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Introduction

The aim of this paper is to develop a theory of reductions for graded rings and to
study graded modules using this theory. In particular, we introduce a certain class of
graded modules which we call pseudo-flat graded modules and examine some of
their properties. Our theory of reductions of graded rings is a natural generalization
of the theory of reductions of ideals due to Northcott and Rees [16], and the
techniques used are similar to the ones in the case of ideals. But the viewpoint of
general graded rings greatly clarifies the situations and is useful even in the case of
ideals. ‘

In §1 and §2, we define the analytic spread and the pseudo-flatness of graded
modules, and prove some elementary facts about them.

In §3, we introduce the notion of reductions of homogeneous graded rings with
respect to finitely generated graded modules. Then we prove a fundamental
theorem in the theory of reductions, namely, the existence of minimal reductions
and the characterization of minimal reductions by the analytic spread (cf. Theorem
3.3). By this theorem, we can give the structure theorem for pseudo-flat graded
modules (cf. Theorem 3.4).

In §4, using this structure theorem, we examine some properties of pseudo-flat
graded modules.

In §5, making use of minimal reductions, we introduce a numerical invariant of
a graded module which we call the reduction exponent, and study properties of
graded modules by this invariant. Especially, we compare the reduction exponent
with Castelnuovo’s regularity which the author introduced in [17].

Notation and terminology: Throughout this paper, all rings are commutative
noetherian rings. Any graded ring 4 = ®,.,4, is positively graded (i.e., A,=0for all
n<0), and is generated over 4, = R by elements of degree one. Then we say that A4 is
a homogeneous R-algebra. Weput 4, =@, oA, Let R be aring, I anideal of R and
E an R-module. Ming(E) denotes the set of minimal elements in Suppg(E). u(E)
denotes the smallest number of generators of E. For a homogeneous R-algebra A,
put emb(A4)=u(A,) (the embedding dimension of A). If A is a homogeneous algebra
over a field and M is a finitely generated graded A-module, then e(M) denotes the
multiplicity of M. We put R(I, E)=@®,,oI"E, G(I, E)= @, o["E/I"* 'E, R(I)=R(,
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R)and G(I)=G(1, R). Sg(E) denotes the symmetric algebra of E. If the residue field of
the local ring R, is infinite for any peSpec(R), then we say that all residue fields of R
are infinite. Note that for any R, the ring R(X) has this property.

§1. Analytic spread of graded modules

Throughout this paper, A=®,, 4, denotes a homogeneous algebra over a
ring R and M=®,.;M,, is a finitely generated graded 4A-module. A mapping f
defined on Z is said to be stable if f(n) is constant for all sufficiently large n.

ProposiTION 1.1.  The invariants anng(M,), Suppgr(M,), dimg(M,),
gradegz(M,) and Assg(M,) are stable. When R is local, depth/(M,), hdg(M,) and
idg(M,) are also stable, where I is an ideal of R. (hdg(M,) and idg(M,) denote the
projective dimension and the injective dimension of M, respectively.)

Proor. Since M is finitely generated, we have 4;M,=M, ., for all n>0.
Hence anng(M,)canng(4,M,)=anng(M,,,) for all n>0. This implies that
anng(M,) is stable, and the assertions for Suppg(M,), dimg(M,) and gradez(M,)
follow from this. For Assg(M,), see [15]. (We have Assg(M,)={PBNR|PeAss (M),
PAA,} for all n>0.) We show the stability of depth,(M,) by induction on d
=dimz(M,) for all n>>0. Put Z =Z,(M,), the set of zero-divisors of M,, for all n>>0.
If I = Z (the case d=0 is included in this case), then depth;(M,)=0 for all n>0. If
I1#£Z,ie., there is an element ael which is M -regular for all n>>0, then using the
induction hypothesis on M/aM, we get our assertion. The stability of hdg(M,): If
hdy(M,)<oo for all n>0, then hdg(M,)=depth(R)—depthgz(M,) is stable.
Otherwise, for infinitely many n>0, we have hdg(M,)= o0, i.e., Tor¥(M,, k) #0, r
=depth(R)+ 1 where k is the residue field of R. Since Tor®(M, k)= @, Tor}(M,, k) is
afinitely generated graded A-module, we have Tor?(M,, k) #0, i.e.,hdg(M,) = oo for
all n>>0. The stability of idg(M,): We may assume that dimg(M,)=d (constant) for
all n=0. If idg(M,)= oo for all n>>0, the assertion is clear. Otherwise, for infinitely
many n >0, we have idg(M,) < oo, or equivalently, Exti(k, M,) =0 for all i such that
r<isr+d, r=depth(R)+1. Since Extg(k, M)=@,Extk(k, M,) is a finitely
generated graded 4A-module, for all n>0, we have Exth(k, M,)=0,r<i<r+d, ie,
idg(M,) < co. Therefore idz(M,)=depth(R) for all n>0. Q.E.D.

Let P be a property for finitely generated R-modules. Then M is said to be
asymptotically P if M,, is P for all n>>0. P is said to be an asymptotic property if the
following condition holds: For any A and M, if M,, is P for infinitely many n=>0,
then M is asymptotically P.

COROLLARY 1.2. The following properties are asymptotic: a zero module, a
Sfaithful module, a torsion module. When R is local, the following properties are also
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asymptotic : a free module, an injective module, a Cohen-Macaulay module, a perfect
module, a Gorenstein module.

