A note on the inequality $\Delta u \geqq k(x) e^{u}$ in R^{n}

Hiroyuki Usami

(Received January 16, 1988)

1. Introduction

This note is concerned with the problem of nonexistence of entire solutions for the differential inequality

$$
\begin{equation*}
\Delta u \geqq k(x) e^{u}, \quad x \in \boldsymbol{R}^{n}, \tag{1}
\end{equation*}
$$

where $n \geqq 2, \Delta$ is the n-dimensional Laplacian and $k(x)$ is a nonnegative continuous function in R^{n}. An entire solution $u(x)$ of inequality (1) is defined to be a realvalued function of class $C^{2}\left(\boldsymbol{R}^{n}\right)$ which satisfies (1) at every point of \boldsymbol{R}^{n}. The following result was established by Oleinik [5]:

Theorem 0. Suppose that $k(x) \geqq \theta(|x|)|x|^{-2}$ for large $|x|$, where $|\cdot|$ denotes the Euclidean length, $\theta(t) \rightarrow \infty$ as $t \rightarrow \infty$ and $\theta(t) t^{-2}$ is a nonincreasing function of t. Then inequality (1) has no entire solution.

The purpose of this note is to improve and extend this result. First, we derive nonexistence criteria for (1), sharper than Oleinik's, on the basis of the consideration of certain ordinary differential inequalities. Then we attempt to obtain an extension of Theorem 0 to more general elliptic inequalities of the form (16). For other related results, we refer the reader to the papers $[2,3,4,6]$ and the references contained therein.

2. Results

First, we introduce the notation

$$
k_{*}(r)=\min _{\mid x_{\mid}=r} k(x) \quad \text { for } \quad r \geqq 0,
$$

and for an entire solution $u(x)$ of (1), we put

$$
\bar{u}(r)=\frac{1}{\omega_{n} r^{n-1}} \int_{\mid x_{1}=r} u(x) d S \quad \text { for } \quad r \geqq 0,
$$

where ω_{n} denotes the surface area of the unit sphere in \boldsymbol{R}^{n}, i.e., $\bar{u}(r)$ is the spherical mean of $u(x)$ over the sphere $|x|=r$. An improvement of Theorem 0 in the two-
dimensional case is given by the following theorem.
Theorem 1. Let $n=2$. Suppose that there exists a constant $\alpha \in(0,1 / 2)$ such that

$$
\begin{equation*}
\int^{\infty} r^{c+2 \alpha-1}\left[k_{*}(r)\right]^{\alpha} d r=\infty \quad \text { for all } \quad c>0 \tag{2}
\end{equation*}
$$

Then inequality (1) has no entire solution.
To prove this theorem, the next lemma is needed.
Lemma 1. Consider the ordinary differential inequality

$$
\begin{equation*}
\left(p(t) y^{\prime}\right)^{\prime} \geqq a(t) e^{y}, \quad t \geqq t_{0} \geqq 0, \tag{3}
\end{equation*}
$$

where $p(t)$ is a positive continuous function for $t \geqq t_{0}$, and $a(t)$ is a nonnegative continuous function for $t \geqq t_{0}$. Let $v(t)$ be a continuous function for $t \geqq t_{0}$. Suppose that there exists a constant $\alpha \in(0,1 / 2)$ such that

$$
\begin{equation*}
\int^{\infty} \frac{[a(t)]^{\alpha} e^{c v(t)}}{[p(t)]^{1-\alpha}} d t=\infty \quad \text { for all } \quad c>0 \tag{4}
\end{equation*}
$$

