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1. Introduction

This paper deals with the boundary behavior of harmonic functions u on a
bounded open set G <= R" satisfying

f |grad u(x)|Pw(x)dx < o,
G

where p>1 and w is a nonnegative measurable function on G. The function w(x)
is mainly of the form ¢(d(x)), where d(x) denotes the distance of x from the
boundary 0G and ¢ is a monotone function on the interval (0, c0). Moreover, G
is assumed to satisfy certain smoothness conditions mentioned later.

Our first aim in this paper is to find a positive function A(x) on G for which
A(x)u(x) tends to zero as x tends to the boundary 0G. We shall next give
conditions which assure the boundedness of u on G or near a boundary point of G.
In special cases, u will be shown to have a finite limit at a boundary point; our
discussion below will include the proof of the existence of nontangential limits.

We here remark that the case p=1 can be treated similarly with a small
modification.

2. Boundary limits of harmonic functions on general bounded domains

Throughout this paper, let G be a bounded domain in R" satisfying the
following condition: There exist a compact set K and a positive number ¢ such

that any point x in G is joined to K by a piecewise smooth curve x(¢) in G having
the following properties:

(Cy) x(1)eK. (Cy) x(0)=x.

(C3)  |x(t)—x(t)|=Sc(t,—t,)]|x(0)—x(1)] whenever 0=¢,<t,<1.
(Cy)  Ix(t)—x(t)|=c1(t;—t,)|x(0)—x(1)] whenever 0=1,<t,=1.
(Cs) If y e B(x(1), 271d(x(1))), then d(x)+ |x— y| <cd(y).

ReMArk. Condition (C,) implies the following:

(C¢) For any y € G, the linear measure of the set of all ¢ such that y e B(x(?),
2-1d(x(t))) is dominated by M|x(0)—x(1)|=1d(y),
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where M is a positive constant independent of y and x(¢). In fact, if y e B(x(t,),
271d(x(1y))), i=1, 2, then d(y)227'd(x(t;)), so that |x(t;)—x(t,)| S27'[d(x(t,)) +
d(x(t,))1=2d(y). Hence (C,) implies (Cs).

ExampPLE 1. Let ¢ be a Lipschitz continuous function on R"~!, and define

G(ry, r)) = {(x', x,) e R" ' x R'; |x'|<ry, (x")<x,<ry}. If ry>sup <, @(x"),
then G(r,, r,) satisfies the above condition on G.

EXAMPLE 2. Let ¢ be a nondecreasing continuous function on the interval
[0, 0), and define G(r,, r,)={(x', x,)€ R*"!xR!; |x'|<r;, o(|x')<x,<r,}.
If r,> @(r,), then G(r,, r,) satisfies the above condition on G.

In fact, let e=(0, r3)e G(r;, r;), where ¢(r,)<r;<r,, and note that for xe
G(ry, 1), x(t)=(1—1t)x + te satisfies conditions (C,)~(Cs).

For any positive numbers a and y, we set T(a)={x=(x, x,)e R" ' xR';
|x'|*<ax,}. Then T(a)n B(0, 1) is a typical example of G, where B(x, r) denotes
the open ball with center at x and radius r.

Our first aim is to establish the following result.

THEOREM 1. Let u be a function harmonic in G and satisfying

1) f lgrad u(PPd(x)*dx < oo
with a real number a. Then
lim, _, 56 d(x)("=P+®)Py(x) = 0 in casen — p+a>0,
lim, _,5 [log (1/d(x))]'/?~'u(x) =0 incasen—p+a=0
and
u(x) is bounded on G in casen —p+a<0.

For a proof of Theorem 1, we need the following lemma.

LEMMA |. For a piecewise smooth curve x(t), te[0, 1], in an open set
G <R, set G(x(1))=\Up<s<: B(x(s), 271d(x(s))). If u is harmonic in G, then for
any x€G and any piecewise smooth curve x(t) satisfying conditions (C,), (C5)
and (Cy),

lu(x) — u(x(1))] < M'me \grad u(y)ld(y)'~"dy

for all te[0, 1], where M’ is a positive constant which depends only on ¢ and M
in conditions (C3) and (Cy).

