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Introduction

Heineken and Mohamed [4] have constructed a Fitting, metabelian group
with trivial centre in which every subgroup is subnormal. In Lie theory, Unsin [10]
has constructed a Fitting, metabelian Lie algebra with trivial centre in which every
subalgebra is a subideal. As in group theory, the class D of Lie algebras in which
every subalgebra is a subideal is one of the typical classes of generalized nilpotent
Lie algebras.

Recently Brookes [2] has proved that a hyperabelian group in which no non-
trivial section is perfect and in which every subgroup is subnormal, is soluble ([2,
Theorem A]), and he has concluded that a hypercentral group in which every
subgroup is subnormal, is soluble ([2, Corollary A]). Subsequently, generalizing [2,
Theorem A], Casolo [3] has proved that a group in which no non-trivial section is
perfect and in which every subgroup is subnormal, is soluble ([3, Theorem]). The
purpose of this paper is to present the Lie-theoretic analogues of [2, Theorem A and
Corollary A] and [3, Theorem].

We shall first prove that DNE(<a )UN EA)? <A (Corollary 1), where £ (< )W is
the class of hyperabelian Lie algebras, (E2)? is the largest Q-closed subclass of the
class of hypoabelian Lie algebras and e is the class of soluble Lie algebras. The
group-theoretic analogue of this result is also true and is a slight generalization of
[2, Theorem A]. We shall secondly prove that over any field  of characteristic zero
DN (EA)S <eA (Theorem 2), where (EA ) is the largest Q-, s-closed subclass of the
class of hypoabelian Lie algebras and is equal to the class of Lie algebras in which no
non-trivial section is perfect.

1.

Throughout this paper we always consider not necessarily finite-dimensional
Lie algebras over a field f of arbitrary characteristic unless otherwise specified.
Notations and terminology are based on [1]. But for the sake of convenience we list
the terms that we use here.

Let L be a Lie algebra over a field f and » be a non-negative integer. By H< L
(resp. HaL,Hch L, H<"L, Hsi L), we mean that H is a subalgebra (resp. an ideal,
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a characteristic ideal, an n-step subideal, a subideal) of L. If H'si L, then there exists
the least integer n with respect to H<a"L , which we denote by si(L: H)in [5]. For H
<L, H* denotes the smallest ideal of L containing H. For a positive integer n, L"
denotes the n-th term of the lower central series of L. Angular brackets ¢ ) denote
the subalgebra generated by their contents.

A class X is a collection of Lie algebras together with their isomorphic copies
and the 0-dimensional Lie algebras. U (resp. U, A", R, €, F, Ft, N, N,, 3) is the
class of Lie algebras which are abelian (resp. soluble, soluble of derived length <n,
residually soluble, Engel, finite-dimensional, Fitting, nilpotent, nilpotent of class
=<n, hypercentral). D is the class of Lie algebras in which every subalgebra is a
subideal. For a positive integer s, D, , is the class of Lie algebras L such that {x,:--,
x,><31°L for all x,eL (1Zi<s).

Let X be a class of Lie algebras. L is called an X-algebra if L eX. An ascending
X-series {L,: a<p} of L is a family of subalgebras of L such that .

(@ Lo,={0} and L,=L;
() L<L,.; and L,,,/L,eX for any ordinal a< p;
() L,=Us<uL, for any limit ordinal u < p.

L is called a hyper X-algebra if L has an ascending X-series {L,: « < p} such that
L,<L for all a<p. The class of hyper X-algebras is denoted by £ (<1 )X. In
particular, £ (<) is the class of hyperabelian Lie algebras. For an ordinal o, L®
denotes the a-th term of the transfinite derived series of L. We use L™ to denote the
intersection of all the L ®s. L is said to be hypoabelian if L™ = {0}. E is the class of
hypoabelian Lie algebras. Lere iff L ={0}. It follows that REUSEA. X is s-
closed (resp. Q-closed) if HeX (resp. L /HeX) whenever HZ L (resp. H< L) and
LeX. We use X?(resp. X¥) to denote the largest Q-closed (resp. Q-, s-closed) subclass
of X.

Asin group theory, we say that H/Kisasectionof L if Ks H< L. L is said to be
perfect if L2=L. Then we have

LemMa 1. Le (W if and only if no non-trivial section of L is perfect.

ProoOF. Let X be the class of Lie algebras in which no non-trivial section is
perfect. Since perfect hypoabelian Lie algebras must be 0-dimensional, we have
EAW)B <X. Let LeX and suppose that L ® 3£ {0}. Since L * is a non-trivial section
of L, L™= (L™)2< ™) a contradiction. It follows that X <&. Since X is Q-, s-
closed, we have X < (E2)%,

2.