Then inequality (2) has no solution $y(t)$ which is defined for large t and satisfies

$$
\begin{equation*}
p(t) y^{\prime}(t) \geqq C_{1} \quad \text { and } \quad y(t) \geqq C_{2} v(t) \tag{5}
\end{equation*}
$$

for some positive constants C_{1} and C_{2} there.
Proof of Lemma 1. Suppose the contrary. Let $y(t)$ be a solution of (3) satisfying (5) for $t \geqq t_{1} \geqq t_{0}$. Motivated by Wong [7], we put $w(t)=p(t) y^{\prime}(t) e^{y(t)}$. Then we have

$$
\begin{aligned}
w^{\prime}(t) & =\left(p(t) y^{\prime}(t)\right)^{\prime} e^{y(t)}+p(t) e^{y(t)}\left[y^{\prime}(t)\right]^{2} \\
& \geqq a(t) e^{2 y(t)}+p(t) e^{y(t)}\left[y^{\prime}(t)\right]^{2} \\
& =w(t)\left(\frac{a(t) e^{y(t)}}{p(t) y^{\prime}(t)}+y^{\prime}(t)\right), \quad t \geqq t_{1},
\end{aligned}
$$

which implies

$$
w^{\prime}(t) \geqq C w(t) \frac{[a(t)]^{\alpha} e^{\alpha y(t)}\left[y^{\prime}(t)\right]^{1-2 \alpha}}{[p(t)]^{\alpha}}, \quad t \geqq t_{1}
$$

where $C=\alpha^{-\alpha}(1-\alpha)^{\alpha-1}>0$. We rewrite this inequality as

$$
\begin{equation*}
w^{\prime}(t) \geqq C[w(t)]^{1+\delta} \cdot \frac{[a(t)]^{\alpha} e^{(\alpha-\delta) y(t)}\left[p(t) y^{\prime}(t)\right]^{1-2 \alpha-\delta}}{[p(t)]^{1-\alpha}} \tag{6}
\end{equation*}
$$

where $\delta>0$ is chosen so small that

$$
\delta+2 \alpha \leqq 1 \quad \text { and } \quad \delta<\alpha,
$$

which is possible, by our assumption. From (5) and (6) it follows that

$$
\begin{equation*}
w^{\prime}(t) \geqq \mathcal{C}^{2}[w(t)]^{1+\delta} \cdot \frac{[a(t)]^{\alpha} e^{C_{2}(\alpha-\delta) v(t)}}{[p(t)]^{1-\alpha}}, \quad t \geqq t_{1} \tag{7}
\end{equation*}
$$

for some $\tilde{C}>0$. Dividing (7) by $[w(t)]^{1+\delta}$ and integrating over $\left[t_{1}, \infty\right)$, we have

$$
\int_{t_{1}}^{\infty} \frac{[a(t)]^{\alpha} e^{C_{2}(\alpha-\delta) v(t)}}{[p(t)]^{1-\alpha}} d t<\infty,
$$

which contradicts (4). This completes the proof of Lemma 1.
Proof of Theorem 1. Let $u(x)$ be an entire solution of inequality (1). It is easily seen from Jensen's inequality that the spherical mean $\bar{u}(r)$ of $u(x)$ satisfies the following:

$$
\begin{array}{lll}
\left(r \bar{u}^{\prime}(r)\right)^{\prime} \geqq r k_{*}(r) e^{\bar{u}(r)} & \text { for } \quad r>0, \tag{8}\\
\bar{u}^{\prime}(0)=0 \quad \text { and } \quad \bar{u}^{\prime}(r) \geqq 0 & \text { for } \quad r>0 .
\end{array}
$$

It follows that there are positive constants C_{1}, C_{2} and R such that

$$
\begin{equation*}
r \bar{u}^{\prime}(r) \geqq C_{1} \quad \text { and } \quad \bar{u}(r) \geqq C_{2} \log r \quad \text { for } \quad r \geqq R . \tag{9}
\end{equation*}
$$

However this is impossible, since applying Lemma 1 to (8), we see that condition (2) precludes solutions $\bar{u}(r)$ of (8) satisfying (9).

In the case of $n \geqq 3$, the method used in the proof of Theorem 1 does not work effectively. A slight improvement of Theorem 0 of different nature will be given below.

Theorem 2. Let $n \geqq 3$. Suppose that there exists an integer $m \geqq 2$ such that

$$
\begin{equation*}
\lim \inf _{r \rightarrow \infty} r^{2} \log ^{1} r \cdot \log ^{2} r \cdots \log ^{m} r \cdot k_{*}(r)>0, \tag{10}
\end{equation*}
$$

where $\log ^{1} r=\log r, \log ^{v+1} r=\log \left(\log ^{v} r\right), v=1,2, \ldots$ Then inequality (1) has no entire solution.