PrOOF. By conditions (C,), (C;), (C¢) and the mean value property of
harmonic functions, we have
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ux) = ux)! = | [ @pdsyucx)ds|

< cx=x,| [ (M2a e | lerad u(y)idy ) ds

B(Xs,271d (X5

molx = 0 ([ teradueni ([ L d(X)nds)dy
G(X¢) {s;yeB(Xs,271d(Xs))}

< M, j lgrad u(y)ld(y)'-dy,
G(X¢)

IIA

where X,=x(t) and M,, M,, M, are positive constants which depend only on ¢
and M. Thus the lemma is proved.

PrROOF OF THEOREM 1. Let u be as in the theorem. For £¢>0, set G,=
{xeG; d(x)>¢}. We assume that K<G,, and xe G—G,. Take a piecewise
smooth curve x(t) with conditions (C,)~(Cs), and let t,=inf {t; x(¢) € G,}.
Then, in view of Lemma 1, we find M, >0 such that

lu(x) —u(x(to))l = M, L(m , Igrad u(y)|d(y)!~"dy.
Since d(y) £d(x)+|x— y| <cd(y) whenever y € G(x(t)), Holder’s inequality gives
[u(x) — u(x(to))l

”
m(f  ayamm-eiedy)” B
G(x(t0))

lIA

IIA

M, (f Z (d(x)+r)P (mpra/p=i d’>w F(to)

d(x)~(n—pta)/p if n—p+a>0,

IIA

MF(ty) x{ [log (1/d(x)]1/" if n— p+ o =0,
d—(n=p+a)/p if n—p+a<0,
1/
where F(to)=(fc( ., leradurdwyedy)” . 1p 1/ =1, d=sup {x—yl;

x, ye G} and M,, M, are positive constants independent of x. Consequently,
in case n—p+a>0, we obtain

lim sup,_, 5 d(x)("~P+0/P |y(x)|
1/p
<My ([ leraduprdiydy)”,

which implies that the left hand side is equal to zero. The remaining cases can
be treated similarly, and thus Theorem 1 is established.
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Here we deal with the best possibility of Theorem 1 as to the order of
convergence, when we restrict ourselves to the case G is a cone I'(a)=T;(a).

PROPOSITION 1. Let h be a nonincreasing positive function on the interval
(0, ©) such that lim, o h(r)=00. Then there exists a nonnegative measurable

function f such that

f  fPlyaledy < o
I'(a)

and

lim sup,o, xer(a) M(x,)A(X,)u(x) = oo,
where [(a)={-y;yel(a)}, A(x,)=xrrptdr if n_pta>0, A(x,)=
(log (1/x,))~"%" if n—p+a=0, A(x,)=1 if n—p+a<0 and u(x)= |,k (x,—
ylx=ylI="f(y)dy. ”a

REMARK. If —1<a<p-—1, then, in view of [5; Lemma 1],
ﬁgrad u(lrlx,jodx < M [ Fiyledy < oo

with a positive constant M independent of f.

PROOF OF PROPOSITION 1. First we consider the case n—p+a=0. Let
{a;} be a sequence of positive integers such that 2a;<a;, , and take a sequence
{b;} of positive numbers such that lim;_, b;h(272%*)=0c0 and 3 %, bf<oo.
We now define f(y)=b;ly|~'(log|y|~)~1/? if y e ['(a) n B(0, 2795) — B(0, 2724J)
and f=0 otherwise. Then we see easily that the function u defined as in the
proposition satisfies

Iimx—'O,xEA h(xn)A(xn)u(x) = 0
with A=\, {xel(a); 2729/<|x|<2724;*1}, On the other hand we have
f FO)PIy.l*dy<M 37, bE<co with a positive constant M (cf. [5; Proof
Rn

of Proposition 8]).
The case n—p+a#0 can be treated similarly, by suitably modifying the

definition of f.
The boundedness of u is obtained under a weaker condition as stated below.

THEOREM 2. Let g be a nonincreasing positive function on the interval

1
(0, o0) such thatf g(r)V/-Pr=ldr<oco. Letu bea function which is harmonic
0

in G and satisfies
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) IG |grad u(x)|Pg(d(x))d(x)P~"dx < oo.
Then u(x) is bounded on G.

In case g(r)=r"¢ with >0, Theorem 2 is an immediate consequence of
Theorem 1.

