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Introduction

Heineken and Mohamed [4] have constructed a Fitting, metabelian group
with trivial centre in which every subgroup is subnormal. In Lie theory, Unsin [10]
has constructed a Fitting, metabelian Lie algebra with trivial centre in which every
subalgebra is a subideal. As in group theory, the class T) of Lie algebras in which
every subalgebra is a subideal is one of the typical classes of generalized nilpotent
Lie algebras.

Recently Brookes [2] has proved that a hyperabelian group in which no non-
trivial section is perfect and in which every subgroup is subnormal, is soluble ([2,
Theorem A]), and he has concluded that a hypercentral group in which every
subgroup is subnormal, is soluble ([2, Corollary A]). Subsequently, generalizing [2,
Theorem A], Casolo [3] has proved that a group in which no non-trivial section is
perfect and in which every subgroup is subnormal, is soluble ([3, Theorem]). The
purpose of this paper is to present the Lie-theoretic analogues of [2, Theorem A and
Corollary A] and [3, Theorem].

We shall first prove that T>C\E(<a )SΆ(](¥M)° ^ES& (Corollary 1), where i(<a)9I is
the class of hyperabelian Lie algebras, (E$I)Q is the largest Q-closed subclass of the
class of hypoabelian Lie algebras and ESΆ is the class of soluble Lie algebras. The
group-theoretic analogue of this result is also true and is a slight generalization of
[2, Theorem A]. We shall secondly prove that over any field I of characteristic zero
I>n(έ9I)QS^E9I (Theorem 2), where (έ9I)QS is the largest Q-, s-closed subclass of the
class of hypoabelian Lie algebras and is equal to the class of Lie algebras in which no
non-trivial section is perfect.

1.

Throughout this paper we always consider not necessarily finite-dimensional
Lie algebras over a field I of arbitrary characteristic unless otherwise specified.
Notations and terminology are based on [1]. But for the sake of convenience we list
the terms that we use here.

Let L be a Lie algebra over a field I and n be a non-negative integer. By H^ L
(resp. H<a L, // ch L, if<i nL,HύL\ we mean that H is a subalgebra (resp. an ideal,
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a characteristic ideal, an «-step subideal, a subideal) of L. If H si L, then there exists

the least integer n with respect to H*=3 nL, which we denote by si (L: H) in [5]. For H

^L9H
L denotes the smallest ideal of L containing H. For a positive integer n, Ln

denotes the n-th term of the lower central series of L. Angular brackets < > denote

the subalgebra generated by their contents.

A class X is a collection of Lie algebras together with their isomorphic copies

and the O-dimensional Lie algebras. 21 (resp. Έ% 9IΠ, RE2I, <E, g, gt, % 9tπ, 3) is the

class of Lie algebras which are abelian (resp. soluble, soluble of derived length g n,

residually soluble, Engel, finite-dimensional, Fitting, nilpotent, nilpotent of class

g«, hypercentral). T) is the class of Lie algebras in which every subalgebra is a

subideal. For a positive integer s9 T)s s is the class of Lie algebras L such that <jtl9 ,

x s > o s L for all x(eL (1 g i g j ) .

Let £ be a class of Lie algebras. L is called an X-algebra if L eX. An ascending

ϊ-series {La: α^p} of L is a family of subalgebras of L such that

(a) L o = {0} and Lp = L;

(b) L α < ι L α + 1 and L0L+ί/LaeX for any ordinal

(c) L μ = ( j α < μ L α for any limit ordinal μ^p.

L is called a hyper 3E-algebra if L has an ascending 3E-series {Lα: αgp} such that

L α<a L for all α ̂  p. The class of hyper ϊ-algebras is denoted by E (<a )£. In

particular, E(<α)2t is the class of hyperabelian Lie algebras. For an ordinal α, L ( α )

denotes the α-th term of the transfinite derived series of L. We use L(*} to denote the

intersection of all the L (α)'s. L is said to be hypoabelian if L(*} = {0}.έ2l is the class of

hypoabelian Lie algebras. LGRESΆ iff L(ω) = {0}. It follows that RES2I^E3I. X is s-

closed (resp. Q-closed) if HeX (resp. L/HeX) whenever H^L (resp. H<zL) and

L eX. We use XQ (resp. XQS) to denote the largest Q-closed (resp. Q-, s-closed) subclass

of I .

As in group theory, we say that H/Kis a section of L if K<i H^ L.Lis said to be

perfect if L 2 = L. Then we have

LEMMA 1. Le(έ9I)QS if and only if no non-trivial section of L is perfect.

PROOF. Let X be the class of Lie algebras in which no non-trivial section is

perfect. Since perfect hypoabelian Lie algebras must be O-dimensional, we have

(E9I)Q S S X' Let L eX and suppose that L(Ht) Φ {0}. Since L (* } is a non-trivial section

of L, L (*> = (L (*>)2 < L <*>, a contradiction. It follows that X ^691. Since X is Q-, s-

closed, we have 3 ^ (E2I)Q S.

2.

