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§ 1. Introduction

Consider second order linear parabolic systems of the form

(1.1) Z),if(x, 0 = Σ5,*=ι Ajk(x9 i)Dx.DXku(x, t) + Σj=ι B/x, t)DXJu(x9 t)

in Rnx(0, T], Γ>0, where Dt = d/dt, Dx. = d/dXj, \<j<n, Ajk(x, t) and 5/x, ί)

(1 < j, k<ri) are m x m (possibly complex-valued) matrix functions in R" x [0, T],
and κ(x, t) is an m-vector function in R" x [0, T].

Suppose that the following hypotheses are satisfied :
(Ax) There exists a constant <5>0 such that

(1.2) ^(Σ3,*=ι Ajk(x, t)σjσkζ, ζ) > δ\σ\2\ζ\2

for all σ = (σ1,...,σπ)eRπ, ζ = col(C1)...,Cm)eCw and (x, t)eRn x [0, T], where
( , ) denotes the inner product in Cm and | | denotes the Euclidean length of
a vector in R" or Cm.

(A2) Ajk(x9 0 and B/x, t) (1<7, k<n) are bounded and continuous in
Rπ x [0, T] and satisfy uniform Holder conditions (exponent α e (0, 1]) with
respect to x.

Then, the Cauchy problem for (1.1) with the initial condition

(1.3) lim f i o«(*> 0 = «o(*)> *eR",

has a bounded solution (in the classical sense) w(x, t) in R" x [0, T] provided
KO(X) is bounded and continuous in Rn. And if (A3), which is referred to
afterward in Theorem, is assumed, then ιι(x, ί) is unique and represented in
the form

(1.4) κ(x, 0 = Γ Z(r, 0, x, ξ)u0(ξ)dξ,
J R"

where Z(ί, τ, x, ξ) is a fundamental matrix of (1.1) (see Section 2).

We denote by U the set of all bounded complex-valued solutions w(x, 0 of
(1.1) defined in RΛ x [0, T], and define
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v ΓΠ T~h — «ιιn l l l ί l lc(R"χ[θ,Γ3)x L<Λ / J j — supMet/ I, I, -

where ||w||C(D) = suP {lw(*» 01; (*, OeD}. The quantity Jf(RM x [0, T]) is finite,
since (1.4) implies the existence of a constant K>Q, independent of if, such that

|«(x, 01 < K supxeHn |if(x, 0)|, (x, ί) e R» x [0, T] .

(It is trivial that Jf(Rπ x [0, T])>1.) We say that the maximum principle

holds for system (1.1) if Jf (Rn x [0, T])= 1.
In an interesting paper [1] Maz'ya and Kresin have considered the parabolic

system with constant coefficients

(1.6) D,κ(x, f) = Σj,*=ι AJkDXjDXlm(x9 f ) ,

and have shown that the maximum principle holds for (1.6) if and only if all
the AJk are scalar matrices in the sense that Ajk = ajkEm with ajkeR, where Em

denotes the m-dimensional unit matrix.
The purpose of this paper is to extend this result of Maz'ya and Kresin to

more general parabolic systems of the form (1.1). More precisely, we prove the
following theorem in Section 3.

THEOREM. In addition to (A t) suppose that

(A3) Ajk(x, 0 (!<./, k<ri) have second derivatives with respect to x, £/x, i)
(l<j<n) have first derivatives with respect to x, and these derivatives together
with Ajk(x9 t) and #/(x, 0 are bounded continuous functions of (x, i) in R" x
[0, T], and are uniformly Holder continuous functions (exponent α) of x.
Then, the maximum principle holds for (1.1) if and only if

Ajk(x, t) = ajk(x, ί)£m, Bj(x, 0 = fe/x, 0£w, 1 < 7, k < n,

where ajk(x, t) and bj(x, t) are real-valued scalar functions with the same

regularities in Rn x [0, T] as Ajk(x, t) and B/(x, ί)> respectively.

To prove this theorem the method used by Maz'ya and Kresin [1] is closely
followed. In particular, a crucial role is played by an explicit representation of

JΓ(R" x [0, T]) in terms of a fundamental matrix Z(ί, τ, x, ξ) of (1.1). Section 2
summarizes basic results concerning fundamental matrices which are needed in
the development of Section 3.