Proor. The assertions follow from Proposition 1.1, because the above
properties are characterized as follows: anng(E)=R, anngz(E)=0, gradegz(E)>0,
hdz(E)=0, idx(E)=0, dimg(E)=depthg(E), hdg(E)=gradeg(E), idg(E)=
depthg(E). Q.E.D.

In the rest of this section, we assume that (R, m, k) is a local ring. We define the
analytic spread ¢(M) of M by ¢(M)=dim 4 ,(M® rk), the Krull dimension of the
A®gk-module M@ gk. If I is an ideal of R, then ¢(R(I))=¢(G(I)) coincides with the
analytic spread ¢(/) of I introduced by Northcott and Rees [16]. We have ¢(M)
=¢(A/ann ,(M)). If dimgx(M )>0 and PReMing(M) for any PeMin (M), then
4(M)<dim (M) — 1. As the example A = M = R[X]/(mX) with R a DVR shows, the
second condition cannot be deleted. We have dim(A4)=ht(IR), where M=mP A4,
(cf. [7]). To state the following proposition, we recall the definitions of some
invariants of ideals (cf. [18]). For an ideal I of a (not necessarily graded) ring A4, put
alt(I)=max {ht(p)|p is a minimal prime ideal of I}, cora(I)=max {n|H}(4)#0}, and
ara(l)=min{n|rad(I)=rad(ay,...,a,) for some a;,...,a,el} (when A is a graded ring
and I is a homogeneous ideal, we assume that each g, is a homogeneous element). If
M is a finitely generated A-module, then we write ht(I, M), alt(I, M), cora(l, M) and
ara(l, M) instead of ht(J), alt(J), cora(J) and ara(J) respectively, where J=(I
+ann,(M))/ann ,(M).

ProrposiTioN 1.3. (1) alt(4,,M)<cora(d,,M)<ara(4,.,M)Z¢M)<
emb(A) and ht(A4 ,, M) <dim ,(M)—dimg(M) < ¢(M) < dim ,(M).

(2) The function p—é(Mp)=dim(M ® gzk(p)) defined on Spec(R) is upper
semicontinuous.

3) e¢M)=ht(A,,M) if and only if dim(M®gk(p))is constant for all
peSuppg(M).

4) dim(M)—dimz(M,)<4M)=<dim ,(M)—depthg(M,) for all n>0 (cf
2D

Proor. (1) We may assume that M =A4. The inequalities £(4) <emb(A4),
4(A)<dim(A), ht(4,)=dim(4)—dim(R) are clear. For the inequalities alt(4,)
<cora(4,)<ara(4 ), see [18]. We show the inequality ara(4.)<4(A). If R is a
field and dim(4)=d, then by Noether’s normalization theorem, there exist
homogeneous elements a,...,a, in A such that A is integral over R[a;,...,a,]. It is
easy to see that rad(4 ,)=rad(a,,...,a,). General case: Put A= A/mA and ¢=¢(A).
Then there exist homogeneous elements a,,...,a, in A such that rad(4,)
=rad(d,,...,a,). Hence 4,"<(a,...,a,) for some n and this implies that 4"
<(ay,....a,)+md,ie., A "<(ay,...,a,)+mA.". By Nakayama’s lemma, we have 4 ,"
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c(ay,...,a,). Hence rad(4,)=rad(a;,...,a,). Next weprove the inequality dim(A4)
—dim(R)<4(A). Put M=mDA, and apply [14], Theorem 13.B to the local
homomorphism R—4g. Then we get dim(4)=ht(M) < dim(R)+ dim(Ag, @ k)
=dim(R)+ ¢(A). (2) follows from [9], 28, (13.1.5). (3) follows from the equality
ht(4 ;, M)=min {dim(M® gk(p))lpeSuppg(M)}. (4) Since ¢(M)=¢(M, ), where
Mz,=®,2,M,, we may assume thatdimg(M,)=dimg(M) for all n>>0. Then (1)
implies the first inequality. We prove the second inequality by induction on r
=depthgz(M,) for all n>0. If r=0, then the assertion is clear. If r >0, then there
exists aem such that a is M,-regular for all n>0. Therefore depthyz(M,/aM,)
=depthg(M,)—1 for all n>0, and by the induction hypothesis (note that
M/aM ® k=M ® gk), we get 4(M)=¢(M/aM)<dim,(M/aM)—depthy(M,/aM,)
=dim ,(M)—depthg(M,) for all n>0. Q.E.D.

For an ideal I of R, we have the following (in)equalities: ht(I)=ht(G([) ), alt(I)
=alt(G(l),), ara(l)<ara(G(l),), ht(I)<dim(R)—dim(R/I)<¢(I) and alt(l)
Scora(l)sara(I)= ()< p(I)

§2. Pseudo-flat graded modules

Let A be a homogeneous algebra over a ring R and M a finitely generated
graded A-module. We say that M is pseudo-flat if dim A®Rk(v)(M ® rk(p)) is constamt
for all peSpec(R). M is said to be locally pseudo-flat if M»is a pseudo-flat A,-module
for all peSpec(R).