In this section we shall present the Lie-theoretic analogues of [2, Theorem A
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and Corollary A].
We begin with the following

THEOREM 1. LetLeTϊ.IfL has an ascending SU-series {La: αgp} such that
La<iL and LILxeΈ$ί for all ordinals αgp, then LEΈSI.

PROOF. Assume that L ̂ E9I. Then there is the least ordinal μ ̂  p with respect
to LμφE^ί. Clearly μ > 0. Since L aβESΆ for all α < μ, μ is a limit ordinal. The method of
proof is essentially that used by Brookes in proving [2, Theorem A]. We aim to
construct a sequence {Hi}fL1 of subalgebras of Lμ9 strictly ascending sequences
{n(i)}?L1 and {s(z)}£i of positive integers and a sequence {oc(i)}?L1 of ordinals <μ,
which satisfy the following conditions:

(i) for each ι> 1, #, is a finitely generated subalgebra ^

(ii) for each z>l, s(i) = si (KiMi.JKiMi): (H^ KiMi))/KiMi)), where KUj

(iii) for each / £ 1, <# 1 ? . . . , Hty ^Lα(0.

We set ^ = {0},n(\) = s(l)=l andα(l)=l. Let i>\ and suppose that those have
been constructed up to the (/— l)-th terms. For convenience sake, we set n = n(i— 1),
s=s(i—l) and α = α(/—1). Clearly KiΛ^Kit2^ ~. Suppose that KUj = KUj+1 for
some y^l . Then (Lμ/Lα)^ = ̂ J / L α = ̂ J i 1 / L α = ( L μ / L α ) ^ + 1 ) . It'follows that
(LJLjM^iLJLjω^iL/LJto^iO}. Hence Lμ/LaeΈ<Ά. Since α<μ, Lα6E9ϊ.
Therefore we have LμeE$ϊ, a contradiction. Thus we obtain KiΛ>Ki2>~'.

By using [1, Theorem 7.2.5], we can find a positive integer m such that T>StS

g$ftm. Define «(/) = « + m + l . Let φt denote the natural map KUn-+KUn/KiMi).
Suppose that si(^f(JζfΠ): ψi(X))^s for all finitely generated subalgebras Xof L(

μ

n).
Then we have MLf^ψ^K^e^^^. Hence ^(^,n(0-i) = ^ ( L Γ m ) )
= ^(I«)W^Φi(L μ

n ) ) m + ' = {0} and therefore ^,M(i)_ x = JfίpI1(l). This is a contradic-
tion. Thus there exists a finitely generated subalgebra H{ of L μ

n) such that si (ι/ff (Jζfll):
^(Jϊ,)) >5. Define j(ί) = si (ψi(KUn): ΦAH^). It is clear that < # l 5 , //,-> is a finitely
generated subalgebra of L μ. Since μ is a limit ordinal, there exists an ordinal oc(i) < μ
such that <#!, , Hi} ^ L α(ί). Therefore the z'-th terms have been defined. Thus {Hi},
{«(/)}, {s(i)} and {α(z)} can be inductively constructed.

We now set H= <//f: i= 1,2, > and r = si (L μ: H). Since the sequence {s(i)} is
strictly ascending, there is a positive integer t such that r<ιy(/). Let φ denote the
natural map Lμ-+Lμ/KUn{t). Then evidently ΦIK^.^^ΦV Let ί be a positive

integeΓ.If/^/-l,then^(]ffί) = {0}since<fΓlΓ••,4^t•^^-l>^^«(t-^^
^ ί + 1 , then ^ ( ^ ) = {0} since H^L^-^^L^^K^y Hence we have ^(/f)
= <ιA(i/t ): i = l, 2,-..> = ̂ (iϊ f)^^(A; f l l ( f_ 1 )). Since φ{H)^'φ{Lμ\ φ(H) = φt(Ht)
^rΨt(KtMt-i)) τ h ^ s ^(0 = si(^(^ ί,Λ ( ί- 1 )): ^ t(jy ί))^r<j(/). This is the final
contradiction. Therefore we have



658 Masanobu HONDA

COROLLARRY 1. S ^ H Wf] (ESI )Q ^ E?l.

REMARK. The proof of Theorem 1 can carry over in group theory without
difficulties. Therefore the group-theoretic analogues of Theorem 1 and Corollary 1,
which are slight generalizations of [2, Theorem A], are also true.

COROLLARY 2. Let Xbe a class of Lie algebras. If 3 ύ%ύ E(O )S» then

PROOF. By [1, Lemma 8.1.1] we have 3 ^ ( E 2 I ) Q . It follows from Corollary 1
that Dfi3 S E3Ϊ Since D ̂  (£, by [6, Theorem 8] we have D f ) i H )δ =

In Theorem 1 the assumption that Le£) is essential. In fact, the following
proposition shows that in Theorem 1 we cannot replace the assumption that Leϊ)
by the assumption that Leftt.

