On the boundary limits of harmonic functions

Yoshihiro MIZUTA

(Received July 29, 1987)

1. Introduction

This paper deals with the boundary behavior of harmonic functions u on a bounded open set $G \subset \mathbb{R}^n$ satisfying

$$\int_{G} |\operatorname{grad} u(x)|^{p} \omega(x) dx < \infty,$$

where p > 1 and ω is a nonnegative measurable function on G. The function $\omega(x)$ is mainly of the form $\varphi(d(x))$, where d(x) denotes the distance of x from the boundary ∂G and φ is a monotone function on the interval $(0, \infty)$. Moreover, G is assumed to satisfy certain smoothness conditions mentioned later.

Our first aim in this paper is to find a positive function A(x) on G for which A(x)u(x) tends to zero as x tends to the boundary ∂G . We shall next give conditions which assure the boundedness of u on G or near a boundary point of G. In special cases, u will be shown to have a finite limit at a boundary point; our discussion below will include the proof of the existence of nontangential limits.

We here remark that the case p=1 can be treated similarly with a small modification.

2. Boundary limits of harmonic functions on general bounded domains

Throughout this paper, let G be a bounded domain in \mathbb{R}^n satisfying the following condition: There exist a compact set K and a positive number c such that any point x in G is joined to K by a piecewise smooth curve x(t) in G having the following properties:

$$(C_1) \quad x(1) \in K.$$
 $(C_2) \quad x(0) = x.$

(C₃)
$$|x(t_2) - x(t_1)| \le c(t_2 - t_1)|x(0) - x(1)|$$
 whenever $0 \le t_1 \le t_2 \le 1$.

- (C₄) $|x(t_2) x(t_1)| \ge c^{-1}(t_2 t_1)|x(0) x(1)|$ whenever $0 \le t_1 \le t_2 \le 1$.
- (C₅) If $y \in B(x(t), 2^{-1}d(x(t)))$, then d(x) + |x y| < cd(y).

REMARK. Condition (C_4) implies the following:

(C₆) For any $y \in G$, the linear measure of the set of all t such that $y \in B(x(t), 2^{-1}d(x(t)))$ is dominated by $M|x(0) - x(1)|^{-1}d(y)$,

where M is a positive constant independent of y and x(t). In fact, if $y \in B(x(t_i), 2^{-1}d(x(t_i)))$, i=1, 2, then $d(y) \ge 2^{-1}d(x(t_i))$, so that $|x(t_1) - x(t_2)| \le 2^{-1}[d(x(t_1)) + d(x(t_2))] \le 2d(y)$. Hence (C₄) implies (C₆).

EXAMPLE 1. Let φ be a Lipschitz continuous function on \mathbb{R}^{n-1} , and define $G(r_1, r_2) = \{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; |x'| < r_1, \varphi(x') < x_n < r_2\}$. If $r_2 > \sup_{|x'| < r_1} \varphi(x')$, then $G(r_1, r_2)$ satisfies the above condition on G.

EXAMPLE 2. Let φ be a nondecreasing continuous function on the interval $[0, \infty)$, and define $G(r_1, r_2) = \{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; |x'| < r_1, \varphi(|x'|) < x_n < r_2\}$. If $r_2 > \varphi(r_1)$, then $G(r_1, r_2)$ satisfies the above condition on G.

In fact, let $e = (0, r_3) \in G(r_1, r_2)$, where $\varphi(r_1) < r_3 < r_2$, and note that for $x \in G(r_1, r_2)$, x(t) = (1-t)x + te satisfies conditions $(C_2) \sim (C_5)$.

For any positive numbers a and γ , we set $T_{\gamma}(a) = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; |x'|^{\gamma} < ax_n\}$. Then $T_{\gamma}(a) \cap B(0, 1)$ is a typical example of G, where B(x, r) denotes the open ball with center at x and radius r.

Our first aim is to establish the following result.