Proof. Let $u(x)$ be an entire solution of (1). As was stated in the proof of Theorem 1, the spherical mean $\bar{u}(r)$ satisfies

$$
\begin{array}{llll}
\left(r^{n-1} \bar{u}^{\prime}(r)\right)^{\prime} \geqq r^{n-1} k_{*}(r) e^{\bar{u}(r)} & \text { for } & r>0, \tag{11}\\
\bar{u}^{\prime}(0)=0 & \text { and } \quad \bar{u}^{\prime}(r) \geqq 0 & \text { for } & r>0 .
\end{array}
$$

For economy of notation we use the letter C to denote various positive constants. By (10) and (11) we have

$$
\begin{equation*}
\left(r^{n-1} \bar{u}^{\prime}(r)\right)^{\prime} \geqq \frac{C r^{n-3}}{\log ^{1} r \cdot \log ^{2} r \cdots \log ^{m} r} \quad \text { for large } \quad r \tag{12}
\end{equation*}
$$

say $r \geqq r_{0}>0$. Now we show that (12) also holds when m is replaced by $m-1$ in this expression. Integrating (12) on $\left[r_{0}, r\right]$ with use of integration by parts, we find

$$
r^{n-1} \bar{u}^{\prime}(r) \geqq C\left(\frac{r^{n-2}}{\log ^{1} r \cdots \log ^{m} r}-C+\int_{r_{0}}^{r} s^{n-2} \frac{\left(\log ^{1} s \cdots \log ^{m} s\right)^{\prime}}{\left(\log ^{1} s \cdots \log ^{m} s\right)^{2}} d s\right)+C,
$$

which implies

$$
\bar{u}^{\prime}(r) \geqq \frac{C}{r \log ^{1} r \cdots \log ^{m} r} \quad \text { for large } \quad r
$$

say $r \geqq r_{1} \geqq r_{0}$. An integration of the above yields

$$
\begin{equation*}
\bar{u}(r) \geqq C+C \log ^{m+1} r \geqq \log \left(\log ^{m} r\right)^{\delta} \tag{13}
\end{equation*}
$$

for $r \geqq r_{2} \geqq r_{1}$, where we may assume that $\delta \in(0,1)$ without loss of generality. Combining (13) with inequality (11) and using (10), we have

$$
\left(r^{n-1} \bar{u}^{\prime}(r)\right)^{\prime} \geqq \frac{C r^{n-3}}{\log ^{1} r \cdots \log ^{m-1} r \cdot\left(\log ^{m} r\right)^{1-\delta}}
$$

for $r \geqq r_{2}$. Integration by parts of the above gives

$$
\bar{u}^{\prime}(r) \geqq \frac{C}{r \log ^{1} r \cdots \log ^{m-1} r \cdot\left(\log ^{m} r\right)^{1-\delta}}
$$

for $r \geqq r_{3} \geqq r_{2}$, whence it follows that

$$
\begin{equation*}
\bar{u}(r) \geqq C\left(\log ^{m} r\right)^{\delta} \tag{14}
\end{equation*}
$$

for $r \geqq r_{4} \geqq r_{3}$. From inequality (11) combined with (14), we obtain

$$
\left(r^{n-1} \bar{u}^{\prime}(r)\right)^{\prime} \geqq \frac{C r^{n-3}}{\log ^{1} r \cdots \log ^{m-1} r} \cdot \frac{\exp \left[C\left(\log ^{m} r\right)^{\delta}\right]}{\log ^{m} r}
$$

and so

$$
\left(r^{n-1} \bar{u}^{\prime}(r)\right)^{\prime} \geqq \frac{C r^{n-3}}{\log ^{1} r \cdots \log ^{m-1} r}
$$

for $r \geqq r_{5} \geqq r_{4}$. Thus (12) also holds even if m is replaced by $m-1$.
Repeating the above reduction, we finally conclude that there exists an $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
\bar{u}(r) \geqq C(\log r)^{\varepsilon} \tag{15}
\end{equation*}
$$

for $r \geqq r^{*}>0$. now we put $v(x)=\bar{u}(|x|) / 2$. Then $v(x)$ is defined in the whole space R^{n}, and satisfies in view of (11) and (15)

$$
\Delta v(x) \geqq \frac{C \exp \left[C(\log |x|)^{\varepsilon}\right]}{|x|^{2} \log |x|} \cdot e^{v(x)}
$$

for large $|x|$. Applying Theorem 0 , we are led to a contradiction immediately. This completes the proof.

