On the boundary limits of harmonic functions

Yoshihiro Mizuta

(Received July 29, 1987)

1. Introduction

This paper deals with the boundary behavior of harmonic functions u on a bounded open set $G \subset R^{n}$ satisfying

$$
\int_{G}|\operatorname{grad} u(x)|^{p} \omega(x) d x<\infty
$$

where $p>1$ and ω is a nonnegative measurable function on G. The function $\omega(x)$ is mainly of the form $\varphi(d(x))$, where $d(x)$ denotes the distance of x from the boundary ∂G and φ is a monotone function on the interval $(0, \infty)$. Moreover, G is assumed to satisfy certain smoothness conditions mentioned later.

Our first aim in this paper is to find a positive function $A(x)$ on G for which $A(x) u(x)$ tends to zero as x tends to the boundary ∂G. We shall next give conditions which assure the boundedness of u on G or near a boundary point of G. In special cases, u will be shown to have a finite limit at a boundary point; our discussion below will include the proof of the existence of nontangential limits.

We here remark that the case $p=1$ can be treated similarly with a small modification.

2. Boundary limits of harmonic functions on general bounded domains

Throughout this paper, let G be a bounded domain in R^{n} satisfying the following condition: There exist a compact set K and a positive number c such that any point x in G is joined to K by a piecewise smooth curve $x(t)$ in G having the following properties:
$\left(\mathrm{C}_{1}\right) \quad x(1) \in K . \quad\left(\mathrm{C}_{2}\right) \quad x(0)=x$.
(C_{3}) $\quad\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq c\left(t_{2}-t_{1}\right)|x(0)-x(1)| \quad$ whenever $0 \leqq t_{1} \leqq t_{2} \leqq 1$.
$\left(\mathrm{C}_{4}\right) \quad\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \geqq c^{-1}\left(t_{2}-t_{1}\right)|x(0)-x(1)| \quad$ whenever $0 \leqq t_{1} \leqq t_{2} \leqq 1$.
$\left(\mathrm{C}_{5}\right)$ If $y \in B\left(x(t), 2^{-1} d(x(t))\right)$, then $d(x)+|x-y|<c d(y)$.
Remark. Condition $\left(\mathrm{C}_{4}\right)$ implies the following:
$\left(\mathrm{C}_{6}\right)$ For any $y \in G$, the linear measure of the set of all t such that $y \in B(x(t)$, $\left.2^{-1} d(x(t))\right)$ is dominated by $M|x(0)-x(1)|^{-1} d(y)$,
where M is a positive constant independent of y and $x(t)$. In fact, if $y \in B\left(x\left(t_{i}\right)\right.$, $\left.2^{-1} d\left(x\left(t_{i}\right)\right)\right), i=1$, 2 , then $d(y) \geqq 2^{-1} d\left(x\left(t_{i}\right)\right)$, so that $\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leqq 2^{-1}\left[d\left(x\left(t_{1}\right)\right)+\right.$ $\left.d\left(x\left(t_{2}\right)\right)\right] \leqq 2 d(y)$. Hence $\left(\mathrm{C}_{4}\right)$ implies $\left(\mathrm{C}_{6}\right)$.

Example 1. Let φ be a Lipschitz continuous function on R^{n-1}, and define $G\left(r_{1}, r_{2}\right)=\left\{\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ;\left|x^{\prime}\right|<r_{1}, \varphi\left(x^{\prime}\right)<x_{n}<r_{2}\right\}$. If $r_{2}>\sup _{\left|x^{\prime}\right|<r_{1}} \varphi\left(x^{\prime}\right)$, then $G\left(r_{1}, r_{2}\right)$ satisfies the above condition on G.

Example 2. Let φ be a nondecreasing continuous function on the interval $[0, \infty)$, and define $G\left(r_{1}, r_{2}\right)=\left\{\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ;\left|x^{\prime}\right|<r_{1}, \varphi\left(\left|x^{\prime}\right|\right)<x_{n}<r_{2}\right\}$. If $r_{2}>\varphi\left(r_{1}\right)$, then $G\left(r_{1}, r_{2}\right)$ satisfies the above condition on G.

In fact, let $e=\left(0, r_{3}\right) \in G\left(r_{1}, r_{2}\right)$, where $\varphi\left(r_{1}\right)<r_{3}<r_{2}$, and note that for $x \in$ $G\left(r_{1}, r_{2}\right), x(t)=(1-t) x+t e$ satisfies conditions $\left(\mathrm{C}_{2}\right) \sim\left(\mathrm{C}_{5}\right)$.

For any positive numbers a and γ, we set $T_{\gamma}(a)=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1}\right.$; $\left.\left|x^{\prime}\right|^{\gamma}<a x_{n}\right\}$. Then $T_{\gamma}(a) \cap B(0,1)$ is a typical example of G, where $B(x, r)$ denotes the open ball with center at x and radius r.