THEOREM 1. Let u be a function harmonic in G and satisfying

(1)
$$\int_{G} |\operatorname{grad} u(x)|^{p} d(x)^{\alpha} dx < \infty$$

with a real number α . Then

 $\lim_{x\to\partial G} d(x)^{(n-p+\alpha)/p} u(x) = 0 \qquad in \ case \ n-p+\alpha > 0,$

$$\lim_{x \to \partial G} [\log (1/d(x))]^{1/p-1} u(x) = 0 \text{ in case } n-p+\alpha = 0$$

and

$$u(x)$$
 is bounded on G in case $n - p + \alpha < 0$.

For a proof of Theorem 1, we need the following lemma.

LEMMA 1. For a piecewise smooth curve x(t), $t \in [0, 1]$, in an open set $G \subset \mathbb{R}^n$, set $G(x(t)) = \bigcup_{0 \le s \le t} B(x(s), 2^{-1}d(x(s)))$. If u is harmonic in G, then for any $x \in G$ and any piecewise smooth curve x(t) satisfying conditions (C_2) , (C_3) and (C_6) ,

$$|u(x) - u(x(t))| \le M' \int_{G(x(t))} |\text{grad } u(y)| d(y)^{1-n} dy$$

for all $t \in [0, 1]$, where M' is a positive constant which depends only on c and M in conditions (C₃) and (C₆).

PROOF. By conditions (C_2) , (C_3) , (C_6) and the mean value property of harmonic functions, we have

208

$$\begin{aligned} |u(x) - u(X_t)| &= \left| \int_0^t (d/ds) u(X_s) \, ds \right| \\ &\leq c |x - X_1| \int_0^t \left(M_1 [2^{-1}d(X_s)]^{-n} \int_{B(X_s, 2^{-1}d(X_s))} |\operatorname{grad} u(y)| dy \right) ds \\ &\leq M_2 |x - X_1| \left(\int_{G(X_t)} |\operatorname{grad} u(y)| \left(\int_{\{s; y \in B(X_s, 2^{-1}d(X_s))\}} d(X_s)^{-n} ds \right) dy \\ &\leq M_3 \int_{G(X_t)} |\operatorname{grad} u(y)| d(y)^{1-n} dy, \end{aligned}$$

where $X_t = x(t)$ and M_1 , M_2 , M_3 are positive constants which depend only on c and M. Thus the lemma is proved.

PROOF OF THEOREM 1. Let u be as in the theorem. For $\varepsilon > 0$, set $G_{\varepsilon} = \{x \in G; d(x) > \varepsilon\}$. We assume that $K \subset G_{2\varepsilon}$ and $x \in G - G_{\varepsilon}$. Take a piecewise smooth curve x(t) with conditions $(C_1) \sim (C_5)$, and let $t_0 = \inf \{t; x(t) \in G_{\varepsilon}\}$. Then, in view of Lemma 1, we find $M_1 > 0$ such that

$$|u(x) - u(x(t_0))| \le M_1 \int_{G(x(t_0))} |\text{grad } u(y)| d(y)^{1-n} dy.$$

Since $d(y) \leq d(x) + |x - y| < cd(y)$ whenever $y \in G(x(t))$, Hölder's inequality gives

$$\begin{aligned} |u(x) - u(x(t_0))| \\ &\leq M_1 \Big(\int_{G(x(t_0))} d(y)^{p'(1-n) - \alpha p'/p} \, dy \Big)^{1/p'} F(t_0) \\ &\leq M_2 \Big(\int_0^d (d(x) + r)^{-p'(n-p+\alpha)/p-1} \, dr \Big)^{1/p'} F(t_0) \\ &\leq M_3 F(t_0) \times \begin{cases} d(x)^{-(n-p+\alpha)/p} & \text{if } n-p+\alpha > 0, \\ [\log(1/d(x))]^{1/p'} & \text{if } n-p+\alpha = 0, \\ d^{-(n-p+\alpha)/p} & \text{if } n-p+\alpha < 0, \end{cases} \end{aligned}$$

where $F(t_0) = \left(\int_{G(x(t_0))} |\text{grad } u(y)|^p d(y)^{\alpha} dy \right)^{1/p}$, 1/p + 1/p' = 1, $d = \sup \{|x - y|; x, y \in G\}$ and M_2 , M_3 are positive constants independent of x. Consequently, in case $n - p + \alpha > 0$, we obtain

$$\limsup_{x \to \partial G} d(x)^{(n-p+\alpha)/p} |u(x)|$$

$$\leq M_3 \left(\int_{G-G_{2\varepsilon}} |\operatorname{grad} u(y)|^p d(y)^{\alpha} dy \right)^{1/p},$$

which implies that the left hand side is equal to zero. The remaining cases can be treated similarly, and thus Theorem 1 is established.