Let f: R—> R’ be a ring homomorphism. If M is (locally) pseudo-flat, then so is
the A®zR'-module M@ zR’, and the converse holds if %: Spec(R’)—Spec(R) is
surjective. If M is pseudo-flat, then M is locally pseudo-flat, and the converse holds
if Spec(R) is connected (cf. [23], Corollary 3.7). If R is local and M #0, then by
Proposition 1.3, (3), M is pseudo-flat if and only if £(M)=ht (4 ,, M) and Suppg(M)
= Spec(R).

ExampLE 2.1. (1) If M, is a flat R-module for all n>>0 and Spec(R) is
connected, then M is pseudo-flat and e(M ® zk(p)) is constant for all peSpec(R),
because the Hilbert polynomial of M® gk(p) is constant for all peSpec(R). The
example A=R[X, Y, Z]/(mX?, X Y, X Z) with (R, m) a DVR shows that the converse
is not true.

(2) IfIisanideal of alocal ring R, then G(I)is a pseudo-flat R/I-algebra if and
only if 4(I)=ht(I), namely, R is normally pseudo-flat along I in the sense of [12] (see
also [10], [11], [13]).

(3) For a finitely generated R-module E, Sg(E) is locally pseudo-flat if and
only if EQ gR,.q is a flat R, -module. If (R, m) is a local ring, then Sg(m) is pseudo-
flat if and only if R is artinian or a DVR.

(4) Foranideal I of an equidimensional local ring R, R(I) is pseudo-flat if and
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only if I is nilpotent or ¢(I)=ht(/)=1. R(m) is pseudo-flat if and only if dim(R)< 1.

(5) IfRislocal, dim,(M)=dimgz(M)+ht(4,, M) and depth(M,)=dimgz(M)
for all n>0, then M is pseudo-flat by Proposition 1.3, (4).

(6) Let A be a normal homogeneous domain with torsion class group. Then
each A4, is a reflexive R-module (cf. [6], Proposition 6.8, Theorem 10.8). Hence, if
dim(R) <2, then A is pseudo-flat by (5). Moreover, it is easy to see thatif R isa UFD
and ht(4,)=1 (resp. R is a regular local ring with dim(R) <2 and A4 is a UFD with
ht(A4,)<2), then A~ R[X] (resp. A~ Sg(A,) and A4, is a projective R-module).

(7) Let A be a homogeneous algebra over a local ring R. If either dim(R)=1
and A is an integral domain or dim(R)=2 and A4 is a UFD, then A4 is pseudo-flat by
(5) and (6). For any DVR (R, m), the R-algebra R[X]/(mX) is reduced but is not
pseudo-flat. For any regular local ring (R, m) with dim(R) = 2, the R-algebra R(m) is
normal but is not pseudo-flat. For any regular local ring (R, m) with dim(R) > 3, let
{ay,...,a,} be a minimal basis of m and put E=@®}.,Re;/(}7- a:e)R. Then
SR(E)2R[X,...,X, 1/ = 1a;:X;) is a UFD but is not pseudo-flat because E is not
free (cf. [21]).

(8) Let A be a homogeneous integral domain. If either dim(A4) <2 or dim(A4)
<4and Aisa UFD, then 4 is pseudo-flat. To see this, by (7), we may assume that R
is local, 4 is a UFD, dim(R) =3 and dim(A4)=4. Then the assertion follows from (6).
Even if either dim(4)=3 and A is normal or dim(A4)=>5 and A is a UFD, A4 is not
necessarily pseudo-flat.

§3. Reductions of graded rings

Let 4 be a homogeneous algebra over a ring R. We say that A is of the principal
class if the equality emb(A4)=ht(A4 ,) holds. If (R, m, k) is a local ring, then A is of the
principal class if and only if 4 is pseudo-flat and A/mA is a polynomial k-algebra,
and in this case 4 ® zk(p) is a polynomial k(p)-algebra for every peSpec(R). If A4 is of
the principal class, then so are Ag, A/I4 and A, .4, where S and I are a multiplicative
set and an ideal of R respectively.

PROPOSITION 3.1.  The following conditions are equivalent

(1) A is of the principal class.

(2) A is isomorphic to R[X,...,X,]/I, where v=emb(A) and I is a nilpotent
ideal of R[X y,...,X,].

(3) A,eq is isomorphic to R, 4[X,...,X,] with v=emb(A).

Proor. The equivalence of (2) and (3) is clear. (1) implies (2): Put I
=Ker(R[X,...,X,]—A). Then, for any peMin(R), we have Iy,cpRs[X,,...,X,]
because  dim(4p)=dim(Re[X,..., X, ])=0. Therefore we  have I
c{p[Xy,.... X, ]IpeMin(R)} =nil(R[X y,...,X,]). (3) implies (1): We have ht(4,)
=ht(A4.q)+, and emb(4)=emb(A4,.q)=ht(4,.s), by the assumption. Therefore



468 Akira OoIsHI

emb(4)=ht(4.). Q.E.D.

COROLLARY 3.2. (1) If Risreduced, then A is of the principal class if and only
if A is a polynomial R-algebra.

(2) If A is of the principal class, then for any radical ideal I of R, we have
A/TA=R/I[X ,...,X,] with v=emb(A).