Our first aim is to establish the following result.
Theorem 1. Let u be a function harmonic in G and satisfying

$$
\begin{equation*}
\int_{G}|\operatorname{grad} u(x)|^{p} d(x)^{\alpha} d x<\infty \tag{1}
\end{equation*}
$$

with a real number α. Then

$$
\begin{array}{ll}
\lim _{x \rightarrow \partial G} d(x)^{(n-p+\alpha) / p} u(x)=0 & \text { in case } n-p+\alpha>0 \\
\lim _{x \rightarrow \partial G}[\log (1 / d(x))]^{1 / p-1} u(x)=0 & \text { in case } n-p+\alpha=0
\end{array}
$$

and

$$
u(x) \text { is bounded on } G \quad \text { in case } n-p+\alpha<0
$$

For a proof of Theorem 1, we need the following lemma.
Lemma 1. For a piecewise smooth curve $x(t), t \in[0,1]$, in an open set $G \subset R^{n}$, set $G(x(t))=\cup_{0 \leqq s \leqq t} B\left(x(s), 2^{-1} d(x(s))\right)$. If u is harmonic in G, then for any $x \in G$ and any piecewise smooth curve $x(t)$ satisfying conditions $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{6}\right)$,

$$
|u(x)-u(x(t))| \leqq M^{\prime} \int_{G(x(t))}|\operatorname{grad} u(y)| d(y)^{1-n} d y
$$

for all $t \in[0,1]$, where M^{\prime} is a positive constant which depends only on c and M in conditions $\left(\mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{6}\right)$.

Proof. By conditions $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{6}\right)$ and the mean value property of harmonic functions, we have

$$
\begin{aligned}
& \left|u(x)-u\left(X_{t}\right)\right|=\left|\int_{0}^{t}(d / d s) u\left(X_{s}\right) d s\right| \\
& \quad \leqq c\left|x-X_{1}\right| \int_{0}^{t}\left(M_{1}\left[2^{-1} d\left(X_{s}\right)\right]^{-n} \int_{B\left(X_{s}, 2^{-1} d\left(X_{s}\right)\right)}|\operatorname{grad} u(y)| d y\right) d s \\
& \quad \leqq M_{2}\left|x-X_{1}\right|\left(\int_{G\left(X_{t}\right)}|\operatorname{grad} u(y)|\left(\int_{\left\{s ; y \in B\left(X_{s}, 2^{-1} d\left(X_{s}\right)\right)\right\}} d\left(X_{s}\right)^{-n} d s\right) d y\right. \\
& \quad \leqq M_{3} \int_{G\left(X_{t}\right)}|\operatorname{grad} u(y)| d(y)^{1-n} d y
\end{aligned}
$$

where $X_{t}=x(t)$ and M_{1}, M_{2}, M_{3} are positive constants which depend only on c and M. Thus the lemma is proved.

Proof of Theorem 1. Let u be as in the theorem. For $\varepsilon>0$, set $G_{\varepsilon}=$ $\{x \in G ; d(x)>\varepsilon\}$. We assume that $K \subset G_{2 \varepsilon}$ and $x \in G-G_{\varepsilon}$. Take a piecewise smooth curve $x(t)$ with conditions $\left(\mathrm{C}_{1}\right) \sim\left(\mathrm{C}_{5}\right)$, and let $t_{0}=\inf \left\{t ; x(t) \in G_{\varepsilon}\right\}$. Then, in view of Lemma 1 , we find $M_{1}>0$ such that

$$
\left|u(x)-u\left(x\left(t_{0}\right)\right)\right| \leqq M_{1} \int_{G\left(x\left(t_{0}\right)\right)}|\operatorname{grad} u(y)| d(y)^{1-n} d y .
$$

Since $d(y) \leqq d(x)+|x-y|<c d(y)$ whenever $y \in G(x(t))$, Hölder's inequality gives

$$
\begin{aligned}
\mid u(x)- & u\left(x\left(t_{0}\right)\right) \mid \\
& \leqq M_{1}\left(\int_{G\left(x\left(t_{0}\right)\right)} d(y)^{p^{\prime}(1-n)-\alpha p^{\prime} / p} d y\right)^{1 / p^{\prime}} F\left(t_{0}\right) \\
& \leqq M_{2}\left(\int_{0}^{d}(d(x)+r)^{-p^{\prime}(n-p+\alpha) / p-1} d r\right)^{1 / p^{\prime}} F\left(t_{0}\right) \\
& \leqq M_{3} F\left(t_{0}\right) \times \begin{cases}d(x)^{-(n-p+\alpha) / p} & \text { if } n-p+\alpha>0, \\
{[\log (1 / d(x))]^{1 / p^{\prime}}} & \text { if } n-p+\alpha=0, \\
d^{-(n-p+\alpha) / p} & \text { if } n-p+\alpha<0,\end{cases}
\end{aligned}
$$