Here we deal with the best possibility of Theorem 1 as to the order of convergence, when we restrict ourselves to the case G is a cone $\Gamma(a) = T_1(a)$.

PROPOSITION 1. Let h be a nonincreasing positive function on the interval $(0, \infty)$ such that $\lim_{r \downarrow 0} h(r) = \infty$. Then there exists a nonnegative measurable function f such that

$$\int_{\hat{f}(a)} f(y)^p |y_n|^{\alpha} dy < \infty$$

and

$$\limsup_{x\to 0, x\in\Gamma(a)}h(x_n)A(x_n)u(x)=\infty,$$

where $\hat{\Gamma}(a) = \{-y; y \in \Gamma(a)\}, \quad A(x_n) = x_n^{(n-p+\alpha)/p} \text{ if } n-p+\alpha > 0, \quad A(x_n) = (\log(1/x_n))^{-1/p'} \text{ if } n-p+\alpha = 0, \quad A(x_n) = 1 \text{ if } n-p+\alpha < 0 \text{ and } u(x) = \int_{\hat{\Gamma}(a)} (x_n - y_n)|x-y|^{-n}f(y)dy.$

REMARK. If $-1 < \alpha < p-1$, then, in view of [5; Lemma 1],

$$\int |\operatorname{grad} u(x)|^p |x_n|^{\alpha} dx \leq M \int f(y)^p |y_n|^{\alpha} dy < \infty$$

with a positive constant M independent of f.

PROOF OF PROPOSITION 1. First we consider the case $n-p+\alpha=0$. Let $\{a_j\}$ be a sequence of positive integers such that $2a_j < a_{j+1}$, and take a sequence $\{b_j\}$ of positive numbers such that $\lim_{j\to\infty} b_j h(2^{-2a_j+1}) = \infty$ and $\sum_{j=1}^{\infty} b_j^p < \infty$. We now define $f(y) = b_j |y|^{-1} (\log |y|^{-1})^{-1/p}$ if $y \in \hat{f}(a) \cap B(0, 2^{-a_j}) - B(0, 2^{-2a_j})$ and f=0 otherwise. Then we see easily that the function u defined as in the proposition satisfies

$$\lim_{x \to 0, x \in A} h(x_n) A(x_n) u(x) = \infty$$

with $A = \bigcup_{j=1}^{\infty} \{x \in \Gamma(a); 2^{-2a_j} < |x| < 2^{-2a_j+1}\}$. On the other hand we have $\int_{\mathbb{R}^n} f(y)^p |y_n|^{\alpha} dy \leq M \sum_{j=1}^{\infty} b_j^p < \infty$ with a positive constant M (cf. [5; Proof of Proposition 8]).

The case $n-p+\alpha \neq 0$ can be treated similarly, by suitably modifying the definition of f.

The boundedness of u is obtained under a weaker condition as stated below.

THEOREM 2. Let g be a nonincreasing positive function on the interval $(0, \infty)$ such that $\int_0^1 g(r)^{1/(1-p)}r^{-1}dr < \infty$. Let u be a function which is harmonic in G and satisfies

210

On the boundary limits of harmonic functions

(2)
$$\int_{G} |\operatorname{grad} u(x)|^{p} g(d(x)) d(x)^{p-n} dx < \infty.$$

Then u(x) is bounded on G.

In case $g(r)=r^{-\delta}$ with $\delta > 0$, Theorem 2 is an immediate consequence of Theorem 1.