PROPOSITION 1. Over any field f, there exists a non-soluble, Fitting Lie algebra
L having an ascending ̂ -series {Ln:n^ω} such that Ln^L andL/L W6RE9I for alln

PROOF. We here consider the McLain Lie algebra L = <£ι (N) over ϊ (cf. [1, p.
111]), where TV is the set of positive integers with natural ordering. Then L has basis
{αι7: iJeN, i<j) with multiplications [aip akl] = δjkau - δHakj. It is well known (cf. [1,
p. 119]) that L e gt. We can easily verify that L(w) = (ai}\j-1 ^ 2"> Φ {0} (n = 0,1, )
and L{ω) = f]n<ωL(n) = {0}. Therefore LGRE2I\E2Ϊ. For each positive integer n, we
set Ln = <αfJ: ί^ri) and Kn = <κaij:n<Γ). Then it is not hard to see that Lri<^L=Ln

+ Kn and L nf]Kn = {0}. Set L 0 = {0} and Lω = L. For any positive integer «, we have
LJLn-.1 = (anJ + Ln-1: n<j}eSa. Since L ={Jn<ωLn, {Ln: n^ω] is an ascending
9l-series of ideals of L. Furthermore, it can be easily seen that for any positive
integer «,

3.

In this section we shall consider I)-algebras over a field ϊ of characteristic zero
and present the Lie-theoretic analogue of [3, Theorem]. The method of proof is
essentially that used by Casolo in proving [3, Theorem].

We need the following

LEMMA 2. Let L be a Lie algebra over a field I of characteristic zero. If
S, then L has a non-trivial abelian ideal.

PROOF. We denote by n(L) a minimal member of {si (L: <x>): 0 φxeL } and
show the result by using induction on n(L). If n(L) = 0, then L is 1-dimensional and
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so the result is true. Let n(L ) ^ 1. There is a non-zero element x of L such that n(L)
= si(L: <*». Set H= <x>L. Then {0} ΦHeT>(){m)QS. Since si(H: <x» = «(L)-1,
we have n (H) = Λ (L) - 1 . By inductive hypothesis, H has a non-trivial abelian ideal
A. Let Fbe the Fitting radical of H. Since A^F9FΦ {0}. By [1, Corollary 6.3.2] we
have Fch H<\ L, so that F<i L. As in the proof of [9, Lemma 4.2], we can show that
Feέ(<i)5l. It follows from Corollary 1 that FeX>ΠEH)2ϊn(E2ί)Q^E2I. Since
{0} φFeEδl, there is a positive integer msuch that F(m~ υ Φ {0} and ,F(m) = {0}. Since

iΓ ( m" 1 ) is a non-trivial abelian ideal of L.

THEOREM 2. Over any field I of characteristic zero,

PROOF. Let L eDf) (έ9ί)QS and let M be any non-zero homomorphic image of
L. Since {0} / MeX>Π(^)QS> by Lemma 2 Mhas a non-trivial abelian ideal. Owing
to [7, Lemma 1.1], we have Leέ(<ι)$t. Thus by Corollary 1 we obtain

It can be easily deduced from Theorem 2 and Lemma 1 that over any field I of
characteristic zero, if no non-trivial X)-algebra is perfect, then every T)-algebra is
soluble.

4.

In group theory Smith [8] has constructed a non-nilpotent, hypercentral,
metabelian group in which every subgroup is subnormal. In Lie theory, however, it
is still an open question whether every hypercentral Φ-algebra is nilpotent. In this
section we shall show that in order to give the answer to this question it is sufficient
to consider whether every hypercentral, Fitting, metabelian T)-algebra is nilpotent.

LEMMA 3. Let Le^ftM2 and H,K^L. Then:
(1) IfHe% then HLe9l.
(2) ////, Ke% then <//,

PROOF. (1) Since L eX), H si L. There are non-negative integers r and s such
that Hr+1 = {0} and H^SL. Set n = r + s. Then it is clear that [L,nίΓ\ = Hn + 1 = {ϋ).
Set A = L2. Since H^H+A^L, we have HL^H+A. By modular law HL = H
+ (HLf]A). Since A is an abelian ideal of L, by using induction on k we can easily see
that for all non-negative integers k, (HL)k+1 = Hk+1 + [HL()A,k //] . It follows that
(HL)n + 1^Hn + 1 + lL,nIΓί = {0}. Hence HLe9l.

(2) By (1) HL, KLe<$l. Therefore by Fitting's theorem (cf. [1, Theorem 1.2.5])
we have HL + KLeϊSl. Since <#, K)^HL + KL, <//,

PROPOSITION 2. £n3nStn2* 2 = ̂  #and only ιf

PROOF. Assume that Dn3n5tn3I 2 ^9i and let LeT)f]3(]Sa2. Then by
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Lemma 3 (1) we have L = £ J c e L <» L egt. Therefore Leϊi. It follows that
^91. Since the class Df)3 is s-, Q-closed, by using [1, Proposition 7.1.1 (d)] we see
that T)f]3Π^n^^ for all positive integers n. Hence T>Γ)3Γ)ESa^yi. Therefore, by
using Corollary 2, we have Φ n 3 ^ 9 i The converse is trivial.
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