where $F\left(t_{0}\right)=\left(\int_{G\left(x\left(t_{0}\right)\right)}|\operatorname{grad} u(y)|^{p} d(y)^{\alpha} d y\right)^{1 / p}, \quad 1 / p+1 / p^{\prime}=1, \quad d=\sup \{|x-y|$; $x, y \in G\}$ and M_{2}, M_{3} are positive constants independent of x. Consequently, in case $n-p+\alpha>0$, we obtain
$\lim \sup _{x \rightarrow \partial G} d(x)^{(n-p+\alpha) / p}|u(x)|$

$$
\leqq M_{3}\left(\int_{G-G_{2 \varepsilon}}|\operatorname{grad} u(y)|^{p} d(y)^{\alpha} d y\right)^{1 / p},
$$

which implies that the left hand side is equal to zero. The remaining cases can be treated similarly, and thus Theorem 1 is established.

Here we deal with the best possibility of Theorem 1 as to the order of convergence, when we restrict ourselves to the case G is a cone $\Gamma(a)=T_{1}(a)$.

Proposition 1. Let h be a nonincreasing positive function on the interval $(0, \infty)$ such that $\lim _{r \downarrow 0} h(r)=\infty$. Then there exists a nonnegative measurable function f such that

$$
\int_{\hat{\Gamma}(a)} f(y)^{p}\left|y_{n}\right|^{\alpha} d y<\infty
$$

and

$$
\lim \sup _{x \rightarrow 0, x \in \Gamma(a)} h\left(x_{n}\right) A\left(x_{n}\right) u(x)=\infty
$$

where $\quad \hat{\Gamma}(a)=\{-y ; y \in \Gamma(a)\}, \quad A\left(x_{n}\right)=x_{n}^{(n-p+\alpha) / p} \quad$ if $\quad n-p+\alpha>0, \quad A\left(x_{n}\right)=$ $\left(\log \left(1 / x_{n}\right)\right)^{-1 / p^{\prime}}$ if $n-p+\alpha=0, A\left(x_{n}\right)=1$ if $n-p+\alpha<0$ and $u(x)=\int_{\hat{\Gamma}(a)}\left(x_{n}-\right.$ $\left.y_{n}\right)|x-y|^{-n} f(y) d y$.

Remark. If $-1<\alpha<p-1$, then, in view of [5; Lemma 1],

$$
\int|\operatorname{grad} u(x)|^{p}\left|x_{n}\right|^{\alpha} d x \leqq M \int f(y)^{p}\left|y_{n}\right|^{\alpha} d y<\infty
$$

with a positive constant M independent of f.
Proof of Proposition 1. First we consider the case $n-p+\alpha=0$. Let $\left\{a_{j}\right\}$ be a sequence of positive integers such that $2 a_{j}<a_{j+1}$, and take a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j} h\left(2^{-2 a_{j}+1}\right)=\infty$ and $\sum_{j=1}^{\infty} b_{j}^{p}<\infty$. We now define $f(y)=b_{j}|y|^{-1}\left(\log |y|^{-1}\right)^{-1 / p}$ if $y \in \hat{\Gamma}(a) \cap B\left(0,2^{-a_{j}}\right)-B\left(0,2^{-2 a_{j}}\right)$ and $f=0$ otherwise. Then we see easily that the function u defined as in the proposition satisfies

$$
\lim _{x \rightarrow 0, x \in A} h\left(x_{n}\right) A\left(x_{n}\right) u(x)=\infty
$$

with $A=\cup_{j=1}^{\infty}\left\{x \in \Gamma(a) ; 2^{-2 a_{j}}<|x|<2^{-2 a_{j}+1}\right\}$. On the other hand we have $\int_{R^{n}} f(y)^{p}\left|y_{n}\right|^{\alpha} d y \leqq M \sum_{j=1}^{\infty} b_{j}^{p}<\infty$ with a positive constant M (cf. [5; Proof of Proposition 8]).

The case $n-p+\alpha \neq 0$ can be treated similarly, by suitably modifying the definition of f.

The boundedness of u is obtained under a weaker condition as stated below.
TheOrem 2. Let g be a nonincreasing positive function on the interval $(0, \infty)$ such that $\int_{0}^{1} g(r)^{1 /(1-p)} r^{-1} d r<\infty$. Let u be a function which is harmonic in G and satisfies

$$
\begin{equation*}
\int_{G}|\operatorname{grad} u(x)|^{p} g(d(x)) d(x)^{p-n} d x<\infty \tag{2}
\end{equation*}
$$

Then $u(x)$ is bounded on G.
In case $g(r)=r^{-\delta}$ with $\delta>0$, Theorem 2 is an immediate consequence of Theorem 1.