PROOF OF THEOREM 2. Let $x \in G$ and take a piecewise smooth curve x(t) satisfying conditions $(C_1) \sim (C_5)$. In view of Lemma 1, we have

$$|u(x) - u(x(1))| \leq M_1 \int_{G(x(1))} |\operatorname{grad} u(y)| d(y)^{1-n} dy$$

$$\leq M_2 \left(\int_{G(x(1))} |\operatorname{grad} u(y)|^p g(d(y)) d(y)^{p-n} dy \right)^{1/p} \times \left(\int_{G(x(1))} g(d(y))^{-p'/p} d(y)^{-n} dy \right)^{1/p'}$$

with positive constants M_1 and M_2 . Since d(y) < d(x) + |x-y| < cd(y) for $y \in G(x(1))$,

$$\begin{split} &\int_{G(x(1))} g(d(y))^{-p'/p} d(y)^{-n} dy \\ &\leq c^n \int_G g(d(x) + |x - y|)^{-p'/p} (d(x) + |x - y|)^{-n} dy \\ &\leq M_3 \int_0^d g(d(x) + r)^{-p'/p} (d(x) + r)^{-1} dr \leq M_3 \int_0^{2d} g(r)^{-p'/p} r^{-1} dr \end{split}$$

with a positive constant M_3 . Thus the theorem is obtained.

PROPOSITION 2. Let $\xi \in \partial G$, and assume that there exists a sequence $\{B(x_j, \delta_j)\}$ of balls such that $x_j \in G$, $\xi \in B(x_j, \delta_j)$ for each j, $\lim_{j\to\infty} \delta_j = 0$ and any $x \in G \cap B(x_j, \delta_j)$ is joined to x_j by a curve x(t) in $G \cap B(x_j, \delta_j)$ satisfying conditions $(C_3), (C_4)$ and (C_5) for some c > 0. If u is a function harmonic in $G \cap B(\xi, r)$ and satisfying

(2)'
$$\int_{G \cap B(\xi,r)} |\operatorname{grad} u(x)|^p g(d(x)) d(x)^{p-n} dx < \infty$$

for some r > 0, where d(x) denotes the distance of x from the boundary ∂G as before, then u(x) has a finite limit as $x \in G$ tends to ξ .

PROOF. We may assume, without loss of generality, that $B(x_1, \delta_1) \subset B(\xi, r/2)$. Then, by Lemma 1 and the above proof we see that $\sup_{x \in G \cap B(x_j, \delta_j)} |u(x) - u(x_j)|$ tends to zero as $j \to \infty$. Hence, it follows that $\{u(x_j)\}$ is bounded. If

211

 $\lim_{k\to\infty} u(x_{j_k}) = \ell$, then u(x) tends to ℓ as $x \to \xi$, $x \in G$. Therefore the required assertion follows.

The following two results are easy consequences of Proposition 2.

COROLLARY 1. Suppose G is a bounded Lipschitz domain in \mathbb{R}^n . Let u be a function which is harmonic in G and satisfies (2). Then u is extended to a continuous function on $G \cup \partial G$.

COROLLARY 2. Let $G = T_y(a) \cap B(0, 1)$. If u is a function harmonic in $G \cap B(0, r)$ and satisfying (2)' with $\xi = 0$ for some r > 0, then u(x) has a finite limit as $x \in G$ tends to the origin.

PROPOSITION 3. Let G be as in the above Corollary 2. If u is a function harmonic in G and satisfying $\int_{G} |\operatorname{grad} u(x)|^{p}g(x_{n})x_{n}^{p-n}dx < \infty$ (which is a condition weaker than (2)), then u(x) has a finite limit as x tends to the origin along $T_{y}(b)$ for any b, 0 < b < a.

PROOF. For simplicity, write $G(a, r) = T_{\gamma}(a) \cap B(0, r)$. Let 0 < b < a and $x \in G(b, 1/2)$. For ε with $0 < \varepsilon < 1/8$, let $x_{\varepsilon} = (0, \varepsilon) \in T_{\gamma}(a)$. If $x(t) = (1-t)x + tx_{\varepsilon}$, $t \in [0, 1]$, then we can find b' such that b < b' < a and $G(x(1)) \subset T_{\gamma}(b')$. Consequently, we have by Lemma 1