§ 2. Fundamental matrices

In this preparatory section we state bacic results concerning fundamental
matrices (or fundamental solutions) for parabolic systems of the form (1.1).
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By a fundamental matrix of (1.1) we mean an m x m matrix function Z(f, τ,

x, ξ) defined for (x, t) e Rπ x (0, T], (£, τ) e R" x [0, T), t > τ, which as a function

of (x, OeR" x(τ, T] satisfies (1.1) and is such that

lim, l t Γ Z(ί, τ, x, ξ)u0(ξ)dξ = «0(x), x e R»,
J R"

for any continuous bounded function ιι0(x) in Rw.

1) We start with the simple case where AJk(x, t) = Ajk(t) and J5y(x, t)==Q

(1<Λ k<ri), i.e. the system

(2.1) DXx, 0 = Σ5 ik-ι Ajk(t)DXJDXku(x, t) .

In this case one obtains a fundamental matrix of (2.1) of the form Z(f, τ, x, ξ) =

G(f , τ, x - ξ) with G(ί, τ, x) given by

G(r, τ, x) = (2π)-» Γ e'^ ^fiίί, τ, σ)dσ.
J R"

Here Q(t, τ, σ) is the solution of the initial value problem

D,Q(t, τ, σ) = [- Σ J.*-ι>MO*/» Jβα, τ, σ), 0 < τ < t £ Γ,

Q(τ,τ,σ) = £m.

Note that if ^4^(0 are real-valued, then so is the fundamental matrix G(t9 τ, x)

of (2.1). In fact, Q(ί, τ, σ) is clearly real-valued, and since β(ί, τ, σ) = Q(ί, τ, -σ)

we have

G(ί, τ, x) = (2π)-» Γ e«* *Q(t, τ, σ)dσ
J RΠ

= (2π)-Π Γ e'(* -σ>Q(ί, τ, -σ)dσ
J R"

= (2π)~Λ Γ el<x σ)Q(t9 τ, σ)dσ
J Rn

= G(ί, τ, x).

Furthermore it can be shown that G(ί, τ, x) is an entire function of (xl/(t — τ)1/2,...,

xn/(t — τY/2) and satisfies the inequalities

D G f , τ, x + /ι; < C £ ί - τ - exp -

for xeR", t?eR", 0<τ<ί<Tand ^ = 0, 1,2,..., where |X| denotes the norm

of an mxm matrix A as a linear mapping i.e. \A\=supξeCmt\ξ\=l \Aξ\, D* =

Dχ\ φ -Dί;> ^ = ^ ι H ----- H^Π, and C£, c, F are positive constants depending
only on n, m, 5, T and the coefficients Ajk(t) ( l<y, k<ή). For the proof of
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the above results we refer to EideΓman [2] (Chapter 1, §2).
2) Next we consider the general system (1.1) for which hypotheses (Aj)

and (A2) are satisfied. Then, there exists a fundamental matrix Z(f, τ, x, ξ)
of (1.1), which is constructed in the following manner. First, let G0(f, τ, x, y)
denote a fundamental matrix of the system

,«(*, 0 = Σlk=ι AJk(y, t)Dx.DXkti(x,t)9

yeRn being regarded as a parameter, define Kp(t, τ, x, ξ), p=l, 2,..., by the
formulas

K,(t9 τ, x, ξ) = Σj,*=ι (Ajk(x> t)-Λjk(ξ, t)}DXjDXhG0(t, τ, x-ξ, ξ)

+ Σ*j=ιB{x9t)DXJG0(t9τ9x-ξ9ξ)9

K,(f, τ, x, ξ) = ΓT Γ K,(t9 β9 x, jO*,-ι(A τ, y, O^Ίdft p = 2, 3,...,
J T LJ Rn J

and put

Φ«,τ,x, ί) = Σ?-ι «A τ, x, ί).

The desired fundamental matrix Z(ί, τ, x, ξ) of (1.1) is then given by

(2.2) Z( f ,τ ,x ,0 = G 0(/,τ,x-ί,ί)

+ Γ Γ f G0(ί, β,χ-y, y)Φ(β, τ, y, «dj^ 1 dβ.
J T LJ R" J

We can verify that Z(f, τ, x, ξ) is well defined, is indeed a fundamental matrix
of (1.1) and satisfies the inequalities

(2.3) |D«Z(ί, τ, x, ξ)\ < C(/-τ)-("+*>/2exp {-φ-ί!2/(ί-τ)} ,

for xeR", ξeR", 0<τ<ί <T, and ^ = 0, 1, 2, where C and c are positive con-
stants depending only on n, m, 5, T and the coefficients Ajk(x, t) and B/x, ί)
(1<Λ k<n). In particular, for any continuous bounded function »0W in R",
the function

(2.4) ιι(x, 0= Γ
J R

Z(ί,τ, x, ξ)ιr

represents a bounded solution of Cauchy problem for (1.1) in R"x(τ, T] with
the initial condition

(2.5) lim f it «(x, ί) = « 0(x), x e R".

