π/2. By our assumption,

we have

oo > I |grad !*(*!, x1)\pxp

2-
2dxιdx2

J J Γ(a)

^ f Y V~θ° \(d/dθ)u(r cos 0, r sin.θ)\P sin*"2 θdθ
J O\Jθo

Hence, setting Ij = inf | Γ" °° \{dIdθ)u{rcosθ, r sin0)|d0; 2^<r<2-^ + 1 i , we

see that Σ " = i ^ 5 < 0 0 L e t irj} b e a sequence such that 2~J<rj<2-j+1 and

Γπ~θ0 \(d/dθ)u(rj cos 0, r, sin θ)\dθ<Ij + 2-J. Let ^ > = (0, ry ) and χU> e dB(O, rj)
*) ΘQ

Π Γ(a). Then we have

\u(χU>)-u(eU>)\ S Ij + 2-j for any 7.

Hence it follows that C(u, {xU)}) = C(u, {e(j)}). As in Remarks 2 and 3 after

Theorem 3, we can prove that C(w, Γ(b)) = C(u, {eU)}) for any b with 0<b<a.

Thus the theorem is proved.

REMARK. Let n = 2 and u be a function which is harmonic in the half ball

Df]B(O, 1) and satisfies j |gradu(x)| p |x | p~ 2dx<oo. Then, in view of

the proof of Theorem 4, we can find a sequence {ry} satisfying (i) in Theorem 4

and

(ii)' C(w, {*<-»}) = C(n, Γ(α)) for any α > 0 and any {x̂ ">} such that xU) e

D n 3B(0, r,).
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