$$\begin{aligned} |u(x) - u(x_{\varepsilon})| &\leq M_{1} \int_{G(b', 4\varepsilon)} |\operatorname{grad} u(y)| y_{n}^{1-n} dy \\ &\leq M_{1} \left(\int_{G(b', 4\varepsilon)} |\operatorname{grad} u(y)|^{p} g(y_{n}) y_{n}^{p-n} dy \right)^{1/p} \\ &\times \left(\int_{G(b', 4\varepsilon)} g(y_{n})^{-p'/p} y_{n}^{-n} dy \right)^{1/p'} \\ &\leq M_{2} \left(\int_{G(b', 4\varepsilon)} |\operatorname{grad} u(y)|^{p} g(y_{n}) y_{n}^{p-n} dy \right)^{1/p}, \end{aligned}$$

since $M_3 y_n < d(y) < y_n$ for $y \in G(b', 1/2)$, where b < b' < a and $M_1 M_2$, M_3 are positive constants. Hence it follows that u is bounded on G(b, 1/2) and $\lim_{\varepsilon \downarrow 0} \sup_{x \in G(b,\varepsilon)} |u(x) - u(x_{\varepsilon})| = 0$. If we take a sequence $\{\varepsilon_j\}$ of positive numbers such that $\varepsilon_j \to 0$ and $u(x_{\varepsilon_j}) \to \ell$ as $j \to \infty$, then u(x) tends to ℓ as $x \to 0$ along $T_{\gamma}(b)$. Thus the required assertion follows.

This proposition gives the following result, which was already shown in [3; Theorem 6].

COROLLARY. If u is a function harmonic in $\Gamma(a) \cap B(0, 1)$ and satisfying $\int_{\Gamma(a) \cap B(0, 1)} |\operatorname{grad} u(x)|^p g(|x|)|x|^{p-n} dx < \infty, \text{ then } u(x) \text{ has a finite limit as } x \to 0$ along $\Gamma(b), 0 < b < a$.

REMARK 1. In the above Corollary we can not take $g(r) \equiv 1$. In fact, according to Remark 4 in [4], for given $\gamma > 1$ we can find a function u on D = $\{(x_1,...,x_n) \in \mathbb{R}^n; x_n > 0\}$ satisfying the following conditions:

- (i) u is harmonic in D.
- (ii) $\int_{T_{\gamma}(a)} |\operatorname{grad} u(x)|^{p} x_{n}^{p-n} dx < \infty.$ (iii) *u* has a nontangential limit at 0.
- (iv) $\limsup_{x \to 0, x \in T_{\nu}(b)} u(x) = \infty$ for any b with 0 < b < a.

REMARK 2. In the Corollary to Proposition 3, u may fail to have a finite limit at 0 along $\Gamma(a)$. In fact, according to the proof of Theorem 8 in [3], we can find a nonnegative measurable function f such that f=0 on $\Gamma(a)$, $R_2f(x) \equiv$ $\int_{\mathbb{R}^n} R_2(x-y)f(y)dy \text{ tends to } \infty \text{ as } x \to 0 \text{ along } \Gamma(a) \text{ and } \int_{\mathbb{R}^n} |\text{grad } R_2 f(x)|^p |x|^{p-n} dx < \infty, \text{ where } R_2(x) = |x|^{2-n} \text{ in case } n \ge 3 \text{ and } R_2(x) = \log(1/|x|) \text{ in case } n = 2.$ Thus, if $\int_0^1 g(r)r^{p-1}dr < \infty$, then $u(x) = \sum_{j=1}^\infty (-1)^j R_2 f_j(x-x_j)$ is determined to satisfy the required conditions, where $\{x_j\}$ is a sequence of points on $\partial \Gamma(a)$ tending to 0 and $f_i = f$ on $B(0, r_i)$ and $f_i = 0$ elsewhere.

Boundary limits of harmonic functions on $T_{y}(a)$ 3.

In this section we are concerned with boundary limits at the origin for harmonic functions defined in $T_{y}(a)$ and satisfying a condition weaker than (2).

THEOREM 3. Let u be a function which is harmonic in $T_{y}(a) \cap B(0, 1)$ and satisfies

(3)
$$\int_{T_{\gamma}(a)\cap B(0,1)} |\operatorname{grad} u(x)|^{p} x_{n}^{\alpha} dx < \infty.$$

If 0 < b < a, then

$$\lim_{x\to 0, x\in T_{\gamma}(b)} A(x_n)u(x) = 0, \qquad \text{in case } n-p+\alpha \ge 0,$$

and

$$\lim_{x\to 0, x\in T_{\gamma}(b)} u(x) \text{ exists and is finite, in case } n-p+\alpha < 0,$$

where $A(x_n)$ is as in Proposition 1.