From the above construction we see that a fundamental matrix Z(f, τ, x, ξ) is
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real-valued provided all the coefficients Ajk(x, t) and B/(x, ί) (1<Λ /c<n)are
real-valued.

3) Let us consider the system (1.1) for which (A^ and (A3) are satisfied.
Then, we can define the adjoint system:

(2.6) D(-t)f#, τ) = Σ3,*-ι D(-w/><-&> ['̂  τX& τ)]

where rXyk and 'By denote the transpose of Ajk and By, respectively. Proceeding as
in the preceding subsection, we can prove the existence of a fundamental matrix
of (2.6), that is, an m x m matrix function Z*(f, τ, x, ξ) defined for (x, ί) 6 R" x
(0, T], (ξ, τ)eR n x[0, T), f>τ, satisfying (2.6) as a function of (ξ, τ) (£eRπ,
0<τ<f<T), and satisfying the relation

lim t t , Γ Z*(ί, τ, x, ξ)v0(x)dx = 00(<J), ξ e R",
J Rn

for any continuous bounded function vQ(ξ) in R". An exact analogue of the

estimate (2.3) is shown to hold for the fundamental matrix Z*(f, τ, x, ξ) of (2.6)
and its first and second derivatives with respect to ξ. The following relations

holding for x, yeR", 0<τ</?<ί<T, are needed in the next section:

(2.7) Z(ί, τ, x, 30 = fZ*(f, τ, x,y),

(2.8) Z(ί, τ, x, 30 = Γ Z(ί, ]8, x, ξ)Z(β, τ, ξ, j ̂ ξ.
J R"

The detailed proofs of the facts stated in 2) and 3) can be found in EidePman
[2] (Chapter 1, §3).

§3. Maximum principle

1) We first restrict our attention to the case where all the coefficients Ajk(x, t)
and β/x, 0 in (1.1) are real-valued. We denote by «#"R(R" x [0, Γ]) the quantity
JΓ(R"x[0, T]) defined by (1.5), where the supremum is taken over the set of
real-valued, bounded, continuous solutions w(x, t) of (1.1). The following
result gives a characterization of JΓR(R" x [0, T]).

THEOREM 3.1. Suppose that (A t) and (A3) are satisfied. Then,

(3.1) jrR(R« x [0, T]) = sup.eR,j,,=1 ,em-i0<^τ Γ I'Z«> 0, x, ξ)z\dξ.
J R"

PROOF. Let (x, 0 be fixed in R" x (0, T]. Consider the linear mapping
which assigns to each bounded continuous function u0(x) in R" the value at
(x, t) of the solution ιι(x, t) of the Cauchy problem
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D,u(x, 0 = Σj.*-ι AjA.*> t)DXJDXku(x, ί) + Σj-i Bj(x, t)Dx.u(x, t),

(x, ί)eR" x (0, T],

lim t i o »(x, t) = u0(x), xeR".

The norm of this mapping is computed as follows:

||ιι(x, Oil = supMs, I JRM Z(f, 0, x, ξ)*0(ξ)dξ

= supi,^,,^, sup,eRM>|,,=1 (z, J Z(t, 0, x, 0*o(

= sup|,,=1 sup,,^,,^, (z, \ n Z(t, 0, x, ξ)u0(ξ)di
\ \) R

= sup,, l = 1 sup | | U o | | f i l ('Z(ί, 0, x, ς) z, «0(O)^.
J R"

If we define Λ/(Λ.,0(z) = {ξeR": 'Z(ί, 0, x, £)z=0}, then,

||«(x, f)|| = sup,.,., sup,|^l|S1 JBB_W ( Z(f, 0, x, ί) z, «0(O)^,

and since the interior supremum of this integral is attained by

u0(ξ) = 'Z(t, 0, x, ξ ) z / \ ' Z ( t , 0, x, ξ)z{, we obtain

||«(x, Oil = sup,.,., J^^ |'Z(/ f 0, x, ί)z|ί/ί

= sup | s | = 1Γ |'Z(f,0,x,{)z|rf£.
J R M

Since ^ΓR(RΛ x [0, T]) = supJ c e R M f 0 < r^Γ ||w(x, ί) l l> the conclusion readily follows.