PrROOF OF THEOREM 2. Let xe€ G and take a piecewise smooth curve x(t)
satisfying conditions (C,)~(C;). In view of Lemma 1, we have

lu(x)— u(x(1)| < lewm \grad u(y)|d(y)!~"dy
<My [ lgradulrg(d)dyprdy )

X (fc(x(l)) g(d(y))“l"/pd(y)_"dy>1/p»

with positive constants M, and M,. Since d(y)<d(x)+|x—y|<cd(y) for ye
G(x(1)),

f g(d(y) 7 Pd(yy-dy
G(x(1))

< cn f _9(dG)+ |x = Y1) P (A + 1x— y)dy

lIA

d 24

Msf g(d(x)+r)?'/r(d(x)+r)"tdr < M3f g(r)~7'lrr=1dr
Y 0

with a positive constant M;. Thus the theorem is obtained.

PROPOSITION 2. Let £ € 0G, and assume that there exists a sequence {B(x;,
6;)} of balls such that x;e G, &€ B(x;, 8;) for each j, lim;,, ;=0 andany xe
G N B(xj, 6;) is joined to x; by a curve x(t) in G 0 B(x;, 6;) satisfying conditions
(C3), (C,) and (Cs) for some ¢>0. Ifu is a function harmonic in G n B(&, r) and
satisfying

2) f |grad u(x)|Pg(d(x))d(x)P~"dx < o0
GNB(&,r)

for some r>0, where d(x) denotes the distance of x from the boundary 0G as
before, then u(x) has a finite limit as x € G tends to €.

PrROOF. We may assume, without loss of generality, that B(x,, d,)< B(¢,
r/2). Then, by Lemma 1 and the above proof we see that sup,.gng(x,,s, [4(x)—
u(x;)| tends to zero as j—oco. Hence, it follows that {u(x;)} is bounded. If
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lim ., u(x;,)=¢, then u(x) tends to ¢ as x—¢, x€G. Therefore the required
assertion follows.

The following two results are easy consequences of Proposition 2.

COROLLARY 1. Suppose G is a bounded Lipschitz domain in R". Letu bea
Sfunction which is harmonic in G and satisfies (2). Then u is extended to a con-
tinuous function on G U 0G.

COROLLARY 2. Let G=T(a)nB(0, 1). If u is a function harmonic in
G N B(0, r) and satisfying (2) with £€=0 for some r>0, then u(x) has a finite
limit as x € G tends to the origin. '
PROPOSITION 3. Let G be as in the above Corollary 2. If u is a function
harmonic in G and satisfying f |grad u(x)|Pg(x,)xP~"dx <oco (which is a
G

condition weaker than (2)), then u(x) has a finite limit as x tends to the origin
along T/b) for any b, 0<b<a. '

Proor. For simplicity, write G(a, r)=TJ(a)n B(0, r). Let 0<b<a and
xeG(b, 1/2). For ¢ with 0<e<1/8, let x,=(0, e) e T,(a). If x()=(1—-1)x+1x,,
te[0, 1], then we can find b’ such that b<b’<a and G(x(1))=T/(b’). Conse-
quently, we have by Lemma 1

u(x) — u(x)| < M, f  lgrad u(y)ly}ndy
G(b’,4e)

1/p
=M, (f . lgrad u(p)lPg(y)yn=" dy)
G(b’,4¢)

IR 1/p’
><<f (07 “’y,."dy>
G(b',4¢)
p— 1/p
=M, (f . lgrad u(y)lPg(ya)yn "dy> ,
G(b’,4¢)

since M3y, <d(y)<y, for ye G(b’, 1/2), where b<b’<a and M, M,, M, are
positive constants. Hence it follows that u is bounded on G(b, 1/2) and lim, ,
SUPyeq(h,c) IU(X)—u(x,)|=0. If we take a sequence {g;} of positive numbers
such that ¢;—0 and u(x,,)— ¢ as j—co, then u(x) tends to £ as x—0 along T,(b).
Thus the required assertion follows.

This proposition gives the following result, which was already shown in
[3; Theorem 6].

COROLLARY. If u is a function harmonic in I'(a) N B(0, 1) and satisfying
f |grad u(x)|Pg(|x|)|x|P~"dx < c0, then u(x) has a finite limit as x—0
I'(a)nB(0,1)
along I'(b), 0<b<a.
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REMARK 1. In the above Corollary we can not take g(r)=1. In fact,
according to Remark 4 in [4], for given y>1 we can find a function u on D=
{(x1,-.., X,) € R"; x,>0} satisfying the following conditions:

(i) w is harmonic in D.

