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Introduction

The aim of this paper is to develop a theory of reductions for graded rings and to
study graded modules using this theory. In particular, we introduce a certain class of
graded modules which we call pseudo-flat graded modules and examine some of
their properties. Our theory of reductions of graded rings is a natural generalization
of the theory of reductions of ideals due to Northcott and Rees [16], and the
techniques used are similar to the ones in the case of ideals. But the viewpoint of
general graded rings greatly clarifies the situations and is useful even in the case of
ideals.

In §1 and §2, we define the analytic spread and the pseudo-flatness of graded
modules, and prove some elementary facts about them.

In §3, we introduce the notion of reductions of homogeneous graded rings with
respect to finitely generated graded modules. Then we prove a fundamental
theorem in the theory of reductions, namely, the existence of minimal reductions
and the characterization of minimal reductions by the analytic spread (cf. Theorem
3.3). By this theorem, we can give the structure theorem for pseudo-flat graded
modules (cf. Theorem 3.4).

In §4, using this structure theorem, we examine some properties of pseudo-flat
graded modules.

In §5, making use of minimal reductions, we introduce a numerical invariant of
a graded module which we call the reduction exponent, and study properties of
graded modules by this invariant. Especially, we compare the reduction exponent
with Castelnuovo's regularity which the author introduced in [17].

Notation and terminology: Throughout this paper, all rings are commutative
noetherian rings. Any graded ring A = ®neZAn is positively graded (i.e., An = 0 for all
n < 0), and is generated over Ao = R by elements of degree one. Then we say that A is
a homogeneous Λ-algebra. We put A + = © „ > 0An. Let R be a ring, / an ideal of R and
E an Λ-module. MinR(E) denotes the set of minimal elements in SuppR(£). μ(E)
denotes the smallest number of generators of E. For a homogeneous Λ-algebra A,
put Qmb(A) = μ(Aί) (the embedding dimension of A). If A is a homogeneous algebra
over a field and M is a finitely generated graded A-module, then e(M) denotes the
multiplicity of M. We put R(I, E) = ®n^0ΓEi G{h E) = φn^0I

nE/In+1E9 R(I) = R(I9
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R) and G(I) = G(I, R). SR(E) denotes the symmetric algebra of E. If the residue field of

the local ring Rp is infinite for any peSpec(K), then we say that all residue fields of JR

are infinite. Note that for any R, the ring R(X) has this property.

§1. Analytic spread of graded modules

Throughout this paper, A = ®n^QAn denotes a homogeneous algebra over a

ring R and M = ®neZMn is a finitely generated graded A-module. A mapping/

defined on Z is said to be stable if f(n) is constant for all sufficiently large n.

PROPOSITION 1.1. The invariants annΛ(Mπ), SuppΛ(Mw), dimΛ(Mn),

gradeR(MJ and AssΛ(M„) are stable. When R is local, depthj(Mn), hdR(Mn) and

idR(Mn) are also stable, where I is an ideal of R. (hdκ(Mπ) and idΛ(Mπ) denote the

projective dimension and the injective dimension of Mn respectively.)

PROOF. Since M is finitely generated, we have ΛίMn = Mn+ί for all n » 0 .

Hence ann Λ (M π )cann R (A 1 M w ) = ann R (M w + 1 ) for all n » 0 . This implies that

annR(Mn) is stable, and the assertions for SupρR(Mn), dimΛ(Mπ) and gradeΛ(MM)

follow from this. For AssΛ(MJ, see [15]. (We have AssR(Mn) = {Sβf]R\^eAssA(M),

Sβ^>A + } for all n»0.) We show the stability of depth, (Mn) by induction on d

= dimκ(Mπ) for all n » 0 . Put Z = ZR(Mn), the set of zero-divisors of Mπ, for all n » 0 .

If IczZ (the case d = 0 is included in this case), then depthj(MM) = 0 for all n » 0 . If

iφZ, i.e., there is an element ael which is Mπ-regular for all n » 0 , then using the

induction hypothesis on M/aM, we get our assertion. The stability of hdR(Mn): If

hdΛ(Mw)<oo for all n » 0 , then hdκ(Mπ) = depth(#)-depths(Mπ) is stable.

Otherwise, for infinitely many n^O, we have hdR(Mn) = oo, i.e., Torf(Mn, k)φθ, r

= depth(R) + 1 where k is the residue field of R. Since Tor?(M, k) = ΘπTorf (Mn, k) is

a finitely generated graded A-module, we have Tor? (MM, k) Φ 0, i.e., hdR(Mn) = oo for

all n » 0. The stability of idR (Mn): We may assume that dimΛ(Mπ) = d (constant) for

all n^O. If idR(Mn)= oo for all n » 0 , the assertion is clear. Otherwise, for infinitely

many n ̂  0, we have idΛ(Mπ) < oo, or equivalently, Ext^(k, Mn) = 0 for all i such that

r^i^r + d, r = depth(K)+l. Since Extj^fc, M)=®nExtί

R(k, Mn) is a finitely

generated graded ^-module, for all n»0, we have Ext^(k, Mπ) = 0, r^i^r + d, i.e.,

id R (MJ<oo. Therefore idR{Mn) = depth(R) for all n » 0 . Q.E.D.

Let P be a property for finitely generated Λ-modules. Then M is said to be

asymptotically P if Mn is P for all n»0. P is said to be an asymptotic property if the

following condition holds: For any A and M, if Mn is P for infinitely many n^O,

then M is asymptotically P.