Example 1. When $n=2$, some improvements of Theorem 0 have been obtained by Ni [4]. One of them asserts that if

$$
k_{*}(r) \geqq \frac{C}{r^{2} \log r} \quad \text { for large } \quad r
$$

for some $C>0$, then inequality (1) has no entire solution. But according to our Theorem 1, the same conclusion holds under a weaker condition that

$$
k_{*}(r) \geqq \frac{C}{r^{2}(\log r)^{\ell}} \quad \text { for large } \quad r
$$

for some $C>0$ and $\ell \geqq 1$.
Now let us attempt to extend Theorem 0 of Oleinik for more general elliptic inequalities of the form

$$
\begin{equation*}
L u \equiv \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} \geqq k(x) e^{u}, \quad x \in \boldsymbol{R}^{n}, \tag{16}
\end{equation*}
$$

where $n \geqq 2, x=\left(x_{i}\right), a_{i j}(x), b_{i}(x)$ are continuous for all i, j, and the symmetric matrix $\left(a_{i j}(x)\right)$ is positive definite for each $x \in \boldsymbol{R}^{n}$. As in [5] we begin with the following lemma.

Lemma 2. Let $R>0, x^{0}=\left(x_{i}^{0}\right) \in R^{n}$ and $k_{0}=\inf _{\left|x-x^{0}\right| \leq R} k(x)>0$. Suppose that $u(x)$ satisfies $L u \geqq k(x) e^{u}$ in $\left|x-x^{0}\right| \leqq R$ and that there exists a constant $T\left(x^{0}, R\right)$ such that

$$
T\left(x^{0}, R\right) \geqq \sup _{\mid x^{0}-y_{\mid}=R} \sum_{i=1}^{n}\left(a_{i i}(y)+b_{i}(y)\left(x_{i}^{0}-y_{i}\right)\left(x_{j}^{0}-y_{j}\right)\right),
$$

and

$$
T\left(x^{0}, R\right) \geqq \sup _{\left|x^{0}-y\right|=R} \frac{2}{\left|x^{0}-y\right|^{2}} \sum_{i, j=1}^{n} a_{i j}(y)\left(x_{i}^{0}-y_{i}\right)\left(x_{j}^{0}-y_{j}\right)
$$

where $y=\left(y_{i}\right)$. Then, we have

$$
e^{u\left(x^{0}\right)} \leqq 4 T\left(x^{0}, R\right) /\left(k_{0} R^{2}\right)
$$

Proof. We adapt the argument due to Oleinik [5]. Put

$$
a=4 T\left(x^{0}, R\right) R^{2} / k_{0}
$$

and define

$$
V(x)=a /\left(R^{2}-r^{2}\right)^{2}, \quad \text { where } \quad r=\left|x-x^{0}\right| .
$$

Then $V(x)$ satisfies

$$
\begin{equation*}
L[\log V(x)] \leqq k(x) V(x), \quad\left|x-x^{0}\right|<R . \tag{17}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
L & {[\log V(x)]=\frac{L V(x)}{V(x)}-\frac{1}{V^{2}(x)} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial V}{\partial x_{i}} \frac{\partial V}{\partial x_{j}} } \\
& =4\left(R^{2}-r^{2}\right)^{-2}\left(\sum_{i=1}^{n}\left(a_{i i}(x)+b_{i}(x)\left(x_{i}-x_{i}^{0}\right)\right)\left(R^{2}-r^{2}\right)\right. \\
& \left.+2 \sum_{i, j=1}^{n} a_{i j}(x)\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right)\right) \\
& \leqq 4\left(R^{2}-r^{2}\right)^{-2}\left(T\left(x^{0}, R\right)\left(R^{2}-r^{2}\right)+2 \sum_{i, j=1}^{n} a_{i j}(x)\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right)\right) \\
& \leqq 4\left(R^{2}-r^{2}\right)^{-2}\left(T\left(x^{0}, R\right)\left(R^{2}-r^{2}\right)+T\left(x^{0}, R\right) r^{2}\right) \\
& =4\left(R^{2}-r^{2}\right)^{-2} T\left(x^{0}, R\right) R^{2} \leqq k(x) V(x), \quad\left|x-x^{0}\right|<R .
\end{aligned}
$$