Classically, an ideal I of R is said to be of the principal class if the equality u(I)
=ht(I) holds. This is equivalent to the condition that G(I) is an R/I-algebra of the
principal class and u(I) = u(I/1%). The latter condition is always satisfied if R is a local
ring. By Proposition 3.1, we are able to give very simple proofs for a few
fundamental facts about ideals of the principal class in [3] and [4]. But we omit the
details.

A homogeneous sub R-algebra B of A is said to be a reduction of A with respect
to a graded 4-module M, or simply an M-reduction of A, if M is finitely generated B-
module. An M-reduction of A4 which is minimal with respect to inclusion relation is
called a minimal M-reduction of A. An A-reduction (resp. a minimal A-reduction) of
A is called a reduction (resp. a minimal reduction) of A. A homogeneous sub R-
algebra B of Ais an M-reduction of Aifand onlyif BiM,=M, ., foralln>0.IfJ =1
are ideals of R and E is a finitely generated R-module, then R(J) is an R(I, E)-
reduction of R(J) if and only if JI"E=I"*'E for some n (we say that J is an E-
reduction of [ in this case). Therefore R(J) is a reduction (resp. a minimal reduction)
of R(I) if and only if J is a reduction (resp. a minimal reduction) of I in the sense of
[16].

The following is a fundamental theorem in the theory of reductions. Though it
can be proved in the similar way as in the case of ideals, we give a proof for
completeness.

THEOREM 3.3.  Assume that (R, m, k) is a local ring. Then, for any M-reduction B
of A, there is a minimal M-reduction C of A which is contained in B and we have mC,
=mA,NC, (inparticular, ¢(M) < emb(C) <emb(B)). If k is an infinite field and B is an
M-reduction of A, then the following conditions are equivalent :

(1) B is a minimal M-reduction of A.

(2) B/mB is regular (i.e., a polynomial k-algebra) and M/mM is a faithful
B/mB-module.

(3) emb(B)=¢(M).

The assertions (2) <> (3) = (1) are also true even if k is a finite field.

ProoOr. We denote by a and x the images of aeR and x€A, in R/m and
A,/mA, respectively. Among the M-reductions of 4 contained in B, take an M-
reduction D of A4 such that dim, (D, + mA4,/mA,) is minimal. Let x,,...,x,€D be
such that X,,...,X, is a basis of D, + mA;/mA;, and put C=R[x,,...,x,]. Since C,
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+mA;=D,+mA, and D.M,=M, ., for all n>0, we have C,M,+mM,,,=C,
+mA M,=(C,+mA )M, =D, +mA)M,=D,M,+mA,M,=M,, , foralln>0.
Hence C,M,=M,, ., for all n>0, ie., C is an M-reduction of 4. We show the
equality m4A,NC;=mC,. If x=Ya;x; is in mA,;NC,, then Y ax;=0 in D,
+mA,;/mA,;. Hence a;=0, i.e., g;is in m for all ;, and we have x=) g;x;emC,. Let E
< C be an M-reduction of 4. Then E; + mA, =C, +mA, and we have E, + mA,
= C, +mA, by thechoice of D. For any element x of C,,put x=y+z,yeE,,zemA,.
Then z=x—yemA;NC,=mC,. Hence x=y+zeE; +mC,. Thus C, +mA,=E,
+mA,,and we have E, =C,, i.e., E=C. Therefore C is a minimal M-reduction of 4.
Next we prove the second assertion. The equivalence of (2) and (3): Note that if
emb(B)=¢(M), then emb(B)=dim«(M/mM)=dimg, z(M/mM)<dim(B/mB).
Hence B/mBis regular. When B/mB is regular, M/mM is a faithful B/mB-module <>
dim(M/mM)=dim(B/mB) <> ¢(M)=emb(B). (1) implies (2): Put u(B,)=r and let
X1,...,X, be a minimal basis of B;. We consider M as a graded module over S
=R[X,,....X,] by X;m=x,m (meM). If M/mM is a faithful S/mS-module, then
§/mS— B/mB is an isomorphism. Let f(X,,...,X,)eS be a homogeneous polynomial
of degree t=1 and assume that f(M/mM)=0, where f is the image of f in S/mS.
Then fM,cmM,,, for all n. It is enough to show that fem[X,...,X,]. If the
coefficient of X{ is a unit, then x{ M, =(x,,...,x,)' 'B;M,+mM,,, for all n. Hence
B.M,c(x,,...,x,)B,—- 1M, +mM, . for all n. Since Bis an M-reduction of A, we have
B M;=M,,, for all s>»>0. Therefore M,,,=B,M,<=(x,,...,x,)B,_ M;+mM,,,
=(Xg5...s X ) Mgy 1+ mM,,, for all s>0. Hence M, ,=(x,,...,x,)M,,,_, for all
s>0. This implies that R[x,,..., x,](< B) is an M-reduction of 4 which contradicts
with our assumption. Hence the coefficient of X7 is in m. Next, we show that if not
allofay,,a54,...,a,,€Rareinm, thenf(a,;,a,;,...,a,1) =0 mod m. Then since k is an
infinite field, we have fem[X,,...,X,]. Since a,;, a,;,...,4,; is a unimodular
sequence, there exist a;;e R (1<i<r, 2 < j<r)such that if 4=(a;;), then det(A) is not
in m. Define a minimal basis y,,...,y, of B; by x;=)"%_,a;;y; Then f(Ay)M,
=f(x)M,=0mod mM,, , . for all n. By what we showed above, the coefficient of Y} in
f(AN=f(=1a,;Y;...05=14,;Y) is in m. Putting Y, =1, Y,=---=Y,=0, we get
fayq,...,a,,)em as desired. (3) implies (1): If & is an infinite field and C is a minimal
M-reduction contained in B, then C/mC < B/mB are both polynomial rings of the
same dimension. Hence C/mC = B/mB and we get C = B. If k is a finite field and C is
an M-reduction of A contained in B, then C® zR(X) is an M ® zxR(X)-reduction of
A® gR(X) and B® zgR(X) is a minimal M ® gR(X)-reduction of A® zgR(X). Hence
C®rR(X)=B®gR(X) and we get C=B. Q.E.D.