Proof of Theorem 2. Let $x \in G$ and take a piecewise smooth curve $x(t)$ satisfying conditions $\left(C_{1}\right) \sim\left(C_{5}\right)$. In view of Lemma 1 , we have

$$
\begin{aligned}
|u(x)-u(x(1))| \leqq & M_{1} \int_{G(x(1))}|\operatorname{grad} u(y)| d(y)^{1-n} d y \\
\leqq & M_{2}\left(\int_{G(x(1))}|\operatorname{grad} u(y)|^{p} g(d(y)) d(y)^{p-n} d y\right)^{1 / p} \\
& \times\left(\int_{G(x(1))} g(d(y))^{-p^{\prime} / p} d(y)^{-n} d y\right)^{1 / p^{\prime}}
\end{aligned}
$$

with positive constants M_{1} and M_{2}. Since $d(y)<d(x)+|x-y|<c d(y)$ for $y \in$ $G(x(1))$,

$$
\begin{aligned}
& \int_{G(x(1))} g(d(y))^{-p^{\prime} / p} d(y)^{-n} d y \\
& \quad \leqq c^{n} \int_{G} g(d(x)+|x-y|)^{-p^{\prime} / p}(d(x)+|x-y|)^{-n} d y \\
& \quad \leqq M_{3} \int_{0}^{d} g(d(x)+r)^{-p^{\prime} / p}(d(x)+r)^{-1} d r \leqq M_{3} \int_{0}^{2 d} g(r)^{-p^{\prime} / p} r^{-1} d r
\end{aligned}
$$

with a positive constant M_{3}. Thus the theorem is obtained.
Proposition 2. Let $\xi \in \partial G$, and assume that there exists a sequence $\left\{B\left(x_{j}\right.\right.$, $\left.\left.\delta_{j}\right)\right\}$ of balls such that $x_{j} \in G, \xi \in B\left(x_{j}, \delta_{j}\right)$ for each $j, \lim _{j \rightarrow \infty} \delta_{j}=0$ and any $x \in$ $G \cap B\left(x_{j}, \delta_{j}\right)$ is joined to x_{j} by a curve $x(t)$ in $G \cap B\left(x_{j}, \delta_{j}\right)$ satisfying conditions $\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ for some $c>0$. If u is a function harmonic in $G \cap B(\xi, r)$ and satisfying

$$
\begin{equation*}
\int_{G \cap B(\xi, r)}|\operatorname{grad} u(x)|^{p} g(d(x)) d(x)^{p-n} d x<\infty \tag{2}
\end{equation*}
$$

for some $r>0$, where $d(x)$ denotes the distance of x from the boundary ∂G as before, then $u(x)$ has a finite limit as $x \in G$ tends to ξ.

Proof. We may assume, without loss of generality, that $B\left(x_{1}, \delta_{1}\right) \subset B(\xi$, $r / 2)$. Then, by Lemma 1 and the above proof we see that $\sup _{x \in G \cap B\left(x_{j}, \delta_{j}\right)} \mid u(x)-$ $u\left(x_{j}\right) \mid$ tends to zero as $j \rightarrow \infty$. Hence, it follows that $\left\{u\left(x_{j}\right)\right\}$ is bounded. If
$\lim _{k \rightarrow \infty} u\left(x_{j_{k}}\right)=\ell$, then $u(x)$ tends to ℓ as $x \rightarrow \xi, x \in G$. Therefore the required assertion follows.

The following two results are easy consequences of Proposition 2.
Corollary 1. Suppose G is a bounded Lipschitz domain in R^{n}. Let u be a function which is harmonic in G and satisfies (2). Then u is extended to a continuous function on $G \cup \partial G$.

Corollary 2. Let $G=T_{\gamma}(a) \cap B(0,1)$. If u is a function harmonic in $G \cap B(0, r)$ and satisfying (2)' with $\xi=0$ for some $r>0$, then $u(x)$ has a finite limit as $x \in G$ tends to the origin.

Proposition 3. Let G be as in the above Corollary 2. If u is a function harmonic in G and satisfying $\int_{G}|\operatorname{grad} u(x)|^{p} g\left(x_{n}\right) x_{n}^{p-n} d x<\infty \quad$ (which is a condition weaker than (2)), then $u(x)$ has a finite limit as x tends to the origin along $T_{\gamma}(b)$ for any $b, 0<b<a$.

Proof. For simplicity, write $G(a, r)=T_{\gamma}(a) \cap B(0, r)$. Let $0<b<a$ and $x \in G(b, 1 / 2)$. For ε with $0<\varepsilon<1 / 8$, let $x_{\varepsilon}=(0, \varepsilon) \in T_{\gamma}(a)$. If $x(t)=(1-t) x+t x_{\varepsilon}$, $t \in[0,1]$, then we can find b^{\prime} such that $b<b^{\prime}<a$ and $G(x(1)) \subset T_{\gamma}\left(b^{\prime}\right)$. Consequently, we have by Lemma 1