(i) f \grad u(x)[PxE-ndx < oo.
T'y(a)
(iii) u has a nontangential limit at 0.

(iv) limsup, .o, xer, () 4(x)=oc0 for any b with 0<b<a.

REMARK 2. In the Corollary to Proposition 3, u may fail to have a finite
limit at 0 along I'(a). In fact, according to the proof of Theorem 8 in [3], we can
find a nonnegative measurable function f such that f=0 on I'(a), R,f(x)=

J‘ R,(x—y)f(y)dy tends to oo as x—0 along I'(a) andJ‘ |lgrad R, f (x)|?|x|P~"

Rn Rn

dx < oo, where Ry(x)=|x|>"" in case n=3 and R,(x)=log(1/|x]) in case n=2.

Thus, if Il g(r)rr~'dr< oo, then u(x)=3 %, (—1)/R,f(x—x;) is determined to
0

satisfy the required conditions, where {x;} is a sequence of points on dI'(a) tending
to 0 and f;=f on B(0, ;) and f;=0 elsewhere.

3. Boundary limits of harmonic functions on 7',(a)

In this section we are concerned with boundary limits at the origin for
harmonic functions defined in T,(a) and satisfying a condition weaker than (2).

THEOREM 3. Let u be a function which is harmonic in T(a) n B(0, 1) and
satisfies

(3) j lgrad u(x)|?x2dx < oo.
T,(a)NB(0,1)
If0<b<a, then

lim, o xer, 5y A(x,)u(x) = 0, incasen—p+a =0,
and
lim, o xer,(») ¥(X) exists and is finite, in casen —p+ a <0,

where A(x,) is as in Proposition 1.

ProOF. Let O0<b<a and x,=(0,...,0, &) with 0<e<1/8. As in the proof
of Proposition 3, we can find b’ such that b<b’<a and for any x e T,(b) n B(0,
1/2)=G(b, 1/2),

) —u(x)I S M, [ Jerad u(n)ld(y)'~"dy
G(b',4e)
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with a positive constant M, which is independent of x and &. Since there exists
M,>0 such that d(y)>M,y, whenever ye G(b’, 1/2), applying the proof of
Theorzm 1, we obtain

x; (n=pta)/p if n—p+a>0,
lu(x)—u(x,)| = M3F(e) x¢ [log(1/x,)]'/*" if n—p+a=0,

8—("—P+'1)/P if n-- P + o< 0,

v
where F(g)= <f |grad u(y)|Py2d y) "and M 3 is a positive constant
T, (a)NB(0,4z)
independent of x and &. Thus, the case n—p+a=0is proved. The case n—p+
a <0 follows from Proposition 3.

REMARK 1. In Theorem 3, A(x,)u(x) may not have a finite limit as x—0
along T(a).

We shall give an example of such u in case y=1. First we consider the case
n—p+a>0 and p<n. We shall show that there is a nonnegative measurable

function f on R” such that f=0 on F(a),f f)?ly,|*dy < oo and
RVI
(4) hm Supx—*O,st., A(x,,)u(x) = 0,

where u(x)= [ (v, y)lx =y ()dy and P,={x=(x', x); [¥|+[¥]" <ax,},
y>1. For this purpose, take a sequence {x()} of points in 0I'(a) such that
|x”]|=274, and find a sequence {a;} of positive numbers such that lim sup;_,,, ja;=
oo and > %, af<oo. We now define

f(y) = ajzj("-P+¢)/P[x(j)_y|—l

for ye B;=B(x'/, 27i=2)—TI'(a); we also define f(y)=0 outside \U?, B;. Then
it is easy to see that

ff(y)”lynl“dy < X iaf2itnmere Lj XD —y|=Ply,l*dy < My X 52, af < ©
with a positive constant M,. Further we have for ¢ such that 0<t<2-J-3
WDHO,0) 2 My [ (0 =yl ()dy
> Msa;2i(n=rtale log (271[1),
where I';={yeB;; |(x'))—y)'|<a(x))—y),} and M,, M; are positive constants

independent of j and t. Henceif y>1and t=27/7, then u(x(t))=M;(r—1)a;-
j2itn=p*a)p from which (4) follows. In case n—p+a=0 and p<n, the above
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function u satisfies u(x)+(0, 1))=M,a;j'* for t=27Jexp(—j'*%) with >0,
so that

(5) lim sup, g, xco, A(x)u(x) = oo,

where Q. ={(x’, x,); Ix'|[1+exp (—(log [x'|")**)]<ax,}, if {a;} is taken so that
limsup;_,, jéa;= .