Assume that R is a local ring. For an M-reduction B of A, we have ¢ (M)
={¢z(M)and ht(4,, M)=ht(B., M). Hence M is a pseudo-flat A-module if and only
if M is a pseudo-flat B-module. When the residue field of R is infinite, if M is pseudo-
flat and B is a minimal M-reduction of A4, then Byis a minimal M,-reduction of Ap
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for all peSpec(R).

Minimal reductions of a given homogeneous algebra are not necessarily
isomorphic. For example, let (R, m) be a DVR and put A=R[X, Y]/(mX, X%+ Y2,
mY?)=R[x, y]. Then, since x(x, y) = y(x, y) = (x, )%, B; = R[x] = R[X]/(mX) and B,
=R[y]=R[Y]/(mY?) are minimal reductions of 4, but B, and B, are not
isomorphic.

The following theorem gives an important structure theorem for pseudo-flat
graded modules.

THEOREM 3.4. Assume that R is a reduced local ring with infinite residue field.
Then M is pseudo-flat if and only if there is a polynomial sub R-algebra B of A such
that M is a finitely generated faithful B-module. The ‘if* part is also valid even if the
residue field of R is a finite field.

In particular, A is pseudo-flat if and only if A is a finite extension of a polynomial
R-algebra.

Proor. Suppose that M is pseudo-flat and let B be a minimal M-reduction of
A. Then, for all peMin(R), we have dim(By)=dim (M,)=4(Ms)=£4(M)=emb(B).
Hence ht(B,)=min{dim(B;)[peMin(R)} = emb(B), i.e., emb(B)=ht(B,). Thus Bis
an R-algebra of the principal class, and by Corollary 3.2, B is isomorphic to a
polynomial R-algebra R[X,,...,X,] with n=¢(M). For all peMin(R), since
dim(My)=dim(By)=n and By=R,[X] with R, a field, we have anng (My)=0.
Therefore anng(M)<pemin®)P(X) =0, i.e., M is a faithful B-module.

Conversely, assume that some M-reduction B of 4 is a polynomial R-
algebra and M is a faithful B-module. Then, for all peMin(R), we have £(B)
=dim (B,)=dim (My)=¢(M,)< ¢(M)<emb(B)=¢(B). Therefore we have ¢(My)
=é»(M) for all peMin(R), ie, M is a pseudo-flat 4-module. Q.E.D.

PROPOSITION 3.5.  Let I be an ideal of a local ring R. Put A= A/IA, M= M/IM
and B= B+ IA/IA for a homogeneous sub R-algebra B of A. Then B is an M-reduction
of A if and only if B is an M-reduction of A. Assume that the residue field of R is
infinite. If B is a minimal M-reduction of A, then B is a minimal M-reduction of 4, and
any minimal M-reduction of A can be obtained in this way.

ProoF. The first assertion follows from Nakayama’s lemma. If B is a minimal
M-reduction of 4, then B is an M-reduction of 4 and B/mB=B+IA/mB+1A4
= B/(mB + IA)"\B= B/mB (since mAB=mB). Therefore emb(B)=emb(B)=¢(M)
= ¢(M) and this implies that Bis a minimal M-reduction of 4. Conversely, let B* be
a minimal M-reduction of 4. Then there is an M-reduction B of 4 such that B= B*.
Take a minimal M-reduction C of 4 contained in B. Then C is an M-reduction of 4
such that C < B=B*. Thus we have C= B*. Q.E.D.
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COROLLARY 3.6. Let R be a local ring with infinite residue field.

(1) If B is a minimal M-reduction of A, then B/mB is a minimal M/mM-
reduction of A/mA, and any minimal M/mM-reduction of A/mA can be obtained in
this way.

(2) Let I be an ideal of R and E a finitely generated R-module. If J is a minimal
E-reduction of I, i.e., R(J) is a minimal R(I, E)-reduction of R(I), then @,;,J"
+I"t 1" =Tmage(G(J)® gR/I - G(1)) is a minimal G(1, E)-reduction of G(I), and
any minimal G(I, E)-reduction of G(I) can be obtained in this way.

§4. Some properties of pseudo-flat graded modules

Let A be a homogeneous algebra over a ring R and M a finitely generated
graded A-module. The following lemma follows easily from Theorem 3.4. We omit
the proof.

LEmMA 4.1.  Let p be a prime ideal of R such that Ry is a reduced local ring with
infinite residue field. If My is pseudo-flat, then there is an element fe R —p such that A
has a polynomial sub R -algebra, over which M is a finitely generated faithful
module. (Hence Ma is pseudo-flat for all qe D(f).)

