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1. Introduction

This note is concerned with the problem of nonexistence of entire solutions for

the differential inequality

(1) Au^k(x)eu, xeRn,

where n ̂  2, Δ is the H-dimensional Laplacian and k(x) is a nonnegative continuous

function in Rn. An entire solution u(x) of inequality (!) is defined to be a real-

valued function of class C2 (Rn) which satisfies (1) at every point of Rn. The following

result was established by Oleinik [5]:

THEOREM 0. Suppose that k(x) ^ 0(|JC| )|x|" 2 for large \x\9 where | | denotes the

Euclidean length, θ(t)-+ oo as t-+oo andθ(t)t~2 is a nonincr easing function oft. Then

inequality (1) has no entire solution.

The purpose of this note is to improve and extend this result. First, we derive

nonexistence criteria for (1), sharper than Oleinik's, on the basis of the consideration

of certain ordinary differential inequalities. Then we attempt to obtain an extension

of Theorem 0 to more general elliptic inequalities of the form (16). For other related

results, we refer the reader to the papers [2, 3, 4, 6] and the references contained

therein.

2. Results

First, we introduce the notation

k^(r) = mmiXi=rk(x) for ^ ,

and for an entire solution u(x) of (1), we put

ΰ(r) = — l - j l u(x)dS for r^O,

where ωn denotes the surface area of the unit sphere in Rn, i.e., ΰ(r)is the spherical
mean of u(x) over the sphere \x\ = r. An improvement of Theorem 0 in the two-
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dimensional case is given by the following theorem.

THEOREM 1. Let n = 2. Suppose that there exists a constant α e (0,1/2) such that

C00

(2) rc+2*-1tk*(r)Ydr= oo for all c>0.

Then inequality (1) has no entire solution.

To prove this theorem, the next lemma is needed.

LEMMA 1. Consider the ordinary differential inequality

(3) (p(t)y')'ϊ:a(t)e>, t^

where p(t) is a positive continuous function for t^tθ9 and a(t) is a nonnegative

continuous function for t ̂  t0. Let υ(t) be a continuous function for t §; t0. Suppose that

there exists a constant αe(0, 1/2) such that

r fora"c>α

Then inequality (2) has no solution y(t) which is defined for large t and satisfies

(5) /KO/O^CΊ and y(t)^C2v(t)

for some positive constants Cί and C2 there.

PROOF OF LEMMA 1. Suppose the contrary. Let y(t) be a solution of (3) satis-

fying (5) for tZ ίi ^ 'o Motivated by Wong [7], we put w(t)=p(t)yf(t)ey(t). Then we

have

which implies

[a(t)Ύeayit)[yΊt)V~2Λ

^Cw{t)1 U J ^ ,

where C = α " α ( l - α ) α " 1 > 0 . We rewrite this inequality as

(6) w{t)^c[

where <5>0 is chosen so small that
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δ + 2α ̂  1 and <5 < α,

which is possible, by our assumption. From (5) and (6) it follows that

for some £>0. Dividing (7) by [w(f)]1+<5 and integrating over [tl9 oo), we have

Ϊ Γ = 5 — Λ < 0 0 >f
which contradicts (4). This completes the proof of Lemma 1.

PROOF OF THEOREM 1. Let u{x) be an entire solution of inequality (1). It is

easily seen from Jensen's inequality that the spherical mean ΰ(r) oϊu(x) satisfies the

following:

(8) (rw'(r))' ^ rk+ (r)eu{r) for r > 0,

w'(0) = 0 and w'(r)^0 for r > 0 .

It follows that there are positive constants Cu C2 and R such that

(9) rΰf(r)^C1 and w(r)^C 2 logr for r^R.

However this is impossible, since applying Lemma 1 to (8), we see that condition (2)

precludes solutions ΰ(r) of (8) satisfying (9).

In the case of n ̂  3, the method used in the proof of Theorem 1 does not work
effectively. A slight improvement of Theorem 0 of different nature will be given
below.