COROLLARY 1.2. The following properties are asymptotic: a zero module, a

faithful module, a torsion module. When R is local, the following properties are also
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asymptotic: a free module, an injective module, a Cohen-Macaulay module, a perfect

module, a Gorenstein module.

PROOF. The assertions follow from Proposition 1.1, because the above

properties are characterized as follows: annΛ(£) = R, annΛ(E) = 0, gradeR(£)>0,

hdΛ(£) = 0, idJl(JE)=O, dimR(£) = depthΛ(£), hd*(£) = gradeR(£), idR(E) =

depth* (£). Q.E.D.

In the rest of this section, we assume that (R, m, k) is a local ring. We define the

analytic spread £(M) of M by £(M) = dimAQRk(M® Rk),the Krull dimension of the

A®Λfc-module M®Rk. If / is an ideal of R, then^(Λ(/))=^(G(/)) coincides with the

analytic spread £(I) of/ introduced by Northcott and Rees [16]. We have £(M)

= e(A/anaA(M)). If dimΛ(M)>0 and S$f)ReMinR(M) for any S$eMinA(M), then

£(M) ^ dim^(M) - 1 . As the example A = M = Λ[I]/(mI) with R a DVR shows, the

second condition cannot be deleted. We have dim(A) = ht(W), where 9Jl = m®A +

(cf. [7]). To state the following proposition, we recall the definitions of some

invariants of ideals (cf. [18]). For an ideal / of a (not necessarily graded) ring A, put

alt(J) = max{ht(p)|p is a minimal prime ideal of/}, cora(/) = max{n|i/J(A)7*0}, and

ara(/)=min{n|rad(/) = rad(α1,...,αw) for some ai,...,anel} (when A is a graded ring

and I is a homogeneous ideal, we assume that each at is a homogeneous element). If

M is a finitely generated A-module, then we write ht(/, M), alt(/, M), cora(/, M) and

ara(/, M) instead of ht(J), alt(J), cora(J) and ara(J) respectively, where J = (I

PROPOSITION 1.3. (1) a l t μ + , M) g cora(A+, M) ^ ara(A+, M) ^

emb(A) and htμ + ,M)^dim A (M)-dim Λ (M)^^(M)^dim A (M).

(2) The function ph-> (̂MP) = dim(M®Λfe(p)) defined on Spec(R) is upper

semicontinuous.

(3) £(M) = ht(A+,M) if and only if dim(M®Λfc(p)) is constant for all

peSuppR(M).

(4) dim^(M)-dimΛ(M I J)^^(M)^dimA(M)-depthΛ(Mw) for all n»0 (cf

[2])

PROOF. (1) We may assume that M = A. The inequalities

£(A)^dim(A), ht(^l+)^dim(A) —dim(.R) are clear. For the inequalities

^ c o r a ( ^ + ) ^ a r a U + ) , see [18]. We show the inequality a r a ( ^ + ) ^ ^ ) . If R is a

field and dim(A) = d, then by Noether's normalization theorem, there exist

homogeneous elements al9...,ad in A such that A is integral over R[a1,...,ad]. It is

easy to see that rad(,4+) = md(al9... ,ad). General case: Put A = A/mA and £ = £(A).

Then there exist homogeneous elements au...,ae in A such that rad(>4+)

= rad(ά1,...,<^). Hence A+n<^(άί,...,άe) for some n and this implies that A+

n

c= (aί9... ,at) + rnA, i.e., A +

n cz{au..., a t) -f xnA+n. By Nakayama's lemma, we have A+n
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cz(al9...9at). Hence rad(^+) = rad(a1,...,« i). Nextweprove the inequality dim(A)
-dim(R)^£(A). Put SR=ntθ4+and apply [14], Theorem 13.B to the local
homomorphism R^A^. Then we get dim(A) = ht(Wl)^dim(R) + dim(Am<8)Rk)
= dim(R) + £(A). (2) follows from [9], 28, (13.1.5). (3) follows from the equality

M) = min{dim(M®Λfc(p))|p6SuppΛ(M)}. (4) Since £(M) = £(M^n)9 where
®m*nMm, we may assume that dimΛ(Mπ) = dimΛ(M) for all n»0. Then(l)

implies the first inequality. We prove the second inequality by induction on r
= depthΛ(Mn) for all n»0. If r = 0, then the assertion is clear. If r>0, then there
exists aexn such that a is Mn-regular for all n»0. Therefore depthR (MJaMn)
= depthκ(MJ —1 for all n»0, and by the induction hypothesis (note that
M/aM®Rk = M®Rk), we get £(M) = £(M/aM)^dimA(M/aM)-depthR(MJaMn)
= dimκ (Af) - depthΛ(Mπ) for all n » 0. Q. E. D.

For an ideal / of R, we have the following (in)equalities: ht(/) = ht(G(/)+), alt(/)
= alt (G(I)+), ara(/) ̂  ara(G(/)+), ht (/) ̂  dim(R) - dim(R/I) ̂  £{I) and alt (/)
S cora(/) ̂  ara (/) ^ £(I) £μ(i)

§2. Pseudo-flat graded modules

Let A be a homogeneous algebra over a ring R and M a finitely generated
graded A-module. We say that M is pseudo-flat if dimA9Rk(ψ)(M® Rk(p)) is constant
for all peSpec(R). M is said to be locally pseudo-flat if MPis a pseudo-flat Ap-module
for all peSpec(Λ).