PROPOSITION 4.2. The sets U={peSpec(R)|M» is a pseudo-flat Av-module}
and V = {peSpec(R)|As is of the principal class} are open in Spec(R). If A is locally
pseudo-flat, then the set W= {peSpec(R)|A® rk(p) is a polynomial k(p)-algebra} is
open in Spec(R).

Proor. By the base change R— R(X),.4, We may assume that R is reduced and
all residue fields of R are infinite. (Note that the canonical mapping Spec(R(X))
—Spec(R) is an open mapping.) The openness of U follows from Lemma 4.1. To
prove the openness of W, by localization, we may assume that A is a finite extension
of a polynomial R-algebra B. Then, since W= Spec(R)— Suppgr(A4/B), the assertion
is clear. Finally, these facts implies the openness of V= {peSpec(R)|4» is pseudo-flat
and A® gk(p) is a polynomial k(p)-algebra}. Q.E.D.

For a DVR (R, m) put A=R[X, Y]/mX(X, Y)and B=R[X, Y ]/X(mX, Y).
Then A is not pseudo-flat, B is pseudo-flat, and the set {peSpec(R)|A® gk(p) is a
polynomial  k(p)-algebra} ={peSpec(R)|B® gk(p) is Cohen-Macaulay (or
Gorenstein)} = {m} is not open in Spec(R).

ProPOSITION 4.3.  If M is locally pseudo-flat, then the function pr—e(M & zk(p))
defined on Spec(R) is upper semicontinuous.

Proor. We have to show that for any neZ, the set M,(M)
={peSpec(R)le (M®gk(p))<n} is open in Spec(R). By the base change R
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— R(X),.q, We may assume that R is reduced and all residue fields of R are infinite.
By localization, we may assume that there is a polynomial sub R-algebra B
=R[X,,...,X,] of 4 such that M is a finitely generated faithful B-module. Fix a
prime ideal p of R and put P=pB. Then we have e(M®zk(p))
= rankpg 4 (M® ek () = dithy ) (M@ g (B) = 1pg(My)  (mote  that k(%)
=k(p) (X)is the quotient field of B®zk(p)=Fk(p)[X]). We show that M, (M)
={QNR|QeSpec (B), upo(Mg) <n} for any ne Z. Indeed, if pe M,(M) and P=pB,
then PNR=p and psy (My)=e(M®gk(p))<n. Conversely, assume that
QeSpec(B), QNR=p and g, (My)<n. Put P=pB. Then we have P=1Q and
e(M®Rk(p))=pB(B(M%)g#BD(MD)én. Since Spec(B)—Spec(R) is an open
mapping, this implies our assertion. Q.E.D.

THEOREM 4.4. Assume that R is a reduced local ring and M/mM is Cohen-
Macaulay. Then the following conditions are equivalent

(1) M is pseudo-flat and e(M ® rk(p)) is constant for all peSpec(R).

(2) M is R-free.

Proor. We show that (1) implies (2). If M is pseudo-flat, then e (M ® gk (p)) is
constant for all peSpec(R) if and only if e(M®gk)=e(M®zk(p)) for all
peMin (R). Hence by the base change R— R(X), we may assume that the residue
field of Ris infinite. Let B~ R[ X,,...,X,,] be a minimal M-reduction of A. Then since
M/mM is a Cohen-Macaulay B/mB-module with dim (M/mM)=dim (B/mB),
M/mM is B/mB-free. Therefore e(M/mM)=rank g, g(M/mM)=pg, z(M/mM)
and e(M,)=rankg (Mp)=rank8$(Mm)=uBm(M$) for all peMin(R), P=pB. By
the assumption, wé have uBm(M‘B)=‘uB/mB(M/mM)=uB‘B(Mm) for all PeMin (B),
where M=m@ B, Therefore M, is By-free, which implies that M is B-free.

Q.E.D.

THEOREM 4.5. Assume that (R, m) is a regular local ring. Then the following
conditions are equivalent:

(1) M is pseudo-flat and is a Cohen-Macaulay (resp. Gorenstein) A-module.

(2) M is R-free and M/mM is a Cohen-Macaulay (resp. Gorenstein) A/mA-
module.

Proor. By Lemma 4.6 below, it is enough to show the assertion for the
Cohen-Macaulay case because for the Gorenstein case, 4 is R-free under the each
condition. We may assume that R/m is an infinite field. Consider the following
condition:

(3) Thereis a polynomial sub R-algebra B~ R[X,,...,X,] of A such that M is
a finitely generated free B-module. (1) implies (3): Let B~ R[X},..., X, ] be a minimal
M-reduction of 4 and put t=m@ B, . Then, by the assumption, My, is a Cohen-
Macaulay module over a regular local ring By, with dim (My,) = dim (By). Hence My,
is a free By-module and this implies that M is B-free. (3) implies (2): Since M is
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B~R[X,,...,X,}free, M is R-free. Since M/mM is a finitely generated free
B/mBx~R/m[Xi,...,X,]-module, M/mM is a Cohen-Macaulay B/mB-module.
Hence M/mM is a Cohen-Macaulay A/mA-module. The fact that (2) implies (1)
follows from Lemma 4.6 below. Q.E.D.