Q.E.D.

The real-valued version of the theorem stated in the introduction can be

proved with the help of Theorem 3.1.

THEOREM 3.2. Suppose that (Aj) and (A3) are satisfied. Then, JTR(RΠ x

[0, T])=l if and only if

AJk(x, t) = ajk(x, r)£m, β/x, 0 = fc/x, t)Em, 1 < j, k < n,

where ajk(x, t) and fcy(x, ί) are scalar functions with the same regularities as
Ajk(x, t) and Bj(x, t), respectively.

PROOF. The proof of the "if" part is easy. In fact, let w(x, ί) be the unique
bounded solution of the Cauchy problem



Maximum principle 419

Dtu(x9 i) = Σϊ,*=ι ajk(*> t)Dx.DXku(x, t) + Σj-i fe/x, t)DXJu(x, ί),

(jc,ί)eR» x (0, T],

lim, io w(x, 0 = /(*), x 6 R",

where /(x) is a given bounded continuous function in R", and define w(x, 0 =

(n(x, 0, 0), where 0 e Rm is a fixed vector with \q\ = 1 . Then, w(x, ί) is a solution
of the Cauchy problem

OX*, 0 = Σj.jk=ι ajk(x, t)Dx.DXkw(x, t) + Σj-i fc/x, 0^^(x, /),

(x, i) e R" x (0, T] .

lim, 40 w(x, 0 = (/(x), tf), x e R",

and so by the well-known maximum principle ([3], §1, Theorem 10) we see that

|w(x, 01 < supxeRM |(/(x), q)\ < SUP^HΠ |/(x)|, (x, t)eR» x [0, T] .

It follows that |w(x, Ol^sup^,, |/(x)|, (x, t)eR" x [0, T], which implies JΓR(R"

x[0, T])=l.
The proof of the "only if" part proceeds as follows. We begin by showing

that JΓR(RΠ x [0, T])= I ensures that

(3.2) 'Z(f, 0, x, ξ)z = \<Z(ί, 0, x, ξ)z\z

for all zeR m , |z| = l, and (/, x, ξ) with x, ξeR" and 0<f<T. In fact, if

(3.3) |'Z(/0, 0, x0, ίo)*ol*o ^ tz(*o, 0, x0, ξ0)^o

for some z 0eRm, |z0l = U xo» £o eR" an(l 0<^o<^ then in view of the proof
of the proceeding theorem and with the use of (3.3) we see that

1 = jrR(R« x [0, T]) > sup | |Uo | |^1 Γ ('Z(ί0, 0, x0, ξ)zθ9 u0(ξ))dξ
»J R"

= Γ ('Z(f0,0, x0, ξ)z0, 'Z(ί0, 0, *„, ξ)z0/\'Z(t0, 0, jc0, Ozol)</ί
J R M — ̂ V(χ0, to)(*o^

> Γ ('Z(ί0, 0, x0, ξ)Zo, z0)dξ
J Rn

= Γ (z0, Z(t0, 0, x0, ξ)z0)dξ
J RM

= (z0, £WZ0) = I-

Here we used the continuity of fZ(r0, 0, x0, ξ) in ξ and the fact that I Z(ί0, 0,
J R"

x0, ξ)dξ = Em. This contradiction verifies the truth of (3.2).

Let Z(£s)(r, τ, x, ξ) (l<£9 s<m) denote the (^, s) element of the funda-
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mental matrix Z(f, τ, x, ς) of (1.1). Putting

z = zl = col(l , 0,..., 0),..., z = zm = col(0,..., 0, 1)

successively in (3.2), we find

Z< f i s>(ί, 0, x, ξ) = 0 for ^ / s , x, £eR", 0 < t < T.

Put z = col w~1 / 2(l,..., 1) in (3.2). Then, for every ^, !<^<m,

{(Z<Π)(f, 0, x, O)2 + •••+ (Z<"»">(f, 0, x, O)2}1/2 = w'^Z^Kf, 0, x, £),

so that

Z<Π )(f, 0, x, 0= =Z<""">0, 0, x, ξ) for x, ξeR", 0 < t < T.