$$
\begin{aligned}
\left|u(x)-u\left(x_{\varepsilon}\right)\right| \leqq & M_{1} \int_{G\left(b^{\prime}, 4 \varepsilon\right)}|\operatorname{grad} u(y)| y_{n}^{1-n} d y \\
\leqq & M_{1}\left(\int_{G\left(b^{\prime}, 4 \varepsilon\right)}|\operatorname{grad} u(y)|^{p} g\left(y_{n}\right) y_{n}^{p-n} d y\right)^{1 / p} \\
& \times\left(\int_{G\left(b^{\prime}, 4 \varepsilon\right)} g\left(y_{n}\right)^{-p^{\prime} / p} y_{n}^{-n} d y\right)^{1 / p^{\prime}} \\
\leqq & M_{2}\left(\int_{G\left(b^{\prime}, 4 \varepsilon\right)}|\operatorname{grad} u(y)|^{p} g\left(y_{n}\right) y_{n}^{p-n} d y\right)^{1 / p},
\end{aligned}
$$

since $M_{3} y_{n}<d(y)<y_{n}$ for $y \in G\left(b^{\prime}, 1 / 2\right)$, where $b<b^{\prime}<a$ and $M_{1} M_{2}, M_{3}$ are positive constants. Hence it follows that u is bounded on $G(b, 1 / 2)$ and $\lim _{\varepsilon \downarrow 0}$ $\sup _{x \in G(b, \varepsilon)}\left|u(x)-u\left(x_{\varepsilon}\right)\right|=0$. If we take a sequence $\left\{\varepsilon_{j}\right\}$ of positive numbers such that $\varepsilon_{j} \rightarrow 0$ and $u\left(x_{\varepsilon_{j}}\right) \rightarrow \ell$ as $j \rightarrow \infty$, then $u(x)$ tends to ℓ as $x \rightarrow 0$ along $T_{\gamma}(b)$. Thus the required assertion follows.

This proposition gives the following result, which was already shown in [3; Theorem 6].

Corollary. If u is a function harmonic in $\Gamma(a) \cap B(0,1)$ and satisfying $\int_{\Gamma(a) \cap B(0,1)}|\operatorname{grad} u(x)|^{g} g(|x|)|x|^{p-n} d x<\infty$, then $u(x)$ has a finite limit as $x \rightarrow 0$
along $\Gamma(b), 0<b<a$.

Remark 1. In the above Corollary we can not take $g(r) \equiv 1$. In fact, according to Remark 4 in [4], for given $\gamma>1$ we can find a function u on $D=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n} ; x_{n}>0\right\}$ satisfying the following conditions:
(i) u is harmonic in D.
(ii) $\int_{T_{\gamma}(a)}|\operatorname{grad} u(x)|^{p} x_{n}^{p-n} d x<\infty$.
(iii) u has a nontangential limit at 0 .
(iv) $\lim \sup _{x \rightarrow 0, x \in T_{y}(b)} u(x)=\infty$ for any b with $0<b<a$.

Remark 2. In the Corollary to Proposition $3, u$ may fail to have a finite limit at 0 along $\Gamma(a)$. In fact, according to the proof of Theorem 8 in [3], we can find a nonnegative measurable function f such that $f=0$ on $\Gamma(a), R_{2} f(x) \equiv$ $\int_{R^{n}} R_{2}(x-y) f(y) d y$ tends to ∞ as $x \rightarrow 0$ along $\Gamma(a)$ and $\int_{R^{n}}\left|\operatorname{grad} R_{2} f(x)\right|^{p}|x|^{p-n}$ $d x<\infty$, where $R_{2}(x)=|x|^{2-n}$ in case $n \geqq 3$ and $R_{2}(x)=\log (1 /|x|)$ in case $n=2$. Thus, if $\int_{0}^{1} g(r) r^{p-1} d r<\infty$, then $u(x)=\sum_{j=1}^{\infty}(-1)^{j} R_{2}, f_{j}\left(x-x_{j}\right)$ is determined to satisfy the required conditions, where $\left\{x_{j}\right\}$ is a sequence of points on $\partial \Gamma(a)$ tending to 0 and $f_{j}=f$ on $B\left(0, r_{j}\right)$ and $f_{j}=0$ elsewhere.

3. Boundary limits of harmonic functions on $\boldsymbol{T}_{\boldsymbol{\gamma}}(\boldsymbol{a})$

In this section we are concerned with boundary limits at the origin for harmonic functions defined in $T_{\gamma}(a)$ and satisfying a condition weaker than (2).