PROOF. Let 0 < b < a and $x_{\varepsilon} = (0, ..., 0, \varepsilon)$ with $0 < \varepsilon < 1/8$. As in the proof of Proposition 3, we can find b' such that b < b' < a and for any $x \in T_{y}(b) \cap B(0, a)$ 1/2) = G(b, 1/2),

$$|u(x) - u(x_{\varepsilon})| \leq M_1 \int_{G(b', 4\varepsilon)} |\operatorname{grad} u(y)| d(y)^{1-n} dy$$

Yoshihiro MIZUTA

with a positive constant M_1 which is independent of x and ε . Since there exists $M_2 > 0$ such that $d(y) > M_2 y_n$ whenever $y \in G(b', 1/2)$, applying the proof of Theorem 1, we obtain

$$|u(x) - u(x_{\varepsilon})| \leq M_{3}F(\varepsilon) \times \begin{cases} x_{n}^{-(n-p+\alpha)/p} & \text{if } n-p+\alpha > 0, \\ [\log(1/x_{n})]^{1/p'} & \text{if } n-p+\alpha = 0, \\ \varepsilon^{-(n-p+\alpha)/p} & \text{if } n-p+\alpha < 0, \end{cases}$$

where $F(\varepsilon) = \left(\int_{T_{\gamma}(a) \cap B(0, 4\varepsilon)} |\operatorname{grad} u(y)|^p y_n^{\alpha} dy\right)^{1/p}$ and M_3 is a positive constant independent of x and ε . Thus, the case $n-p+\alpha \ge 0$ is proved. The case $n-p+\alpha < 0$ follows from Proposition 3.

REMARK 1. In Theorem 3, $A(x_n)u(x)$ may not have a finite limit as $x \to 0$ along $T_y(a)$.

We shall give an example of such u in case $\gamma = 1$. First we consider the case $n-p+\alpha>0$ and p<n. We shall show that there is a nonnegative measurable function f on \mathbb{R}^n such that f=0 on $\Gamma(a)$, $\int_{\mathbb{R}^n} f(y)^p |y_n|^{\alpha} dy < \infty$ and

(4) $\limsup_{x\to 0, x\in P_{\gamma}} A(x_n)u(x) = \infty,$

where $u(x) = \int_{\mathbb{R}^n} (x_n - y_n) |x - y|^{-n} f(y) dy$ and $P_y = \{x = (x', x_n); |x'| + |x'|^y < ax_n\}, y > 1$. For this purpose, take a sequence $\{x^{(j)}\}$ of points in $\partial \Gamma(a)$ such that $|x^{(j)}| = 2^{-j}$, and find a sequence $\{a_j\}$ of positive numbers such that $\limsup_{j \to \infty} ja_j = \infty$ and $\sum_{j=1}^{\infty} a_j^p < \infty$. We now define

$$f(y) = a_{j} 2^{j(n-p+\alpha)/p} |x^{(j)} - y|^{-1}$$

for $y \in B_j \equiv B(x^{(j)}, 2^{-j-2}) - \Gamma(a)$; we also define f(y) = 0 outside $\bigcup_{j=1}^{\infty} B_j$. Then it is easy to see that

$$\int f(y)^{p} |y_{n}|^{\alpha} dy \leq \sum_{j=1}^{\infty} a_{j}^{p} 2^{j(n-p+\alpha)} \int_{B_{j}} |x^{(j)} - y|^{-p} |y_{n}|^{\alpha} dy \leq M_{1} \sum_{j=1}^{\infty} a_{j}^{p} < \infty$$

with a positive constant M_1 . Further we have for t such that $0 < t < 2^{-j-3}$

$$u(x^{(j)} + (0, t)) \ge M_2 \int_{\Gamma_j} (t + |x^{(j)} - y|)^{1-n} f(y) dy$$
$$\ge M_3 a_j 2^{j(n-p+\alpha)/p} \log (2^{-j}/t),$$