In this section we shall present the Lie-theoretic analogues of [2, Theorem A
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and Corollary A].
We begin with the following

THEOREM 1. Let Le®. If L has an ascending W-series {L,: a < p} such that
L,<L and L /L ,eE¥ for all ordinals a < <p, then LeeW.

PrROOF. Assume that L ¢g. Then there is the least ordinal u < p with respect
to L,¢eU. Clearly u>0. Since L ,e for all o < y, p is a limit ordinal. The method of
proof is essentially that used by Brookes in proving [2, Theorem A]. We aim to
construct a sequence {H;}i2; of subalgebras of L, strictly ascending sequences
{n(i)}{2 and {s(i)};2, of positive integers and a sequence {«(i)}2, of ordinals <y,
which satlsfy the following conditions:

(i) for each i>1, H; is a finitely generated subalgebra of L%~ 1);

(ii) for each i>1, 5(i) = 8i (K ni— 1)/ Kinwy: (H; + Kin)/Kin), Where K,
=L[9)+La(l‘—1) (] 19 29 ),

(iii) for each iz 1, (Hy, -, HY)SL .

We set H; ={0},n(1)=s(1)=1and a(1)=1. Let i>1 and suppose that those have
been constructed up to the (i— 1)-th terms. For convenience sake, we set n=n(i—1),
s=s(i—1) and a=a(i—1). Clearly K; ; 2K, ,=---. Suppose that X; ;=K ;,, for
some j=1. Then (L,/L,)?=K,,/L,=K;;+,/L,=(L,/L,)U*"V. 1t follows that
(L,/L)P=(L,/L)®=(L/L,)¥={0}. Hence L,/L,eeN. Since a<p, L,cEW.
Therefore we have L ,ee, a contradiction. Thus we obtain K; ; > K; ;> .

By using [1, Theorem 7.2.5], we can find a positive integer m such that D,
<N, Define n(i)=n+m+1. Let ; denote the natural map K, ,—K;,/K; .
Suppose that si (;(K; ,): ¥;(X))<s for all finitely generated subalgebras X of L.
Then we have Y, (L‘”’) Yi(Kin)eD, <N, Hence (K np-1)=V¥: (L"‘*"")
=y, (LP)™ <y (LP)" 1 ={0} and therefore K; - ; = K; ;- This is a contradic-
tion. Thus there exists a finitely generated subalgebra H; of L " such that si (/;(K; ,):
Vi(H;))>s. Define s(i)=si (;(K; ,): ¥;(H;)). It is clear that (Hl, ---, H;» is a finitely
generated subalgebra of L . Since 1 is a limit ordinal, there exists an ordinal a(i) <u
such that (H,, -+, H;» < L ;. Therefore the i-th terms have been defined. Thus {H},
{n(i)}, {s(?)} and {a(i)} can be inductively constructed.

Wenow set H=<H;:i=1,2,---)> and r=si(L ,: H). Since the sequence {s(i)} is
strictly ascending, there is a positive integer ¢ such that r <s(z). Let y denote the
natural map L,—L /K, . Then evidently y| Ky 1) =y, Let i be a positive
integer. Ifi<¢— 1, theny (H;)={0} since Hy, -+, Hy,--- , Hy -1 D S L 14— 1y S K, oy If i
=1+1, then Y (H;)= {0} since H,<L{¢" 1”<L‘"“”<K .n Hence we have ¥ (H)
=(Y(H): i=1,2,---> =Y, (H) SY:(Ki e - 1)) Since Y(H)<"Y(L,), ¥(H)=y,(H,)
<V, (K, ne-1))- Thus s(£)=8i (K, ne—1)): ¥.(H,))Sr<s(t). This is the final
contradiction. Therefore we have L eg.
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COROLLARRY 1. DE(<)UNEA)<EN.

ReEMARK. The proof of Theorem 1 can carry over in group theory without
difficulties. Therefore the group-theoretic analogues of Theorem 1 and Corollary 1,
which are slight generalizations of [2, Theorem A], are also true.

COROLLARY 2. Let X be a class of Lie algebras. If 3< X <g(<)g, then DNX
<EeU.

Proor. By [l, Lemma 8.1.1] we have 3 <EWQ. It follows from Corollary 1
that DN3 <. Since D <€, by [6, Theorem 8] we have DNe(< )F = Dn@né(<1 )&
=DNJ.

In Theorem 1 the assumption that Le®D is essential. In fact, the following
proposition shows that in Theorem 1 we cannot replace the assumption that Le®D
by the assumption that Le &t.

PROPOSITION 1.  Over any field, there exists a non-soluble, Fitting Lie algebra
L having an ascending W-series {L ,: n< w} such that L ,<<L and L /L ,eReU for alln
<o.