THEOREM 2. Let n^3. Suppose that there exists an integer m^.2 such that

(10) lim i n f ^ r 2 log1 r log2 r logm rk+(r)>0,

wherelog1 r = logr, I o g v + V = log(log vr), v = l , 2 , . . . . Then inequality (1) has no entire

solution.

PROOF. Let u(x) be an entire solution of (1). As was stated in the proof of

Theorem 1, the spherical mean ΰ(r) satisfies

(11) (rn~1ff{r))'^rn~1k+(r)e"(r) for r>0,

w'(0) = 0 and ff(r)^0 for r > 0 .

For economy of notation we use the letter C to denote various positive constants.
By (10) and (11) we have
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Crn~3

(12) (f-iffir))'^——— _ _ for large r,
log1r log zr log r

say r ̂  r0 > 0. Now we show that (12) also holds when m is replaced by m — 1 in this

expression. Integrating (12) on [r0, r] with use of integration by parts, we find

which implies

g ( r ) ^ , i C

 Λ m for
rlog 1r logmr

say r^r^rQ. An integration of the above yields

(13) ΰ(r)\

for r ^ r 2 ^ r 1 ? where we may assume that <5e(0,1) without loss of generality.

Combining (13) with inequality (11) and using (10), we have

for r^r2. Integration by parts of the above gives

C

for r^.r3z±r2, whence it follows that

(14) ύ(r)

for r^r4^r3. From inequality (11) combined with (14), we obtain

M i r l V >
r Λogm-ιr \ogmr

and so

v v / / = l o g 1 r . log w - 1 r

for r ^ r 5 ^ r 4 . Thus (12) also holds even if m is replaced by m— 1.

Repeating the above reduction, we finally conclude that there exists an εe(0, 1)

such that

(15) Q{r) ^ C(logr)ε
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for r ̂  r* > 0. now we put v(x) = ΰ(\x\)/2. Then y( c) is defined in the whole space Rn,

and satisfies in view of (11) and (15)

M2iogM

for large |JC|. Applying Theorem 0, we are led to a contradiction immediately. This

completes the proof.

EXAMPLE 1. When « = 2, some improvements of Theorem 0 have been

obtained by Ni [4]. One of them asserts that if

for large r
* v r2logr

for some C>0, then inequality (1) has no entire solution. But according to our

Theorem 1, the same conclusion holds under a weaker condition that

C
M r ) = T7i u for large r

* v r2(logr)e

for some C > 0 and £*>1.

Now let us attempt to extend Theorem 0 of Oleinik for more general elliptic

inequalities of the form

(16) L u = Σ"j= i dij{x\z—-z—h YJ= i bi(x\z— ^ k(x)eu, xeRn

9

where n ̂  2, x = (xj, αι7(x), of(jc) are continuous for all ij9 and the symmetric matrix

(aij(x)) is positive definite for each xeRn. As in [5] we begin with the following

lemma.

LEMMA 2. Let R>0, x° = (xf)eRn andko = inϊιx_χOι ^Rk(x)>0. Suppose that

u(x) satisfies Lu^ k(x)eu in \x — x°\ ^ R and that there exists a constant T (x°, R) such

that

T(x°, R)^sup^yi=RΣUΛaii{y) + bi(y) (xf-y,) (xj-

and

τ(x°, j R )^sup, J [ o-, l = κ -o^iΣΰ =i«o 0') ( ^ - ^ ) (rf

where y = (y, ). Then, we have
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PROOF. We adapt the argument due to Oleinik [5]. Put

a = 4T(x°,R)R2/k0

and define

V(x) = a/(R2-r2)2, where r = \x-x°\.

Then V(x) satisfies

(17) L \\ogV{x)-]^k{x)V{x\ \x-x°\ < R.

In fact,

) (*-*?)) (R2~r2)

(Xi-χ9) (xj-xj))

°, R) (Λ2-r2) + 2Σ?Jβif lyW (*ι

°, R) (R2-r2)+T(x°9 R)r2)

= 4(R2-r2y2T(x°9R)R2^k(x)V(x)9 |JC-JC°|<&

Next we put v(x) = eu(x) and assert that

(18) v(x)^V(x), \x-x°\<R.