where $\Gamma_j = \{y \in B_j; |(x^{(j)} - y)'| < a(x^{(j)} - y)_n\}$ and M_2 , M_3 are positive constants independent of j and t. Hence if $\gamma > 1$ and $t = 2^{-j\gamma}$, then $u(x(t)) \ge M_3(r-1)a_j$. $j2^{j(n-p+\alpha)/p}$, from which (4) follows. In case $n-p+\alpha=0$ and p < n, the above function u satisfies $u(x^{(j)}+(0, t)) \ge M_4 a_j j^{1+\varepsilon}$ for $t=2^{-j} \exp(-j^{1+\varepsilon})$ with $\varepsilon > 0$, so that

(5)
$$\limsup_{x\to 0, x\in Q_n} A(x_n)u(x) = \infty,$$

where $Q_{\varepsilon} = \{(x', x_n); |x'| [1 + \exp(-(\log |x'|^{-1})^{1+\varepsilon})] < ax_n\}$, if $\{a_j\}$ is taken so that $\limsup_{j \to \infty} j^{\varepsilon}a_j = \infty$.

Next we consider the case p=n. In this case, let $B_j = B(x^{(j)}, 2^{-j-2}) - B(x^{(j)}, 2^{-2j-2}) - \Gamma(a)$ and take $\{a_j\}$ such that $\limsup_{j\to\infty} ja_j = \infty$ and $\sum_{j=1}^{\infty} ja_j^p < \infty$. Then the function u defined as above satisfies (4) or (5) with $\varepsilon = 1$ according as $n-p+\alpha > 0$ or $n-p+\alpha = 0$.

Finally, in case p > n, let $B_j = B(x^{(j)}, 2^{-j-2}) - B(x^{(j)}, 2^{-j-3}) - \Gamma(a)$ and take a sequence $\{a_j\}$ such that $\limsup_{j \to \infty} ja_j = \infty$ and $\sum_{j=1}^{\infty} a_j^p < \infty$. Then the same conclusion as above holds.

REMARK 2. Let *u* be a function which is harmonic in $\Gamma(a) \cap B(0, 1)$ and satisfies $\int_{\Gamma(a) \cap B(0,1)} |\operatorname{grad} u(x)|^p x_n^{p-n} dx < \infty$. Then u(x) has a finite limit as $x \to 0$ along $\Gamma(b)$, 0 < b < a, if there exists a sequence $\{x^{(j)}\}$ having the following properties:

- (i) $\{x^{(j)}\} \subset \Gamma(a')$ for some a' such that 0 < a' < a.
- (ii) $x^{(j)} \rightarrow 0$ as $j \rightarrow \infty$.
- (iii) $|x^{(j)}| < M |x^{(j+1)}|$ for any j, where M > 1 is a constant.
- (iv) $\{u(x^{(j)})\}\$ has a finite limit as $j \to \infty$.

To prove this fact, it suffices to note the following fact as was seen in the proof of Theorem 3: if $x \in \Gamma(b)$, 0 < b < a, and $M^{-1}|x^{(j)}| \leq |x| \leq M|x^{(j)}|$, then

$$|u(x) - u(x^{(j)})| \leq M_1[(x^{(j)})_n]^{-n} \int_{\Gamma_j} |\operatorname{grad} u(y)| dy$$
$$\leq M_2 \left(\int_{\Gamma_j} |\operatorname{grad} u(y)|^p y_n^{p-n} dy \right)^{1/p},$$

where $\Gamma_j = \{ y \in \Gamma(a); (2M)^{-1} | x^{(j)} | < |x| < (2M) | x^{(j)} | \}$ and M_1 , M_2 are positive constants.

REMARK 3. According to Remark 2, if u is a function which is harmonic in $\Gamma(a)$ and satisfies $\int_{\Gamma(a)} |\operatorname{grad} u(x)|^p x_n^{p-n} dx < \infty$, then we have (cf. Jackson [2])

$$C(u, \ell_0) = C(u, \Gamma(b))$$
 for any b with $0 < b < a$,

where $\ell_0 = \{(0, t); t > 0\}$ and $C(u, F) = \bigcap_{r>0} \text{ cl } \{u(x); x \in F, x_n < r\}$. Here cl *E* denotes the closure of a set *E* in \mathbb{R}^n .