Theorem 3. Let u be a function which is harmonic in $T_{\gamma}(a) \cap B(0,1)$ and satisfies

$$
\begin{equation*}
\int_{T_{\gamma(a) \cap \boldsymbol{B}(0,1)}}|\operatorname{grad} u(x)|^{p} X_{n}^{\alpha} d x<\infty . \tag{3}
\end{equation*}
$$

If $0<b<a$, then

$$
\lim _{x \rightarrow 0, x \in T_{\gamma}(b)} A\left(x_{n}\right) u(x)=0, \quad \text { in case } n-p+\alpha \geqq 0 \text {, }
$$

and

$$
\lim _{x \rightarrow 0, x \in T_{\gamma}(b)} u(x) \text { exists and is finite, in case } n-p+\alpha<0,
$$

where $A\left(x_{n}\right)$ is as in Proposition 1.
Proof. Let $0<b<a$ and $x_{\varepsilon}=(0, \ldots, 0, \varepsilon)$ with $0<\varepsilon<1 / 8$. As in the proof of Proposition 3, we can find b^{\prime} such that $b<b^{\prime}<a$ and for any $x \in T_{\gamma}(b) \cap B(0$, $1 / 2)=G(b, 1 / 2)$,

$$
\left|u(x)-u\left(x_{\varepsilon}\right)\right| \leqq M_{1} \int_{G\left(b^{\prime}, 4 \varepsilon\right)}|\operatorname{grad} u(y)| d(y)^{1-n} d y
$$

with a positive constant M_{1} which is independent of x and ε. Since there exists $M_{2}>0$ such that $d(y)>M_{2} y_{n}$ whenever $y \in G\left(b^{\prime}, 1 / 2\right)$, applying the proof of Theorem 1, we obtain

$$
\left|u(x)-u\left(x_{\varepsilon}\right)\right| \leqq M_{3} F(\varepsilon) \times \begin{cases}x_{n}^{-(n-p+\alpha) / p} & \text { if } n-p+\alpha>0 \\ {\left[\log \left(1 / x_{n}\right)\right]^{1 / p^{\prime}}} & \text { if } n-p+\alpha=0 \\ \varepsilon^{-(n-p+\alpha) / p} & \text { if } n-p+\alpha<0\end{cases}
$$

where $F(\varepsilon)=\left(\int_{T_{\gamma(a) \cap B(0,4 \varepsilon)}}|\operatorname{grad} u(y)|^{p} y_{n}^{\alpha} d y\right)^{1 / p}$ and M_{3} is a positive constant independent of x and ε. Thus, the case $n-p+\alpha \geqq 0$ is proved. The case $n-p+$ $\alpha<0$ follows from Proposition 3.

Remark 1. In Theorem 3, $A\left(x_{n}\right) u(x)$ may not have a finite limit as $x \rightarrow 0$ along $T_{\gamma}(a)$.

We shall give an example of such u in case $\gamma=1$. First we consider the case $n-p+\alpha>0$ and $p<n$. We shall show that there is a nonnegative measurable function f on R^{n} such that $f=0$ on $\Gamma(a), \int_{R^{n}} f(y)^{p}\left|y_{n}\right|^{\alpha} d y<\infty$ and

$$
\begin{equation*}
\lim \sup _{x \rightarrow 0, x \in P_{\gamma}} A\left(x_{n}\right) u(x)=\infty \tag{4}
\end{equation*}
$$

where $u(x)=\int_{R^{n}}\left(x_{n}-y_{n}\right)|x-y|^{-n} f(y) d y$ and $P_{\gamma}=\left\{x=\left(x^{\prime}, x_{n}\right) ;\left|x^{\prime}\right|+\left|x^{\prime}\right|^{\gamma}<a x_{n}\right\}$, $\gamma>1$. For this purpose, take a sequence $\left\{x^{(j)}\right\}$ of points in $\partial \Gamma(a)$ such that $\left|x^{(j)}\right|=2^{-j}$, and find a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim \sup _{j \rightarrow \infty} j a_{j}=$ ∞ and $\sum_{j=1}^{\infty} a_{j}^{p}<\infty$. We now define

$$
f(y)=a_{j} 2^{j(n-p+\alpha) / p}\left|x^{(j)}-y\right|^{-1}
$$

for $y \in B_{j} \equiv B\left(x^{(j)}, 2^{-j-2}\right)-\Gamma(a)$; we also define $f(y)=0$ outside $\cup_{j=1}^{\infty} B_{j}$. Then it is easy to see that

$$
\int f(y)^{p}\left|y_{n}\right|^{\alpha} d y \leqq \sum_{j=1}^{\infty} a_{j}^{p} 2^{j(n-p+\alpha)} \int_{B_{j}}\left|x^{(j)}-y\right|^{-p}\left|y_{n}\right|^{\alpha} d y \leqq M_{1} \sum_{j=1}^{\infty} a_{j}^{p}<\infty
$$

with a positive constant M_{1}. Further we have for t such that $0<t<2^{-j-3}$

$$
\begin{aligned}
u\left(x^{(j)}+(0, t)\right) & \geqq M_{2} \int_{\Gamma_{j}}\left(t+\left|x^{(j)}-y\right|\right)^{1-n} f(y) d y \\
& \geqq M_{3} a_{j} 2^{j(n-p+\alpha) / p} \log \left(2^{-j} / t\right),
\end{aligned}
$$