Let/: R-+R' be a ring homomorphism. If M is (locally) pseudo-flat, then so is
the v4®Λiί'-moduleM(g)ΛR', and the converse holds if af: Spec(R')^>Spec(R) is
surjective. If M is pseudo-flat, then M is locally pseudo-flat, and the converse holds
if Spec(Λ) is connected (cf. [23], Corollary 3.7). If R is local and M # 0 , then by
Proposition 1.3, (3), Mis pseudo-flat if and only if £(M) = ht (A+, M) and SupρΛ(M)
= Spec(K).

EXAMPLE 2.1. (1) If Mn is a flat Λ-module for all n » 0 and Spec(R) is
connected, then M is pseudo-flat and e(M®Rfe(p)) is constant for all peSpec(R),
because the Hubert polynomial of M(χ)Λ/c(p) is constant for all peSpec(Λ). The
example A = R[X, Y, Z]/(mΛΓ2, XY,XZ) with (R, m) a DVR shows that the converse
is not true.

(2) If/ is an ideal of a local ring R, then G(I) is a pseudo-flat ^//-algebra if a n d
only if έ(/) = ht(/), namely, R is normally pseudo-flat along / in the sense of [12] (see
also [10], [11], [13]).

(3) For a finitely generated ^-module £, SR(E) is locally pseudo-flat if and
only if E®RRred is a flat Rred-module. If (R, m) is a local ring, then 5Λ(m) is pseudo-
flat if and only if R is artinian or a DVR.

(4) For an ideal / of an equidimensional local ring R, R(I) is pseudo-flat if and
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only if/ is nilpotent or £(I) = ht(I)= 1. R(m) is pseudo-flat if and only if dim (R)^ 1.

(5) IfR is local, dim^(M) = dimΛ(M) + ht(A+, M) and depth(Mw) = dimΛ(M)

for all n»0, then M is pseudo-flat by Proposition 1.3, (4).

(6) Let A be a normal homogeneous domain with torsion class group. Then

each An is a reflexive K-module (cf. [6], Proposition 6.8, Theorem 10.8). Hence, if

ά\m(R) ̂  2, then A is pseudo-flat by (5). Moreover, it is easy to see that if R is a UFD

and ht(^ + )= 1 (resp. R is a regular local ring with dim (R)^ 2 and A is a UFD with

ht(v4+)^2), then A^R[X] (resp. ^ ^ S ^ ^ ) and A1 is a projective K-module).

(7) Let A be a homogeneous algebra over a local ring R. If either dim(R)= 1

and 4̂ is an integral domain or dim(R) = 2 and A is a UFD, then A is pseudo-flat by

(5) and (6). For any DVR (R9 m), the tf-algebra Λ[I]/(mI) is reduced but is not

pseudo-flat. For any regular local ring (R, m) with dim^R) ̂  2, the K-algebra R(m) is

normal but is not pseudo-flat. For any regular local ring (R, m) with dim(R) ̂  3, let

{au...,an} be a minimal basis of m and put E=(&"=iRei/(%j=1aiei)R. Then

SR(E)^R[Xl9...9XJ/(ΣUi<tiXd i s a UFD but is not pseudo-flat because E is not

free (cf. [21]).

(8) Let A be a homogeneous integral domain. If either dim (A) ^ 2 or dim (A)

^ 4 and A is a UFD, then A is pseudo-flat. To see this, by (7), we may assume that R

is local, A is a UFD, dim(K) = 3 and dim (A) = 4. Then the assertion follows from (6).

Even if either dim (.4) = 3 and A is normal or dim (A) = 5 and A is a UFD, A is not

necessarily pseudo-flat.

§3. Reductions of graded rings

Let A be a homogeneous algebra over a ring R. We say that A is of the principal

class if the equality emb (A) = ht (A+) holds. If (#, m, fc) is a local ring, then A is of the

principal class if and only if A is pseudo-flat and A/mA is a polynomial fc-algebra,

and in this case A® Rk(p) is a polynomial /c(p)-algebra for every peSpec(iί). If A is of

the principal class, then so are As, A/1A and Arcd, where S and / are a multiplicative

set and an ideal of R respectively.

PROPOSITION 3.1. The following conditions are equivalent:

(1) A is of the principal class.

(2) A is isomorphίc to R[Xί,...,Xυ]/I, where ι; = emb(y4) and I is a nilpotent

ideal of R[Xu...,Xvl

(3) Ared is isomorphic to Rτed[Xι9...,Xυ] with v = emb(A).

PROOF. The equivalence of (2) and (3) is clear. (1) implies (2): Put /

= Ker(R[Xu...,Xv]^>A). Then, for any peMm(R\ we have / p c p R p f ^ , . . . , ^ ]

because dim(Ap) = dim(Rv[X1,...9Xv]) = v. Therefore we have /

cz(]{plXl9.m.9XJ\psMin(R)}=mi(RlXu...9Xυ]). (3) implies (1): We have ht(A+)

= ht(,4red)+, and emb(A) = emb(v4red) = ht(Λ r e d)+ by the assumption. Therefore
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emb(A) = ht(A+). Q.E.D.

COROLLARY 3.2. (1) IfR is reduced, then A is of the principal class if and only

if A is a polynomial R-algebra.

(2) If A is of the principal class, then for any radical ideal I of R, we have

A/IA9*R/IlXl9...,Xυ] with υ = emb(A).