It follows that there exists a scalar function z(ί, 0, x, ξ) such that

(3.4) Z(f, 0, x, 0 = z(ί, 0, x, ξ)Em for x, ξ e Rw, 0 < t < T.

Applying (2.8) and using (3.4), we have

Γ Z<* s >(f, τ, x, ξ)z(τ, 0, ξ, 3;)̂  = 0 for £ Φ s9 1 < £, s < m,
J R"

and

Γ Z< f i f i>(ί, τ, x, £)z(τ, 0, ξ, ̂ ξ = z(ί, 0, x, y) for 4, 1 < £ < m,
J Rn

for all (t, x, y) with x, y eR" and 0<τ<f < T, whence we obtain for any bounded
continuous function ψ(x) in R"

Γ Z<* > ( / , τ , x , ί ) C f z(τ909ξ9y)ψ(y)dy}dξ = 0 for ^^5,
J R" \J RM /

1 < £9 s < m,

and

Γ Z^(t, τ, x, ξ)( Γ z(τ, 0, ξ, y)φ(y)dy}dξ = Γ z(ί, 0, x, y)ψ(y)dy
J R" \J R" / J Rn

for ^, 1 <£<m. Since ι//(x) is arbitrary, we see that

Z< f i s ) (f, τ, x, ξ) = 0 for ^ ^ s,

Z<n>(ί, τ, x, 0 =•••= Z<""">(ί, τ, x, ξ),

and hence there exists a scalar function z(ί, τ, x, ξ) such that

(3.5) Z(ί, τ, x, {) = z(ί, τ, x,
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for all (x, OeR"x(0, T], (ξ, τ)eR"x[0, T), t>τ. Furthermore, in view of
(2.7), we get

(3.6) Z*(ί, τ, x, ξ) = 'Z(f, τ, x, ξ) = z(f, τ, x, £)£«

Let ψ0(x) be a bounded continuous function with compact support in R",

and define

HO«, *) = f z(f , τ, x, ξ)ψ0(x)dx9 (ξ, τ) e R" x [0, f) .
J R"

Put hc(ξ, τ) = t/0(ξ, τ)c, where c = col(c!,..., cm)eRm. Then, Aβ(ξ, τ) satisfies

(3.7) L*(ΛC(£, τ)) = D(_τ)Ac(ξ, τ) - Σj,*=, !><-«, A- w [M,fc(ξ, τ)Ac(ξ, τ)]

", 0 < τ < / < T,

Substituting

ct = col (I, 0,..., 0),..., cm = col (0,..., 0, 1)

in (3.7) yields m2 Cauchy problems

jle)«s τ)ιι0(€, τ)] = 0, ξ e R«, 0 < τ < t < T,

limτ t f ιι0(ί , τ) = ^0(ί)» £ e R", l < ^ , s < m ,

where 5£s is Kronecker's symbol.
Because of (At), Lf ί A ) (!<^<m) are backward parabolic. Using (2.3),

we see that

(3.8) \ u 0 ( ξ 9 τ ) \ ^ C l ( t 9 τ ) e x p { - C 2 ( t 9 τ ) \ ξ \ ^ } 9 ξeR", 0 < τ < t < T,

for some positive constasts Ct(ί, τ) and C2(ί, τ). Since (3.8) implies M0(ξ, τ)e
L|(RW)(1 <^<oo) for τ<ί, we can take Fourier transforms of L(*£S)(MO(^, τ)) = 0

with respect to ξ.

Let ΰφs, 1<^, 5<m. Then, the Fourier transforms satisfy

(3.9) Σj,*-ι *lAfr>u0 ]σjσk - i Σj=ι ^[^^^σ, = 0

for τ < t and ^ 7^ 5, 1 < 4, s < m. In view of (3.8) it can be shown that the Fourier

transforms ^"[/lyis)Wo]> ^[Bjls)ιι0] are entire functions of σ. Let J<£s>(σ, τ)
denote the left-hand side of (3.9). Then, each J(Άs\σ, τ) is represented by a
power series in σ:
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J"'>(*,τ) = Σ,l.....r^W.rΛW *ϊ

with all the coefficients /i^f.'.p,, (τ) = 0. Since

0 = h\tfo (τ) = - / Γ B\"> (ξ, τ)u0(ξ, τ)dξ
J R"

and \I/Q is arbitrary, we have £(,£s)(£, τ) = 0 for all £^s, ξεR" and 0<τ<f<T.
Likewise, we obtain β^s)(ξ, τ) = 0 for all 1 <j<n, £^s, ξeR" and 0<τ<f<T
Similarly, since

0 = ΛiVoU(τ) = Γ A<A \ξ9 τ)uQ(ξ9
J R"

it follows that A\\s\ξ, τ) = 0 for £^s, ξεR" and 0<τ<ί<T. Furthermore,
Aγ*\ξ9τ) = Q for all./, fc(l<7, /c<«), ^^5, ξ e R " andO<τ</<T.