Proor. We here consider the McLain Lie algebra L =%t (V) over ¥(cf. [1, p.
111]), where N is the set of positive integers with natural ordering. Then L has basis
{a;;:1,jeN, i< j} with multiplications [a;}, @, 1= 6 3a; — 6 ,a,;. It is well known (cf. [ 1,
p.119]) that L e Ft. We can easily verify that L ™= (a;;: j—i=2") #{0} (n=0, 1,---)
and L@ =, .,L™={0}. Therefore LerReA\EA. For each positive integer n, we
set L ,=<a;;: i=n) and K, =<a;;: n<i). Then it is not hard to see that L ,<L =L,
+ K,and L ,NK,={0}.Set L ,={0} and L ,= L. For any positive integer n, we have
L,/L, y={a,+L,_;:n<jyeW. Since L ={J,<,L,, {L,: nSw} is an ascending
A-series of ideals of L. Furthermore, it can be easily seen that for any positive
integer n, L /L ,= K, ~ L erRe?.

3

In this section we shall consider D-algebras over a field T of characteristic zero
and present the Lie-theoretic analogue of [3, Theorem]. The method of proof is
essentially that used by Casolo in proving [3, Theorem].

We need the following

LEMMA 2. Let L be a Lie algebra over a field ¥ of characteristic zero. If
{0} #LeDn@W), then L has a non-trivial abelian ideal.

PrOOF. We denote by n(L ) a minimal member of {si(L:{x)):0#x€eL } and
show the result by using induction on n(L ). Ifn(L ) =0, then L is 1-dimensional and
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so the result is true. Let n(L )= 1. There is a non-zero element x of L such that n(L )
=si(L: {x)). Set H={x)" Then {0} # He DN (EA)S. Since si (H: {xY)=n(L)—1,
we have n(H)=n(L )— 1. By inductive hypothesis, H has a non-trivial abelian ideal
A. Let F be the Fitting radical of H. Since A < F, F#{0}. By [1, Corollary 6.3.2] we
have Fch H<1L,so that F<a L. Asin the proof of [9, Lemma 4.2], we can show that

Fet(<)U. It follows from Corollary 1 that FeDng(<)UN (EA )Q<E. Since
{0} £ FeeW, there is a positive integer m such that F™~1 3 {0} and F™ = {0}. Since
Fm=UchF< L, F™™ 1 is a non-trivial abelian ideal of L.

THEOREM 2. Over any field t of characteristic zero, D\(EA)S <E.

ProOF. Let Le®D(EA)® and let M be any non-zero homomorphic image of
L. Since {0} # Me D (EA)*, by Lemma 2 M has a non-trivial abelian ideal. Owing
to [7, Lemma 1.1], we have Leg(< ). Thus by Corollary 1 we obtain
LeDE(<)ANEA)SEN.

It can be easily deduced from Theorem 2 and Lemma 1 that over any field f of
characteristic zero, if no non-trivial D-algebra is perfect, then every D-algebra is
soluble.

4.

In group theory Smith [8] has constructed a non-nilpotent, hypercentral,
metabelian group in which every subgroup is subnormal. In Lie theory, however, it
is still an open question whether every hypercentral D-algebra is nilpotent. In this
section we shall show that in order to give the answer to this question it is sufficient
to consider whether every hypercentral, Fitting, metabelian ®-algebra is nilpotent.

LeEMMA 3. Let LeDNU? and H, K< L. Then:
(1) If HeM, then H eN.
(2) If H, KEN, then (H, KyeNn.

PRrOOF. (1) Since Le®, H si L. There are non-negative integers r and s such
that H"*!={0} and H<*L.Setn=r+s. Then it is clear that [L,, H]=H"*' = {0}.
Set A=L?2 Since HEH+ A< L, we have H*< H+ A. By modular law H*=H
+ (H™NA). Since A4 is an abelian ideal of L, by using induction on k we can easily see
that for all non-negative integers k, (HX)** 1= H**! + [H A, H]. It follows that
(HYy'"*'<H"*'+[L,, H]={0}. Hence H eR.

(2) By (1) HY, K“eN. Therefore by Fitting’s theorem (cf. [1, Theorem 1.2.5])
we have H + KLeMN. Since (H, K) S H“+ K%, (H, K)eR.

PROPOSITION 2. DNINFtNA2EN if and only if DNIEN.
PROOF. Assume that DNINFINUA><N and let LeDNJNU> Then by
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Lemma 3 (1) we have L =Y, _; <x)>*e&t. Therefore LeN. It follows that DNINU?
<. Since the class DNJ is s-, Q-closed, by using [1, Proposition 7.1.1 (d)] we see
that DNFNA" <N for all positive integers n. Hence DNJNEA < N. Therefore, by
using Corollary 2, we have DN3 S N. The converse is trivial.
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