Classically, an ideal / of R is said to be of the principal class if the equality μ(/)

= ht(/) holds. This is equivalent to the condition that G(I) is an ^//-algebra of the

principal class and μ(I) = μ(I/I2). The latter condition is always satisfied if R is a local

ring. By Proposition 3.1, we are able to give very simple proofs for a few

fundamental facts about ideals of the principal class in [3] and [4]. But we omit the

details.

A homogeneous sub Λ-algebra B of A is said to be a reduction oϊA with respect

to a graded ^-module M, or simply an M-reductίon oiA, if Mis finitely generated B-

module. An M-reduction of A which is minimal with respect to inclusion relation is

called a minimal M-reduction oίA. An ^-reduction (resp. a minimal ^-reduction) of

A is called a reduction (resp. a minimal reduction) of A. A homogeneous sub R-

algebra B of A is an M-reduction of A if and only if B x Mn = Mn + ί for all n » 0. If J c /

are ideals of R and £ is a finitely generated K-module, then R(J) is an R(I, E)~

reduction of R(I) if and only if JΓE = Γ + 1E for some n (we say that J is an E-

reduction of/ in this case). Therefore R(J) is a reduction (resp. a minimal reduction)

of JR(/) if and only if J is a reduction (resp. a minimal reduction) of / in the sense of

[16].

The following is a fundamental theorem in the theory of reductions. Though it

can be proved in the similar way as in the case of ideals, we give a proof for

completeness.

THEOREM 3.3. Assume that (R, m, k) is a local ring. Then, for any M-reduction B

of A, there is a minimal M-reduction C of A which is contained in B and we have mCj

= xnA i f) C i (in particular, £(M) ̂  emb (C) ^ emb (B)). Ifk is an infinite field and B is an

M-reduction of A, then the following conditions are equivalent:

(1) B is a minimal M-reductίon of A.

(2) B/mB is regular (i.e., a polynomial k-algebra) and M/mM is a faithful

B/mB-module.

(3) Qmb(B) = e(M).

The assertions (2) o (3) => (1) are also true even ifk is a finite field.

PROOF. We denote by a and x the images of aeR and xeA1 in JR/TΠ and

AJmAi respectively. Among the M-reductions of A contained in B, take an M-

reduction D of A such that dimk(D1-\-mAJmA1) is minimal. Let xι,...,xreD1 be

such that xu...,xris a basis of D1+mAί/mA1, and put C = R[x1,...,xr]. Since Cx
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-\-mA1=D1+mA1 and DίMn = Mn + ί for all n » 0 , we have CίMn + mMn+1 = C1

Hence C1Mn = Mn + 1 for all n»0, i.e., C is an M-reduction of A. We show the

equality mA1f]Cι=mC1. If x = Yjaixi is in mA1(]Cί9 then ^α-jc^O in Dί

+ m^i/myl!. Hence αf = 0, i.e., at is in m for all i, and we have x = YuaixiemC1. Let E

c C be an M-reduction of X. Then Eί+mA1czC1+mAί and we have ϋ^ +mA1

= C1 + mA! by the choice of D. For any element x of Cl9 put x = y + z, yeEuzemAι.

Then z = x — ^ 6 n t ^ 1 f ) C 1 = m C 1 . Hence X = ̂ 4 - Z G £ 1 + T T X C 1 . Thus C1+mA1=E1

+ m^i, and we have E1 = C l 5 i.e., E = C. Therefore C is a minimal M-reduction of A.

Next we prove the second assertion. The equivalence of (2) and (3): Note that if

emb(β)=^(M), then emb(B) = dimA/mA(M/mM) = dimB/mB(M/mM)^dim(B/mB).

Hence B/mB is regular. When B/mB is regular, M/mM is a faithful β/mB-module <=>

dim (M/mM) = dim (£/m£) o £(M) = Qmb(B). (1) implies (2): Put μ(B1) = r and let

x!,...,xr be a minimal basis of Bv We consider M as a graded module over S

= R[X1,...,Xr'] by Xim = xim (meM). If M/mM is a faithful S/mS-module, then

S/mS-^B/mB is an isomorphism. Let/(Jf l 5 . . . ,AΓr)eS be a homogeneous polynomial

of degree ί ^ l and assume thatJ(M/mM) = 0, where J is the image of/ in S/mS.

Then/Mπc=τnMw + ί for all n. It is enough to show that/em[\Y1,...,Ar

Γ]. If the

coefficient of X[ is a unit, then x\Mn c (x2,... 9χr)'" ^ i M , , + m M n + ί for all n. Hence

βrMM c (χ2,..., χ r)β f _ x MM + mMn+, for all n. Since B is an M-reduction of A, we have

B1MS = MS+1 for all s»0 . Therefore M s + ί = £ fM sc=(x 2, . . .,x r)β ί_ 1M s + m M s + ί

= (x 2 , . . . ,x r )M s + ί _ 1 + m M s + ί for all s » 0 . Hence M s + ί = (x 2,. . .,x r)M s + ί_ 1 for all

s » 0 . This implies that ^[x 2 , . . . > ^r](S^) is a n M-reduction of A which contradicts

with our assumption. Hence the coefficient of X\ is in m. Next, we show that if not

all of a115 a21,..., arl eR are in m, then f(a1 ua2l9...,arl) = 0 mod m. Then since k is an

infinite field, we have / e m [ I l v . . , J r ] . Since all9 α 2 1 , . . . ,α r l is a unimodular

sequence, there exist atjeR (1 ̂  i ̂  r, 2 g j ^ r) such that if X = (αo ), then det(,4) is not

in m. Define a minimal basis yί9...,yr of β χ by xi = Yj=1aijyj. Then f(Ay)Mn

=f(x)Mn = 0 mod m M π + f for all n. By what we showed above, the coefficient of Y[ in