Next we fix £ and s, 1<^, s<m, and take the Fourier transform of

)(tι0(£, τ)) — L(*s)(t/0(ξ, τ)) = 0. Arguing as above, we conclude that

A(A"(t, τ) =-= Xjr^f. ^), BJ">({, τ) =-= Bj""">«, τ)

for all j,k(\<^j,k<n),ξeRn and 0 < τ < ί < T. This completes the proof.
Q. E. D.

2) Finally we deal with the general case of (1.1) where Ajk(x, t) and B/x, ί)

(1<Λ^<«) are complex matrices. Let /^(x, t) = &eAJk(x, ί)> HJk(x,t) =
S* AJk(x, t), Sj(x, t) = 3?*Bj(x, t) and (7/x, t) = S»*Bj(x, t)9 that is,

X7fc(x, 0 = KyΛ(x, 0 -f iHJk(x, t)

β/x, ί) = S/x, 0 + /C//x, f), 1 < 7, /c < n,

Define the 2m x 2m real matrices /Cyjt(x, ί) and Af /x, 0 by

;,(*, f ) ~//y f c(X,

0 =
Hjk(x, ΐ) RJk(x, t)

I S j ( x , t) - Uj(x, 0 \
Λ/XX, 0 = , l<j,k<n.

\ Uj(x,t) Sj(x, t) J

Let ιι(x, 0 be a bounded continuous solution of (1.1) and denote by t?(x, t)

and w(x, 0 the real and imaginary parts of w(x, f), respectively, if we define

y(x, t)= (v \x* I ) , then y(x, t) is a bounded continuous solution of the system
\H^Λ, I)/

(3.10) Dty(x, t) = Σ3.t_, Kyt(x, ODΛX*. J> + Σj-ι Af/x, t)DXjy(x, t).
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As is easily verified, for any σ = (σl9...9 σπ)eRπ and η = co\(ηl9...9 η2m)£C 2m >

where ζ1=col(^ι/1,..., ^i/jH-icol (#*f/m+1,..., #*»/2m) and C2 = col(Λ»fy l 5 . . . ,

.Λ» 77w) + i col (S*»ηm+ j,..., Λ»ι/2m), and so the new system (3.10) is parabolic

because (Aj) is assumed for the original system (1.1) and |ι/|2'= Σ?=ι ICίl 2- Since

the coefficients of (3.10) are real-valued, there exists a real- valued fundamental

matrix Y(t9 τ, x, £) of (3.10), and entirely the same arguments as in the preceding

subsection are applied to the system (3.10). Thus, we have the following results.

THEOREM 3.3. Suppose that (A t) and (A3) hold. Then,

(3.11) JΓ(R» x [0, Γ]) = suP,eR2W)U=1,xeR.,0<^Γ Γ \*Y(t, 0, x, ξ)z\dξ.
J R"

THEOREM 3.4. Suppose that (Aj) and (A3) ftoW. Tnen, JΓ(RΠ x [0, T])= 1

(3.12) Xyt(x, ί) = ajk(x, t)Em, Bj(x, 0 = fc/x, ί)£m, 1 < Λ * < *,

where ajΊt(x9 t) and fr/x, ί) ar^ real-valued scalar functions in Rπ x [0, T]

the same regularities as Ajk(x, t) and B/(x, ί)> respectively.

PROOF OF THEOREM 3.4. As in the proof of Theorem 3.2, using (3.11), we

can show that JΓ(R" x [0, T])= 1 if and only if

(3.13) Kjk(x9 t) = ajk(x9 t)E2m9 M/x, t) = fc/x, t)E2m, 1 < Λ k < n,

where Λ;Λ(X, 0 and fc/x, ί) are real-valued scalar functions in R" x [0, T]. It is

easy to see that (3.13) is equivalent ot (3.12). Q. E. D.

We conclude by referring to a paper by Otsuka [4] in which a characterization

of the positivity of fundamental matrices of parabolic systems is obtained.
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