Next we put $v(x)=e^{u(x)}$ and assert that

$$
\begin{equation*}
v(x) \leqq V(x), \quad\left|x-x^{0}\right|<R . \tag{18}
\end{equation*}
$$

Suppose the contrary. Since $\log v(x)-\log V(x) \rightarrow-\infty$ as $\left|x-x^{0}\right| \rightarrow R, \log v(x)$ $-\log V(x)$ takes a positive maximum in $\left|x-x^{0}\right|<R$ at some point x^{\prime}. Clearly $v\left(x^{\prime}\right)$ $>V\left(x^{\prime}\right)$. Noting that $L[\log v(x)] \geqq k(x) v(x)$ in $\left|x-x^{0}\right| \leqq R$ and using (17), we find

$$
L[\log v-\log V]\left(x^{\prime}\right) \geqq k\left(x^{\prime}\right)\left[v\left(x^{\prime}\right)-V\left(x^{\prime}\right)\right]>0 .
$$

But this contradicts the fact that x^{\prime} is a point of maximum of $\log v(x)-\log V(x)$. Thus (18) holds. By putting $x=x^{0}$ in (18), we have the desired conclusion.

Theorem 3. Suppose that there exist functions $T(r)$ and $m(r)$ such that

$$
\begin{align*}
& T(r) \geqq \sup _{\substack{\left|x x_{1}=r\\
\right| x-y \mid=r / 2}} \sum_{i=1}^{n}\left(a_{i i}(y)+b_{i}(y)\left(x_{i}-y_{i}\right)\right), \tag{19}\\
& T(r) \geqq \sup _{\substack{|x|=r \\
|x-y|=r / 2, x \neq y}} \frac{2}{|x-y|^{2}} \sum_{i, j=1}^{n} a_{i j}(y)\left(x_{i}-y_{i}\right)\left(x_{j}-y_{j}\right), \tag{20}\\
& \inf _{r / 2 \leqq|x| \leqq 3 r / 2} k(x) \geqq m(r)>0 \tag{21}
\end{align*}
$$

for large r, say $r \geqq R_{0}$, and

$$
\begin{equation*}
T(r) /\left(m(r) r^{2}\right) \rightarrow 0 \text { as } r \rightarrow \infty \tag{22}
\end{equation*}
$$

Then inequality (16) has no entire solution.
Proof. Let $u(x)$ be an entire solution of (16). Consider a point x such that $|x|$ $\geqq R_{0}$. Applying Lemma 2 to the ball $\{y:|y-x| \leqq|x| / 2\}$ and taking account of the fact that $|y-x| \leqq|x| / 2$ implies $|x| / 2 \leqq|y| \leqq 3|x| / 2$, we find

$$
e^{u(x)} \leqq \frac{16 T(|x|)}{\left(\inf _{\left|x_{1} / 2 \leqq|y| \leq 3_{1}\right| / 2} k(y)\right)|x|^{2}},
$$

and hence

$$
e^{u(x)} \leqq 16 T(|x|) /\left(m(|x|)|x|^{2}\right)
$$

This shows that $e^{u(x)} \rightarrow 0$ as $|x| \rightarrow \infty$. On the other hand, it is easy to see that

$$
L\left[e^{u(x)}\right]=e^{u(x)}\left(L u(x)+\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{i}}\right) \geqq 0, \quad x \in \boldsymbol{R}^{n} .
$$

Hence by the maximum principle $e^{u(x)} \equiv 0$ in \boldsymbol{R}^{n}, and this contradiction proves our assertion.