Suppose the contrary. Since logi?(x) — logK(x)-^ — oo as \x—x°\-*R9 logυ(x)

— log V(x) takes a positive maximum in |JC—x°\ <R at some point x'. Clearly v(x')

> V{xf). Noting that L [logι (x)]^k(x)v(x) in \x-x°\<*R and using (17), we find

LDogi?-logK] (x')^k(x') [v(x')-V(x'K>0.

But this contradicts the fact that x' is a point of maximum of logι (x)—logF(x).

Thus (18) holds. By putting x = x° in (18), we have the desired conclusion.

THEOREM 3. Suppose that there exist functions T(r) and m(r) such that

(19) Γ(r)^sup 1 X | _ ΣΓ-ifoiOO + δiϋOto-Λ)).
\x-y\ =r/2

(20) Γ ( r ) ^ s u p | X | = r -l—J*JmiaiJ{y) (Xι-yι) (xj-yj),
,x-yi=r/2,x#y \X f\

(21) inϊr/2,iX^3

for large r, say r^Rθ9 and

(22) T(r)/(m(r)r2)-+0 as r->oo.
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Then inequality (16) has no entire solution.

PROOF. Let u(x) be an entire solution of (16). Consider a point x such that |jcj

^ Ro. Applying Lemma 2 to the ball {y: \y — x\^ \x\/2} and taking account of the fact

that \y~x\^\x\/2 implies |x|/2^|,y|^3|jc|/2, we find

eu(X) < 1 6 Γ ( W )

and hence

<**£16T(\x\)/(m(\x\)\x\2)

This shows that eu{x)^>0 as |JC|—•oo. On the other hand, it is easy to see that

L OM(X)] = eu™( L u(x) + Σ? , = i Λ | I ( * ) ! ^ ! H έ 0, xeRn.

Hence by the maximum principle eu(x) = 0 in Rn, and this contradiction proves our

assertion.

COROLLARY. Suppose that there exist constants a,b,c>0 and α, β, σeR such

that σ>max{α, β+ 1} and

flyW^ΦΓ, Mx)\Sb\Aβ, l^i, j^n;

for sufficiently large \x\. Then inequality (16) has no entire solution.

PROOF. It is easily seen by our assumption that the function T(r) = C1(ra

+ rβ+i) satisfies (19) and (20) provided Cx > 0 is large enough, and that the function

m(r) = C2r
σ~2 satisfies (21) and (22) provided C 2 > 0 is small enough. Thus

according to Theorem 3, inequality (16) has no entire solution.

EXAMPLE 2. Consider the equation

(23) Lu=f(x)eu, XER\ n^3,

where L is the same operator as in (16). Suppose that atj{x\ b^x) and/(x) are locally

Holder continuous in Rn. Suppose moreover that the limits <3ί7 = lim | X I -+aoaij(x)

exist and the matrix (άo ) has at least three positive eigenvalues, that b^x) = o(\x\"x)

as |JC|->OO, and that

(24) l / ( * ) l ^ q * Γ 2 ~ μ for large |x|

for some C, μ > 0. Then by applying Friedman's existence theorem [1, Corollary 2],

equation (23) is shown to have a bounded entire solution. Actually there exists a

bounded function w(x) such that
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and it is easily verified that the functions u1{x) = w(x)—C1 and u2 {x) = - vv(x) - C2,
respectively, become a supersolution and a subsolution of (23) satisfying MX(X)
^w2(*) in Rn provided C l 5 C 2 >0 are sufficiently large. Therefore the well-known
supersolution and subsolution method ensures the existence of an entire soslution
u(x) of (23) such that u2(x)^u(x)^u1(x) in Rn.

On the other hand, if (24) is replaced by the condition that

f{x)^C\x\~2+μ for large |JC|

for some C, μ>0, with the other conditions being kept to hold, then by Corollary,
equation (23) admits no entire solution.
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