Next we consider the case p=n. In this case, let B;=B(x()), 27i72)— B(x{}),
272i=2)—T(a) and take {a;} such that limsup;.,ja;=c0 and Y7, jaf<oco.
Then the function u defined as above satisfies (4) or (5) with ¢=1 according as
n—p+a>0orn—p+a=0.

Finally, in case p>n, let B;=B(x¥), 27772)—~ B(x')), 2773)—TI'(a) and take
a sequence {a;} such that limsup;_, ja;=o00 and 3%, af<co. Then the same
conclusion as above holds.

REMARK 2. Let u be a function which is harmonic in I'(a) n B(0, 1) and

satisﬁesj |grad u(x)|Pxt~"dx<oo. Then u(x) has a finite limit as
I'(a)nB(0,1)

x—0 along I'(b), 0<b<a, if there exists a sequence {x(/)} having the following
properties:

(1) {xW}<=r(a") for some a’ such that 0<a’<a.

(ii) xW—-0as j—o0.

(iii) [xPD|<M|xU*D]| for any j, where M > 1 is a constant.

(iv) {u(x)} has a finite limit as j— oo.

To prove this fact, it suffices to note the following fact as was seen in the
proof of Theorem 3: if x e I'(b), 0<b<a, and M~1|xV)| <L |x| < M|x|, then

()= u(x )] = MIG,T [ fgrad u(yidy
= M,( [, teraduiryznay)”,

where I';={yel'(a); 2M)~!|xV|<|x|<(2M)|x)|} and M,, M, are positive
constants.

REMARK 3. According to Remark 2, if u is a function which is harmonic in
I'(a) and satisﬁesf |grad u(x)|Px2~"dx < oo, then we have (cf. Jackson [2])
I'(a)

C(u, £,) = C(u, I'(b)) for any b with 0 < b < a,

where £,={(0,1); t>0} and C(u, F)=\,, ¢l {u(x); xeF, x,<r}. Here
cl E denotes the closure of a set E in R".

REMARK 4. The conclusions in Remarks 2 and 3 are not necessarily true if
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we replace I'(-) by T,(-), y>1, in view of Remark 1 given after the Corollary to
Proposition 3.

Finally, in the two dimensional case, we give a result on the cluster sets for
" harmonic functions defined in the cone I'(a).

THEOREM 4. Let n=2 and u be a function which is harmonic in I'(a)n
B(0, 1) and satisfies (3) with y=1 and a=p—2. Then there exists a sequence
{r;} having the following properties.

(i) 27i<r;<27itt,

(i) If x9el(a)noB(0, r;), then C(u, I'(b))=C(u, {x)}), for any b with

O<b<a.

In case p=2, Theorem 4 was proved by Bercovici, Foias and Pearcy [1].

PROOF OF THEOREM 4. Let tanf,=a"!, 0<f,<m/2. By our assumption,
we have

w > f I lgrad u(x,, x,)|Px2-2dx,dx,
I'(a)

> (! (J‘n—oo 1(8/06)u(r cos 6, r sin 8)|P sin?~2 0d0 )r“‘dr.
0 0o

n—0o

Hence, setting I;=inf {fon |(0/06)u(r cos 6, r sin 0)|d6; 2‘f<r<2‘f“}, we
see that Y7, I%<oo. Let {r;} be a sequence such that 27/<r;<27/*! and
f,,—w [(8/06)u(r; cos 0, r;sin 0)|d@<1;+274. Let e)=(0, r;) and x\) € dB(0, r)
nolo"(a). Then we have

[u(x)—u(e)| £ 1; + 277 forany j.

Hence it follows that C(u, {x)})=C(u, {e'’}). As in Remarks 2 and 3 after
Theorem 3, we can prove that C(u, I'(b))=C(u, {e/’}) for any b with O<b<a.
Thus the theorem is proved.

REMARK. Let n=2 and u be a function which is harmonic in the half ball

D n B(0, 1) and satisfies f |grad u(x)|P|x|P~2dx < oo0. Then, in view of
DNB(0,1)

the proof of Theorem 4, we can find a sequence {r;} satisfying (i) in Theorem 4
and
@iy C(u, {x9})=C(u, I'(a)) for any a>0 and any {x} such that x()) e
D naB(o, r)).
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