where $\Gamma_{j}=\left\{y \in B_{j} ;\left|\left(x^{(j)}-y\right)^{\prime}\right|<a\left(x^{(j)}-y\right)_{n}\right\}$ and M_{2}, M_{3} are positive constants independent of j and t. Hence if $\gamma>1$ and $t=2^{-j \gamma}$, then $u(x(t)) \geqq M_{3}(r-1) a_{j}$. $j 2^{j(n-p+\alpha) / p}$, from which (4) follows. In case $n-p+\alpha=0$ and $p<n$, the above
function u satisfies $u\left(x^{(j)}+(0, t)\right) \geqq M_{4} a_{j} j^{1+\varepsilon}$ for $t=2^{-j} \exp \left(-j^{1+\varepsilon}\right)$ with $\varepsilon>0$, so that

$$
\begin{equation*}
\lim \sup _{x \rightarrow 0, x \in Q_{\varepsilon}} A\left(x_{n}\right) u(x)=\infty, \tag{5}
\end{equation*}
$$

where $Q_{\varepsilon}=\left\{\left(x^{\prime}, x_{n}\right) ;\left|x^{\prime}\right|\left[1+\exp \left(-\left(\log \left|x^{\prime}\right|^{-1}\right)^{1+\varepsilon}\right)\right]<a x_{n}\right\}$, if $\left\{a_{j}\right\}$ is taken so that $\lim \sup _{j \rightarrow \infty} j^{\varepsilon} a_{j}=\infty$.

Next we consider the case $p=n$. In this case, let $B_{j}=B\left(x^{(j)}, 2^{-j-2}\right)-B\left(x^{(j)}\right.$, $\left.2^{-2 j-2}\right)-\Gamma(a)$ and take $\left\{a_{j}\right\}$ such that $\lim \sup _{j \rightarrow \infty} j a_{j}=\infty$ and $\sum_{j=1}^{\infty} j a_{j}^{p}<\infty$. Then the function u defined as above satisfies (4) or (5) with $\varepsilon=1$ according as $n-p+\alpha>0$ or $n-p+\alpha=0$.

Finally, in case $p>n$, let $B_{j}=B\left(x^{(j)}, 2^{-j-2}\right)-B\left(x^{(j)}, 2^{-j-3}\right)-\Gamma(a)$ and take a sequence $\left\{a_{j}\right\}$ such that $\lim \sup _{j \rightarrow \infty} j a_{j}=\infty$ and $\sum_{j=1}^{\infty} a_{j}^{p}<\infty$. Then the same conclusion as above holds.

Remark 2. Let u be a function which is harmonic in $\Gamma(a) \cap B(0,1)$ and satisfies $\int_{\Gamma(a) \cap \boldsymbol{B}(0,1)}|\operatorname{grad} u(x)|^{p} x_{n}^{p-n} d x<\infty$. Then $u(x)$ has a finite limit as $x \rightarrow 0$ along $\Gamma(b), 0<b<a$, if there exists a sequence $\left\{x^{(j)}\right\}$ having the following properties:
(i) $\left\{x^{(j)}\right\} \subset \Gamma\left(a^{\prime}\right)$ for some a^{\prime} such that $0<a^{\prime}<a$.
(ii) $\quad x^{(j)} \rightarrow 0$ as $j \rightarrow \infty$.
(iii) $\left|x^{(j)}\right|<M\left|x^{(j+1)}\right|$ for any j, where $M>1$ is a constant.
(iv) $\left\{u\left(x^{(j)}\right)\right\}$ has a finite limit as $j \rightarrow \infty$.

To prove this fact, it suffices to note the following fact as was seen in the proof of Theorem 3: if $x \in \Gamma(b), 0<b<a$, and $M^{-1}\left|x^{(j)}\right| \leqq|x| \leqq M\left|x^{(j)}\right|$, then

$$
\begin{aligned}
\left|u(x)-u\left(x^{(j)}\right)\right| & \leqq M_{1}\left[\left(x^{(j)}\right)_{n}\right]^{-n} \int_{\Gamma_{j}}|\operatorname{grad} u(y)| d y \\
& \leqq M_{2}\left(\int_{\Gamma_{j}}|\operatorname{grad} u(y)|^{p} y_{n}^{p-n} d y\right)^{1 / p}
\end{aligned}
$$

where $\Gamma_{j}=\left\{y \in \Gamma(a) ;(2 M)^{-1}\left|x^{(j)}\right|<|x|<(2 M)\left|x^{(j)}\right|\right\}$ and M_{1}, M_{2} are positive constants.