AAY)=f(Σj=ιaijYp. ,Σj=i<*rjYj) is in Ttt. Putting y l = l, 72 = ... = yr = 0, we get

f(alu...,arί)em as desired. (3) implies (1): If k is an infinite field and C is a minimal

M-reduction contained in B, then C/mC c β/mi? are both polynomial rings of the

same dimension. Hence C/mC = 5/m£ a n d we get C = £. If k is a finite field and C is

an M-reduction of A contained in B, then C®RR(X) is an M ® RR(X)-ΐGd\icύon of

and β®ΛK(X) is a minimal M®Λ#(X)-reduction of A®RR(X). Hence

and we get C = B. Q.E.D.

Assume that R is a local ring. For an M-reduction B of A, we have βA(M)

= ^β(M) and ht(A + , M) = h t ( 5 + , M). Hence M is a pseudo-flat ^-module if and only

if M is a pseudo-flat β-module. When the residue field of R is infinite, if M is pseudo-

flat and B is a minimal M-reduction of A, then Bv is a minimal MP-reduction of A?
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for all pe Spec (R).

Minimal reductions of a given homogeneous algebra are not necessarily

isomorphic. For example, let (R, m) be a DVR and put A = K[X, Y]/(mI, X2 + 7 2 ,

mY2) = Rlx, y]. Then, since x(x, y) = y(x, y) = (x, y)2, B1 = £ | > ] = R[Xy(mX) and B2

= R[y] = R[Y]/(mY2) are minimal reductions of A, but 5 X and B2 are not

isomorphic.

The following theorem gives an important structure theorem for pseudo-flat

graded modules.

THEOREM 3.4. Assume that R is a reduced local ring with infinite residue field.

Then M is pseudo-flat if and only if there is a polynomial sub R-algebra B of A such

that M is a finitely generated faithful B-module. The' if' part is also valid even if the

residue field of R is a finite field.

In particular, A is pseudo-flat if and only if A is a finite extension of a polynomial

R-algebra.

PROOF. Suppose that M is pseudo-flat and let B be a minimal M-reduction of

A. Then, for all peMin(K), we have dim(5P)^dim(MP)=^(MP) = ^(M) = emb(£).

Hence ht(β + ) = min{dim(βP)|peMin(#)} ^emb(β), i.e., emb(B) = ht(B+). Thus B is

an .R-algebra of the principal class, and by Corollary 3.2, B is isomorphic to a

polynomial K-algebra R[Xι,...,Xn] with n = £(M). For all peMinCR)> since

dim(MP) = dim(2?P) = tt and 5 P ^ i ? P [ Z ] with Rv a field, we have annβ p(MP) = (λ

Therefore annβ(M)cΠpeMin(κ)P(^) = 0, i.e., ,Mis a faithful ^-module.

Conversely, assume that some M-reduction B of A is a polynomial R-

algebra and M is a faithful ^-module. Then, for all peMinCR), we have £{B)

= dim(βp) = dim(MP) = ^(M P )g^(M)^emb( J β) = ^(^). Therefore we have^(MP)

= e(M) for a l l p e M i n ^ ) , i.e., M i s a pseudo-flat ^-module. Q.E.D.

PROPOSITION 3.5. Let I be an ideal of a local ring R. Put A = A/1 A, M = M/IM

andB = B + 1 A/1 A for a homogeneous sub R-algebra B of A. Then B is an M-reduction

of A if and only if B is an M-reduction of A. Assume that the residue field of R is

infinite. IfB is a minimal M-reduction of A, then B is a minimal M-reduction of A, and

any minimal M-reduction of A can be obtained in this way.

PROOF. The first assertion follows from Nakayama's lemma. If B is a minimal

M-reduction of A, then B is an M-reduction of A and B/mB = B + IA/mB + IA

= B/{mB + IA)f]B = B/mB (since mAftB = mB). Therefore emb(5) = emb(β) = £(M)

= β(M) and this implies that B is a minimal M-reduction of A Conversely, let B* be

a minimal M-reduction of A. Then there is an M-reduction B of A such that B = B*.

Take a minimal M-reduction C of A contained in B. Then C is an M-reduction of A

such that CaB = B*. Thus we have C = B*. Q.E.D.
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COROLLARY 3.6. Let R be a local ring with infinite residue field.

(1) If B is a minimal M-reduction of A, then B/mB is a minimal M/mM-

reduction ofA/mA, and any minimal M/mM-reduction of A/xxxA can be obtained in

this way.

(2) Let I be an ideal ofR and E a finitely generated R-module. IfJ is a minimal

E-reductίon of I, i.e., R(J) is a minimal R(I, E)-reduction of R(I), then ®n^0J
n

_|_/π + i//»+i =image(G(J)®Λ#//->G(/)) is a minimal G(I, E)-reductίon ofG(I\and

any minimal G(I, E)-reduction of G(I) can be obtained in this way.

§4. Some properties of pseudo-flat graded modules

Let A be a homogeneous algebra over a ring R and M a finitely generated

graded ^-module. The following lemma follows easily from Theorem 3.4. We omit

the proof.

LEMMA 4.1. Let p be a prime ideal ofR such that R? is a reduced local ring with

infinite residue field. If M? is pseudo-flat, then there is an element feR — p such that Af

has a polynomial sub Rf-algebra, over which Mf is a finitely generated faithful

module. (Hence Mq is pseudo-flat for all qeD(f).)