Corollary. Suppose that there exist constants $a, b, c>0$ and $\alpha, \beta, \sigma \in \boldsymbol{R}$ such that $\sigma>\max \{\alpha, \beta+1\}$ and

$$
\begin{aligned}
& a_{i j}(x) \leqq a|x|^{\alpha}, \quad\left|b_{i}(x)\right| \leqq b|x|^{\beta}, \quad 1 \leqq i, \quad j \leqq n ; \\
& k(x) \leqq c|x|^{\sigma-2}
\end{aligned}
$$

for sufficiently large $|x|$. Then inequality (16) has no entire solution.
Proof. It is easily seen by our assumption that the function $T(r)=C_{1}\left(r^{\alpha}\right.$ $+r^{\beta+1}$) satisfies (19) and (20) provided $C_{1}>0$ is large enough, and that the function $m(r)=C_{2} r^{\sigma-2}$ satisfies (21) and (22) provided $C_{2}>0$ is small enough. Thus according to Theorem 3, inequality (16) has no entire solution.

Example 2. Consider the equation

$$
\begin{equation*}
L u=f(x) e^{u}, \quad x \in \boldsymbol{R}^{n}, \quad n \geqq 3, \tag{23}
\end{equation*}
$$

where L is the same operator as in (16). Suppose that $a_{i j}(x), b_{i}(x)$ and $f(x)$ are locally Hölder continuous in \boldsymbol{R}^{n}. Suppose moreover that the limits $\bar{a}_{i j}=\lim _{|x| \rightarrow \infty} a_{i j}(x)$ exist and the matrix ($\bar{a}_{i j}$) has at least three positive eigenvalues, that $b_{i}(x)=o\left(|x|^{-1}\right)$ as $|x| \rightarrow \infty$, and that

$$
\begin{equation*}
|f(x)| \leqq C|x|^{-2-\mu} \quad \text { for large } \quad|x| \tag{24}
\end{equation*}
$$

for some $C, \mu>0$. Then by applying Friedman's existence theorem [1, Corollary 2], equation (23) is shown to have a bounded entire solution. Actually there exists a bounded function $w(x)$ such that

$$
L w(x)=-(1+|x|)^{-2-\mu}, \quad x \in \boldsymbol{R}^{n}
$$

and it is easily verified that the functions $u_{1}(x)=w(x)-C_{1}$ and $u_{2}(x)=-w(x)-C_{2}$, respectively, become a supersolution and a subsolution of (23) satisfying $u_{1}(x)$ $\geqq u_{2}(x)$ in R^{n} provided $C_{1}, C_{2}>0$ are sufficiently large. Therefore the well-known supersolution and subsolution method ensures the existence of an entire soslution $u(x)$ of (23) such that $u_{2}(x) \leqq u(x) \leqq u_{1}(x)$ in R^{n}.

On the other hand, if (24) is replaced by the condition that

$$
f(x) \geqq C|x|^{-2+\mu} \quad \text { for large } \quad|x|
$$

for some $C, \mu>0$, with the other conditions being kept to hold, then by Corollary, equation (23) admits no entire solution.

References

[1] A. Friedman, Bounded entire solutions of elliptic equations, Pacific J. Math., 44 (1973), 497507.
[2] N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158.
[3] R. C. McOwen, On the equation $\Delta u+K e^{2 u}=f$ and prescribed negative curvature in $\boldsymbol{R}^{2}, \quad \mathbf{J}$. Math. Anal. Appl., 103 (1984), 365-370.
[4] W.-M. Ni, On the elliptic equation $\Delta u+K(x) e^{2 u}=0$ and conformal metrics with prescribed Gaussian curvatures, Invent. Math., 66 (1982), 343-352.
[5] O. A. Oleinik, On the equation $\Delta u+k(x) e^{u}=0$, Russian Math. Surveys, 33-2 (1978), 243-244.
[6] D. H. Sattinger, Conformal metrics in \boldsymbol{R}^{2} with prescribed curvature, Indiana Univ. Math. J., 22 (1972), 1-4.
[7] P.-K. Wong, Existence and asymptotic behavior of proper solutions of a class of second-order nonlinear differential equaitons, Pacific J. Math., 13 (1963), 737-760.

Department of Mathematics, Faculty of Science, Hiroshima University