Remark 3. According to Remark 2, if u is a function which is harmonic in $\Gamma(a)$ and satisfies $\int_{\Gamma(a)}|\operatorname{grad} u(x)|^{p} x_{n}^{p-n} d x<\infty$, then we have (cf. Jackson [2])

$$
C\left(u, \ell_{0}\right)=C(u, \Gamma(b)) \text { for any } b \text { with } 0<b<a,
$$

where $\quad \ell_{0}=\{(0, t) ; t>0\} \quad$ and $C(u, F)=\cap_{r>0} \mathrm{cl}\left\{u(x) ; x \in F, x_{n}<r\right\}$. Here $\mathrm{cl} E$ denotes the closure of a set E in R^{n}.

Remark 4. The conclusions in Remarks 2 and 3 are not necessarily true if
we replace $\Gamma(\cdot)$ by $T_{\gamma}(\cdot), \gamma>1$, in view of Remark 1 given after the Corollary to Proposition 3.

Finally, in the two dimensional case, we give a result on the cluster sets for harmonic functions defined in the cone $\Gamma(a)$.

Theorem 4. Let $n=2$ and u be a function which is harmonic in $\Gamma(a) \cap$ $B(0,1)$ and satisfies (3) with $\gamma=1$ and $\alpha=p-2$. Then there exists a sequence $\left\{r_{j}\right\}$ having the following properties.
(i) $2^{-j}<r_{j}<2^{-j+1}$.
(ii) If $x^{(j)} \in \Gamma(a) \cap \partial B\left(0, r_{j}\right)$, then $C(u, \Gamma(b))=C\left(u,\left\{x^{(j)}\right\}\right)$, for any b with $0<b<a$.

In case $p=2$, Theorem 4 was proved by Bercovici, Foias and Pearcy [1].
Proof of Theorem 4. Let $\tan \theta_{0}=a^{-1}, 0<\theta_{0}<\pi / 2$. By our assumption, we have

$$
\begin{aligned}
\infty & >\iint_{\Gamma(a)}\left|\operatorname{grad} u\left(x_{1}, x_{2}\right)\right|^{p} x_{2}^{p-2} d x_{1} d x_{2} \\
& \geqq \int_{0}^{1}\left(\int_{\theta_{0}}^{\pi-\theta_{0}}|(\partial / \partial \theta) u(r \cos \theta, r \sin \theta)|^{p} \sin ^{p-2} \theta d \theta\right) r^{-1} d r .
\end{aligned}
$$

Hence, setting $I_{j}=\inf \left\{\int_{\theta_{0}}^{\pi-\theta_{0}}|(\partial / \partial \theta) u(r \cos \theta, r \sin \theta)| d \theta ; \quad 2^{-j}<r<2^{-j+1}\right\}$, we see that $\sum_{j=1}^{\infty} I_{j}^{p}<\infty$. Let $\left\{r_{j}\right\}$ be a sequence such that $2^{-j}<r_{j}<2^{-j+1}$ and $\int_{\theta_{0}}^{\pi-\theta_{0}}\left|(\partial / \partial \theta) u\left(r_{j} \cos \theta, r_{j} \sin \theta\right)\right| d \theta<I_{j}+2^{-j}$. Let $e^{(j)}=\left(0, r_{j}\right)$ and $x^{(j)} \in \partial B\left(0, r_{j}\right)$ $\cap \Gamma(a)$. Then we have

$$
\left|u\left(x^{(j)}\right)-u\left(e^{(j)}\right)\right| \leqq I_{j}+2^{-j} \quad \text { for any } \quad j
$$

Hence it follows that $C\left(u,\left\{x^{(j)}\right\}\right)=C\left(u,\left\{e^{(j)}\right\}\right)$. As in Remarks 2 and 3 after Theorem 3, we can prove that $C(u, \Gamma(b))=C\left(u,\left\{e^{(j)}\right\}\right)$ for any b with $0<b<a$. Thus the theorem is proved.

REMARK. Let $n=2$ and u be a function which is harmonic in the half ball $D \cap B(0,1)$ and satisfies $\int_{D \cap B(0,1)}|\operatorname{grad} u(x)|^{p}|x|^{p-2} d x<\infty$. Then, in view of the proof of Theorem 4, we can find a sequence $\left\{r_{j}\right\}$ satisfying (i) in Theorem 4 and
(ii) $C\left(u,\left\{x^{(j)}\right\}\right)=C(u, \Gamma(a))$ for any $a>0$ and any $\left\{x^{(j)}\right\}$ such that $x^{(j)} \in$ $D \cap \partial B\left(0, r_{j}\right)$.

References

[1] H. Bercovici, C. Foias and C. Pearcy, A spectral mapping theorem for functions with finite Dirichlet integral, J. Reine Angew. Math. 366 (1986), 1-17.
[2] H. L. Jackson, On the boundary behavior of BLD functions and some applications, Acad. Roy. Berg. Bull. Cl. Sci. (5) 66 (1980), 223-239.
[3] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
[4] Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^{p}, Ann. Inst. Fourier 34 (1984), 99-109.
[5] Y. Mizuta, Boundary behavior of p-precise functions on a half space of R^{n}, this issue, 73-94.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