PROPOSITION 4.2. The sets t/={peSpec(R)|MP is a pseudo-flat Ap-module}

and V= {peSpec(.R)|,4p is of the principal class} are open in Spec(R). If A is locally

pseudo-flat, then the set W={peSpQc(R)\A®Rk(p) is a polynomial k(p)-algebra} is

open in Spec(Λ).

PROOF. By the base change R-+R(X)red, we may assume that JR is reduced and

all residue fields of R are infinite. (Note that the canonical mapping Spec^X))

->Spec(R) is an open mapping.) The openness of U follows from Lemma 4.1. To

prove the openness of W, by localization, we may assume that A is a finite extension

of a polynomial K-algebra B. Then, since W=Spec(R) — SuppR(A/B), the assertion

is clear. Finally, these facts implies the openness of V= {peSpec^l^p is pseudo-flat

and A®Rk(p) is a polynomial /c(p)-algebra}. Q.E.D.

For a DVR (R, m) put A = R[_X, γymX(X, Y) and B = R[X, YyX(mX, Y).
Then A is not pseudo-flat, B is pseudo-flat, and the set {peSpec(K)|X(χ)κ/c(p) is a

polynomial fc(p)-algebra} = {peSpec(K)|£(χ)Λ/c(p) is Cohen-Macaulay (or

Gorenstein)} = {m} is not open in Spec(K).

PROPOSITION 4.3. IfM is locally pseudo-flat, then the function pι-^e(M®R/c(p))

defined on Spec(Λ) is upper semίcontίnuous.

PROOF. We have to show that for any neZ, the set Mn(M)

= {peSρecCK)|e(M®Rfc(p))^«} is open in Spec(iί). By the base change R
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-+R(X)τcd, we may assume that R is reduced and all residue fields of R are infinite.

By localization, we may assume that there is a polynomial sub Λ-algebra B

= R\_XU...,XV~\ of A such that M is a finitely generated faithful ^-module. Fix a

prime ideal p of R and put ty = pB. Then we have e(M®Rk(p))

= mnkmRkiv)(M®Rk(p)) = dimm(M®Jcffl) = /% Wp) (note that k(φ)
= Jfc(p)C2Ois the quotient field of B®Rk(p) = k(p)lΓ\). We show that Mn{M)

= {Zi^R\^Le^Qc{B\ μBΏ(MΏ)<>n} for any neZ. Indeed, if peMn(M) and φ = pB,

then φ p ) ^ = P a n d lιBy(My)=e(M<S)Rk(p))Sn. Conversely, assume that

GeSpec(£), Ώf]R = p and μB^(M^n. Put φ = p£. Then we have φ c Q and

e(M®Λfe(p)) = μ B ^ ( M ^ ) ^ μ B Q ( M Q ) ^ « . Since Spec(B)-*Spec(/?) is an open

mapping, this implies our assertion. Q.E.D.

THEOREM 4.4. Assume that R is a reduced local ring and M/mM is Cohen-

Macaulay. Then the following conditions are equivalent:

(1) M is pseudo-flat and e(M®Rk(p)) is constant for all peSpec(R).

(2) M is R-free.

PROOF. We show that (1) implies (2). If M is pseudo-flat, then e (M®Rk(p)) is

constant for all peSpec(i?) if and only if e(M®ΛA:) = e(M(g)jRA:(p)) for all

peMin(Λ). Hence by the base change R-+R(X), we may assume that the residue

field of R is infinite. Let B ^R[Xl9.m .,Xn~\ be a minimal M-reduction of A. Then since

M/mM is a Cohen-Macaulay jB/τni?-module with dim (M/mM) = dim (B/xnB\

M/mM is 2?/mi?-free. Therefore e (M/mM) = rank B/mB(M/mM) = μB/mB (M/mM)

and e(Mp) = r a n M M p ) = rankF5p(M^) = μ^(M^) for all peMin(Λ), φ = vB. By

the assumption, we have μBv(My) = μB/mB(M/mM) = μB^(Mm) for all SβeMm(B),

where 9t = m02?+, Therefore Mm is 5^-free, which implies that M is i?-free.

Q.E.D.

THEOREM 4.5. Assume that (R, m) is a regular local ring. Then the following

conditions are equivalent:

(1) M is pseudo-flat and is a Cohen-Macaulay (resp. Gorensteiή) A-module.

(2) M is R-free and M/mM is a Cohen-Macaulay (resp. Gorensteiή) A/mA-

module.

PROOF. By Lemma 4.6 below, it is enough to show the assertion for the

Cohen-Macaulay case because for the Gorenstein case, A is .R-free under the each

condition. We may assume that R/m is an infinite field. Consider the following

condition:

(3) There is a polynomial sub /^-algebra B^R[Xl9...,Xn] of A such that Mis

a finitely generated free ^-module. (1) implies (3): LetB^R[Xl9...,Xn~\ be a minimal

M-reduction of A and put <$l = m®B+. Then, by the assumption, M^ is a Cohen-

Macaulay module over a regular local ring B^ with dim (Afw) = dim (Bm). Hence M^

is a free ^-module and this implies that M is i?-free. (3) implies (2): Since M is
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Ί,...,JfJ-free, M is R-free. Since M/mM is a finitely generated free

B/mB^R/m[X1,...,Xn]-module, M/mM is a Cohen-Macaulay 5/m.B-module.