LemMA 4.6 (cf. [9], 24,(6.3.3), [8]). Let(A, m)—>(B, n) be alocal homomorphism
of noetherian local rings, and let M (resp. N) be a non-zero finitely generated A-module
(resp. B-module). Assume that N is A-flat. Then M® 4N is a Cohen-Macaulay (resp.
Gorenstein) B-module if and only if M is a Cohen-Macaulay (resp. Gorenstein) A-
module and N/mN is a Cohen-Macaulay (resp. Gorenstein) B/mB-module. For the
Gorenstein case, we assume that B is A-flat.

PROPOSITION 4.7.  Let A be a pseudo-flat normal homogeneous domain over R.
Then each A, is areflexive R-module, the Going-down theorem holds for the extension
Rc A, and there is an injection Cé(R)—Cé(A) between the ideal class groups.
Moreover, if ht(A,)=1, then A~Sg(A,) and A, is an invertible R-module.

Proor. For the first assertion, we have only to show the Going-down
theorem for R = A4 (cf. [6], Proposition 10.7). By localization and the base change R
—R(X), we may assume that R is a local ring with infinite residue field. Then 4 is a
finite extension of a polynomial R-algebra which is a normal domain. Hence the
assertion is clear. For the second assertion, assume that R is as above and let K be
the quotient field of R. Since A® ¢xK is a one-dimensional homogeneous K-algebra,
A® K=~ K[X]. Hence rankz(4,)=1 for all n. Since A is pseudo-flat, there is an
element xe 4, such that x4,= A4, , for some n. Then, for each yeA,, we have yA4,
cAd,,,=xA, Hence y/xe(A,:A,)x=R, namely yeRx. Therefore A,=Rx.
Considering the generic fibers, the canonical surjection R[X]—R[x] is an
isomorphism. Q.E.D.

§5. Reduction exponents of graded modules

Throughout this section, let (R, m, k) be a local ring with infinite residue field, 4
a homogeneous R-algebra and M a finitely generated graded 4-module. We define
the reduction exponent 6 ,(M) of M by 6 (M)=min{neZ|there is a minimal M-
reduction B of 4 such that BiM,, =M, , for all m=n}. We denote § ,(A4) by 6(A).
For a finitely generated R-module E and anideal I of R, put ,(E) = dg;(R(I, E)) and
8(I)=05(R(I)). Then ,(E)=min{n|there is a minimal E-reduction J of I such that
JI"E=1I""'E}. Hence our d(I) coincides with the reduction exponent of I which was
introduced by Sally.

THEOREM 5.1. (1) We have 6 (M)<reg,(M):=min{ne Z|[HpM)];=0 if i
+j>n}, where P=A ., .(For reg,(M), see [17].) If M is pseudo-flat and dim ,(M)=d,
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then [H4M)],=0 for all n>5,(M)—d. Hence, if M is pseudo-flat and Cohen-
Macaulay, then 6 (M)=reg,(M).

(2) If R is a field and M is Buchsbaum, then 6 (M)=reg ,(M).

(3) We have 6 41 (M/IM)=6 (M) for any ideal I of R.

(4) IfA/mAis Cohen-Macaulay, then 6 (A)<f(A)+¢(A)—emb(A), where we
put f(A)=e(A/mA).

Proor. (1) Put y,(M)=min{neZ|A M, =M,,,, for all m=n}. Take a
minimal M-reduction B of A such that é ,(M)="yg(M). Then, by [17], Theorem 2, we
have yg(M)<reggz(M)=reg,(M). We show that if dim,(M)=dim(4)=d, then
[H¥(M)],=0 for all n>reg(A)+y,(M)—d. In fact, since there is a surjective
homomorphism @®_,A(—a;)—=M with a;<y M), the induced homomorphism
@i 1 [HHA)], - o~ [HEM)], is surjective, and [Hp(4)], -, =0if n—a;+d > reg(A).
Therefore, for all n>reg(A)+7y,M)—d, we have [H4(M)],=0. If M is pseudo-flat,
then B®gR,q=R.4[X}5....X,] with v=¢(M). Put C=R[X,,...,X,]. Hence
[H{(M)],=0foralln>reg(C)+y(M)—d=04M)—d.(2) Let B~R[X,,...,X,]bea
minimal M-reduction of 4. Then by [17], Proposition 18, we have reg,(M)
=reg(M/(X y,...,X )M)=reg(M/B, M) =y M). Hence ¢ ,(M)=reg ,(M). (Note that
in this case yz(M) does not depend on the choice of B.) (3) Let B be a minimal M-
reduction of 4. Then B= B+ 1A4/IA is a minimal M = M/IM-reduction of A= A/IA
and we have yg(M)=y5(M) by Nakayama’s lemma. Hence our assertion follows
from Proposition 3.5. (4) follows from (2), (3) and [17], Proposition 13. Q.E.D.

By Theorem 5.1, (3), we have 6,(E) = d4,(G(I, E)) for any finitely generated R-
module E. Since J 4(M) =46 4, (M/mM), some problems about reduction exponents

reduce to the case when Ris a field. If £(4)=d and u(4,) < (" ‘5 d) for some n, then

8(A4)<n, and if £(4)>0 and 4/mA is Cohen-Macaulay, then §(4) < ¢(A)'f (4)—1
(see [5], [20]).