REMARK 4. The conclusions in Remarks 2 and 3 are not necessarily true if

we replace $\Gamma(\cdot)$ by $T_{\gamma}(\cdot)$, $\gamma > 1$, in view of Remark 1 given after the Corollary to Proposition 3.

Finally, in the two dimensional case, we give a result on the cluster sets for harmonic functions defined in the cone $\Gamma(a)$.

THEOREM 4. Let n=2 and u be a function which is harmonic in $\Gamma(a) \cap B(0, 1)$ and satisfies (3) with $\gamma = 1$ and $\alpha = p-2$. Then there exists a sequence $\{r_i\}$ having the following properties.

- (i) $2^{-j} < r_i < 2^{-j+1}$.
- (ii) If $x^{(j)} \in \Gamma(a) \cap \partial B(0, r_j)$, then $C(u, \Gamma(b)) = C(u, \{x^{(j)}\})$, for any b with 0 < b < a.

In case p=2, Theorem 4 was proved by Bercovici, Foias and Pearcy [1].

PROOF OF THEOREM 4. Let $\tan \theta_0 = a^{-1}$, $0 < \theta_0 < \pi/2$. By our assumption, we have

$$\infty > \iint_{\Gamma(a)} |\operatorname{grad} u(x_1, x_2)|^p x_2^{p-2} dx_1 dx_2$$
$$\geq \int_0^1 \left(\int_{\theta_0}^{\pi-\theta_0} |(\partial/\partial\theta) u(r\cos\theta, r\sin\theta)|^p \sin^{p-2}\theta d\theta \right) r^{-1} dr.$$

Hence, setting $I_j = \inf \left\{ \int_{\theta_0}^{\pi - \theta_0} |(\partial/\partial \theta) u(r \cos \theta, r \sin \theta)| d\theta; 2^{-j} < r < 2^{-j+1} \right\}$, we see that $\sum_{j=1}^{\infty} I_j^p < \infty$. Let $\{r_j\}$ be a sequence such that $2^{-j} < r_j < 2^{-j+1}$ and $\int_{\theta_0}^{\pi - \theta_0} |(\partial/\partial \theta) u(r_j \cos \theta, r_j \sin \theta)| d\theta < I_j + 2^{-j}$. Let $e^{(j)} = (0, r_j)$ and $x^{(j)} \in \partial B(0, r_j) \cap \Gamma(a)$. Then we have

$$|u(x^{(j)}) - u(e^{(j)})| \le I_j + 2^{-j}$$
 for any j.

Hence it follows that $C(u, \{x^{(j)}\}) = C(u, \{e^{(j)}\})$. As in Remarks 2 and 3 after Theorem 3, we can prove that $C(u, \Gamma(b)) = C(u, \{e^{(j)}\})$ for any b with 0 < b < a. Thus the theorem is proved.

REMARK. Let n=2 and u be a function which is harmonic in the half ball $D \cap B(0, 1)$ and satisfies $\int_{D \cap B(0, 1)} |\operatorname{grad} u(x)|^p |x|^{p-2} dx < \infty$. Then, in view of the proof of Theorem 4, we can find a sequence $\{r_j\}$ satisfying (i) in Theorem 4 and

(ii)' $C(u, \{x^{(j)}\}) = C(u, \Gamma(a))$ for any a > 0 and any $\{x^{(j)}\}$ such that $x^{(j)} \in D \cap \partial B(0, r_i)$.

References

- [1] H. Bercovici, C. Foias and C. Pearcy, A spectral mapping theorem for functions with finite Dirichlet integral, J. Reine Angew. Math. **366** (1986), 1–17.
- [2] H. L. Jackson, On the boundary behavior of BLD functions and some applications, Acad. Roy. Berg. Bull. Cl. Sci. (5) 66 (1980), 223-239.
- [3] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415–437.
- Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^p, Ann. Inst. Fourier 34 (1984), 99-109.
- [5] Y. Mizuta, Boundary behavior of *p*-precise functions on a half space of R^n , this issue, 73-94.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University