Hence M/mM is a Cohen-Macaulay A/mA-module. The fact that (2) implies (1)

follows from Lemma 4.6 below. Q.E.D.

LEMMA 4.6 (cf. [9], 24, (6.3.3), [8]). Let (A, m)->(β, n) te 0 local homomorphism

ofnoetherian local rings, and let M {resp. N)bea non-zero finitely generated A-module

(resp. B-module). Assume that N is A-flat. Then M®AN is a Cohen-Macaulay (resp.

Gorenstein) B-module if and only if M is a Cohen-Macaulay (resp. Gorensteiri) A-

module and N/mN is a Cohen-Macaulay (resp. Gorenstein) B/mB-module. For the

Gorenstein case, we assume that B is A-flat.

PROPOSITION 4.7. Let A be a pseudo-flat normal homogeneous domain over R.

Then each An is a reflexive R-module, the Going-down theorem holds for the extension

RczA, and there is an injection C£(R)—>Cέ(A) between the ideal class groups.

Moreover, if\\l(A+)=\, then A = SR(A^) and A1 is an invertible R-module.

PROOF. For the first assertion, we have only to show the Going-down

theorem for R c A (cf. [6], Proposition 10.7). By localization and the base change R

-+R(X), we may assume that R is a local ring with infinite residue field. Then A is a

finite extension of a polynomial β-algebra which is a normal domain. Hence the

assertion is clear. For the second assertion, assume that R is as above and let K be

the quotient field of R. Since A®RK is a one-dimensional homogeneous K-algebra,

A®RK^:K[X~]. Hence rankΛ(>lπ) = l for all n. Since A is pseudo-flat, there is an

element xeAx such that xAn = An+ί for some n. Then, for each yeAu we have yAn

c=An + ί=xAn. Hence y/xe(An:An)κ = R, namely yeRx. Therefore Ax = Rx.

Considering the generic fibers, the canonical surjection Λ[AΓ]->,R[x] is an

isomorphism. Q. E. D.

§5. Reduction exponents of graded modules

Throughout this section, let (R, m, k) be a local ring with infinite residue field, A

a homogeneous Λ-algebra and M a finitely generated graded A-module. We define

the reduction exponent δA(M) of M by δy4(M) = min{πeZ| there is a minimal M-

reduction B of A such that BίMm = Mm+1 for all m^n}. We denote δA(A) by δ(A).

For a finitely generated ^-module E and an ideal / of R, put δj(E) = δR(I)(R(I, E)) and

δ(I) = δ(R(I)). Then δj(E) = mm{n\there is a minimal ^-reduction J of / such that

JΓE = Γ+1E}. Hence our δ(I) coincides with the reduction exponent of/ which was

introduced by Sally.

THEOREM 5.1. (1) We have ^(M)^reg^(M): = min{nGZ|[//j,(M)X = O if i

+j > n), where P = A + . (For τegA (M), see [ 17].) IfM is pseudo-flat and άxmA (M) — d,
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then [HP{M)]n = 0 for all n>δA(M)-d. Hence, if M is pseudo-flat and Cohen-

Macaulay, then δA(M) = regA(M).

(2) If R is afield and M is Buchsbaum, then δA(M) = τegA(M).

(3) We have δA/IA(M/IM) = δA(M) for any ideal I of R.

(4) If AI m A is Cohen- Macaulay, then δ [A) ^ f (A) + β {A) — emb (A), where we

putϊ(A) = e(A/mA).

PROOF. (1) Put γA(M) = min{neZ\A1Mm = Mn+1 for all m^n}. Take a

minimal M-reduction B of A such that δA(M) = γB(M). Then, by [17], Theorem 2, we

have yB(M)^TQgB(M) = TQgA(M). We show that if dimA(M) = dim{A) = d, then

[Hd

P(M)]n = 0 for all n>τeg(A) + yA(M) — d. In fact, since there is a surjective

homomorphism Φί= 1i4( —a£)->M with a^y^M), the induced homomorphism

Therefore, for all n>τeg(A) + yA(M)-di we have [Hd

P(M)]n = 0. If M is pseudo-flat,

then BΦiΛed^KredL^i, . . . ,^] with v = £(M). Put C = JR[X1,...,XJ. Hence

[tf £(M)]Π = 0 for all H > reg(C) + yc(M) - d = ^^

minimal M-reduction of A. Then by [17], Proposition 18, we have reg^(M)

= reg(M/(*!,.. .,Xd)M) = regίM/BiM) = 7B(M). Hence δA(M) = reg^(M). (Note that

in this case yB(M) does not depend on the choice of B) (3) Let B be a minimal M-

reduction of A. Then 5 = B + /^//A is a minimal it? = M//M-reduction of A = ,4/7,4

and we have yβ(M)=7β(M) by Nakayama's lemma. Hence our assertion follows

from Proposition 3.5. (4) follows from (2), (3) and [17], Proposition 13. Q.E.D.

By Theorem 5.1, (3), we have δj(E) = δG(I)(G(I, E)) for any finitely generated JR-

module E. Since δA(M) = δA/mA(M/mM), some problems about reduction exponents

reduce to the case when R is a field. lΐ£(A) = dand μ(An)<In^d) for some n, then

δ{A)<n, and if £(A)>0 and A/mA is Cohen-Macaulay, then δ{A)^£{Λ)\ί(A)-1

(see [5], [20]).

PROPOSITION 5.2. Assume that R is a {not necessarily local) reduced ring whose

residue fields are all infinite. IfM is locally pseudo-flat, then the function pi—*δAp{Mv)

is upper semίcontinuous.