PROPOSITION 5.2.  Assume that R is a (not necessarily local) reduced ring whose
residue fields are all infinite. If M is locally pseudo-flat, then the function p—9 4,(Mp)
is upper semicontinuous.

ProoF. We show that the set U= {peSpec(R)|0 ,,(M») = r} is open for all r.
For any peU, take a homogeneous sub R-algebra B of 4 and an element feR —p
such that B, is a polynomial R ;-algebra and M, is a finitely generated faithful B -
module. Then By is a minimal Mq-reduction of 44 for all e D(f). By the assumption,
we may assume that (B, ),(M,), = (M, ), for all n=r. Hencethere is an.element
geR—p such that D(g)=D(f) and (B,),(M,),= (M, ), for all n=r. Therefore
we have peD(g)<U. This completes the proof. Q.E.D.

COROLLARY 5.3. (R is not necessarily local) If M is locally pseudo-flat and
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M ® gk(p) is Buchsbaum for all peSpec(R). Then the function proreg(M ® gk(p)) is
upper semicontinuous.

Proor. By the base change R— R(X),.4, We may assume that R is a reduced
ring whose residue fields are all infinite. Then by the assumption, we have
reg(M® gk(p)) = (M ® gk(p))=0(M»). Hence the assertion follows from
Proposition 5.2. Q.E.D.

In the rest of this section, we assume that 4 is a homogeneous algebra over an
infinite field k. Recall that if 4=k[X,,...,X,]/I with emb(A4)=v, then the initial

degree i(A) of A is defined by i(4)=min{n|I,#0} =min {nldim,(4,) # (U + ;"_ 1)} .

THEOREM 5.4. Assume that A is not regular.
(1) We have 6(A)=i(A)—1.
(2) Suppose that the equality 5(A)=i(A)—1 holds. Put v=emb(A), d=dim(A4)

_ v+m v+m—1
and m=58(A). Then we have e(A)§< m )—d< m—1 )

(3) In the case (2), the equality e(A)=<U -|n—1m>_d<v ‘:;1'2_1' 1) holds if and only

if A is Cohen-Macaulay. Moreover, in this case A is an extremal Cohen-Macaulay
algebra in the sense of [22], i.e., A has a linear resolution.

Proor. (1) Put A=S/I,S=k[X,,...,X,], v=emb(4), and r=i(A)— 1. Then
the canonical mapping S;—A4; is an isomorphism if 0<i<r. Take a minimal
reduction B of A. Then, since 4 is not regular, we have B, < A,. Therefore B, 4, _,
=B, ®A,-1SA,®A,-1<A,. Hence B,A,_,# A, This implies that yz(4)=r.
Therefore 5(A)=r.

(2) Let B be a minimal reduction of 4 such that 6(4)=yz(A4). Then B, A4;
=A;,, for all iZm. Hence A/B;A=k®(A,/B;)®(4,/B14,)®---®(4,,/B1Ap-1)
Since §(4)<i(4)—1, we have 4,®,4;=A,4; and B,;®,4,=B,A; for 1<m—1.

Put R=B,. Then uBm(Am,)=dimk(A/B,A)=z;"=o<”+§*1)_d ';';01<v+';.—1>=

<v -’i-nm)_d(v ;riT 1)- Since e(4)=rankg(A)<Hsp (4n), we get the desired

inequality.

(3) The equality holds in (2)<>rank 5, (An) = (An) <> Ag is By-free <> Ag is
Cohen-Macaulay <> 4 is Cohen-Macaulay. Moreover, in this case, we have reg (4)
=8(4)=i(4)—1, i.e,, 4 is an extremal Cohen-Macaulay algebra (cf. [17]).

Q.E.D.

COROLLARY 5.5.  Assume that 6(A)=1. Then we have emb(A)=e(A4)+dim(A4)
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—1, and the equality emb(A)=e(A)+dim(A)— 1 holds if and only if A is Cohen-
Macaulay. If A is Buchsbaum, then we have emb(A4)=e(A4)+dim(4)—1+1(A).

Let R be a Cohen-Macaulay local ring with emb(R) =e(R) +dim(R)— 1. Then
6(m)=<1 and G(m) is Cohen-Macaulay by Corollary 5.5 (cf. [19]). If 4 is a
homogeneous integral domain over an algebraically closed field, then 6(4) < 1ifand
only if reg(4)<1, and in this case 4 is Cohen-Macaulay (cf. [1]).

ExaMPLE 5.6. (1) Put A=k[X,,... X /(X1 X ) NX ) =k[xy,....%,] (v
>2,r=2). Then k[x;,...,x,_ ;] is a minimal reduction of A and we have emb(4)=v,
dim(4)=v—1, e(4)=1, depth(4)=0 and §(4)=reg(4)=r—1. In particular, if A
=k[X, Y]/Y(X, Y), then §(4)=reg(A)=1 and emb(4)=e(A4)+dim(A4).

(2) Assume that dim(4)>0and r>reg(A4). Put M =(A4/A"} 1), =A4,®--- DA,
and A'=A x M. Then A’ is a homogeneous k-algebra with §(4")=3(A4) and reg(4’)
=r. In particular, if 4 is one-dimensional Cohen-Macaulay algebra with d(4)=1
and let r=2 be an integer, then we have §(4')=1<r=reg(4’).
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