PROOF. We show that the set U = {peSρec(R)\δAv(MP)^r} is open for all r.

For any pel/, take a homogeneous sub K-algebra B of A and an e l e m e n t / e # - p

such that Bf is a polynomial R r algebra and Mf is a finitely generated faithful By-

module. Then Bq is a minimal Mq-reduction of Aq for all qeD(/). By the assumption,

we may assume that (Bx )p (Mn )p = (Mn+1 )p for all n ̂  r. Hencethere is an clement

geR-p such that D(g)czD(f) and ( B J ^ M J ^ ( M B + 1 ) , for all n^r. Therefore

we have peD (g) c= U. This completes the proof. Q. E.D.

COROLLARY 5.3. (/? is not necessarily local) If M is locally pseudo-flat and
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M®Rk(p) is Buchsbaumfor all peSpec(K). Then the function pi—>reg(M ®Λ/c(p)) is

upper semicontinuous.

PROOF. By the base change R^>R(X)τedi we may assume that R is a reduced

ring whose residue fields are all infinite. Then by the assumption, we have

reg(M(g)Rk(p)) = δ(M®Rk(p)) = δ(Mp). Hence the assertion follows from

Proposition 5.2. Q.E.D.

In the rest of this section, we assume that A is a homogeneous algebra over an

infinite field k. Recall that if A = k[Xl9...,XΌ]/I with emb(A) = υ, then the initial

degree i{A) of A is defined by i(A) = min {n\In Φ 0} = min {w|dimk(v4π) # (v + * " 1 )

THEOREM 5.4. Assume that A is not regular.

(1) Wehave δ{A)^i{A)-\.

(2) Suppose that the equality δ{A) = i(^4) — 1 holds. Put v = emb(^l), d = dim(A)

andm = δ(A). Then we have ^ V ^ )Y
(3) Ai the case (2), ίAe g ^ ι a % e(A) = ̂  + m ) - / y + ̂ Y ! j Ao/ώ if and only

if A is Cohen-Macaulay. Moreover, in this case A is an extremal Cohen-Macaulay

algebra in the sense of [22], i.e., A has a linear resolution.

PROOF. (1) Put A = S/I, S = k[Xu.. .,XJ, v = emb(A), and r = i(A)-1. Then

the canonical mapping S^Ai is an isomorphism if O g i ^ r . Take a minimal

reduction B of A. Then, since A is not regular, we have BX^AV Therefore B1Ar_ί

= B1®kAr-ίξA1®kAr_ίc=Ar. Hence B1Ar_1ΦAr. This implies that γB(A)^r.

Therefore δ(A)^r.

(2) Let B be a minimal reduction of A such that δ(A) = γB(A). Then ^ i ^ i

= i4 i + 1 for all ί^m. Hence ^/B1i4 = fc0(A1/51)e(i42/B1A1)θ Θ(i4 w /β 1 ^ m _ 1 ) .

Since δ(A)^ί(A)— 1, we have ^41(χ)kAi = yl1^lί and B i O ^ — i ? ! ^ for l g m — 1 .

Put 9l = B+. ThcnμBJA^=d\mk(A/B1A) = ΣT=o(V + \~1)-dΣ^

S i n c e e μ ) = rank B (i4)^μs g ι (Λλ we get the desired

inequality.
(3) The equality holds in ( 2 ) o r a n k β (Λκ) = μ β ( A ^ o A ^ ^ ^

Cohen-Macaulay <=> A is Cohen-Macaulay. Moreover, in this case, we have reg (̂ 4)

= δ(A) = i(A)-l, i.e., A is an extremal Cohen-Macaulay algebra (cf. [17]).

Q.E.D.

COROLLARY 5.5. Assume that δ(A) = 1. Then we have e m b ( A ) ^ Q ( A ) + dim(A)
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— 1, and the equality Qmb(A) = e(A) + ά\m(A)— 1 holds if and only if A is Cohen-

Macaulay. If A is Buchsbaum, then we have Qmb(A) = Q(A) + ά\m(A)— \+\(A).

Let R be a Cohen-Macaulay local ring with emb(K) = e(K) + dim(K)-1. Then

) ^ l and G(m) is Cohen-Macaulay by Corollary 5.5 (cf. [19]). If A is a

homogeneous integral domain over an algebraically closed field, then δ(A) ^ 1 if and

only if reg(>4)^l, and in this case A is Cohen-Macaulay (cf. [1]).

EXAMPLE 5.6. (1) Put ^ = /c[X1,...,XJ/((X1,...,X t ;)
rn(^)) = ̂ i v . . , x J (v

^ 2, r ^ 2). Then k[x x,..., xv _ x] is a minimal reduction of A and we have emb (A) = v,

dim(i4) = i ;- l , e(A)=l, depth(Λ) = 0 and δ(A) = reg(A) = r-l. In particular, if A

= k[X9 Y]/Y(X, Y), then δ(A) = reg(A)=l and emb(X) = e(i4) + dim(^).

(2) Assume that dim(X)>Oandr>reg(A). Put M = (A/Ar+1)+=A1®~-®Ar

and A' = AxM. Then ^4' is a homogeneous fe-algebra with δ(Af) = δ(A) and reg(,4')

= r. In particular, if A is one-dimensional Cohen-Macaulay algebra with δ(A) = 1

and let r ^ 2 be an integer, then we have δ(A')= 1 < r = reg(Λ').
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