Three Riemannian metrics on the moduli space of BPST-instantons over \boldsymbol{S}^{4}

Takao Matumoto
(Received May 20, 1988)

The moduli space \mathscr{M} of 1 -instantons over unit 4 -sphere S^{4} with gauge group $S U(2)$ is known to be diffeomorphic to open 5 -disk D^{5}. We shall define three natural Riemannian metrics on \mathscr{M} and study their sectional curvatures.

1. Definition of three Riemannian symmetric tensors in a general case

Let (M, g) be a closed Riemannian 4-manifold, G a compact simple linear group, η a vector bundle associated to a principal G-bundle P_{η} over M. We denote $\Omega^{p}(\operatorname{ad} \eta)=\Gamma\left({ }^{p} T^{*} M \otimes\right.$ ad $\left.\eta\right)$. Then, the space \mathscr{C} of connections on η is an affine space modelled by $\Omega^{1}(\operatorname{ad} \eta)$. The automorphism group \mathscr{G} of P_{η}, which is called a gauge transformation group, operates on \mathscr{C}. Let A be a connection on η and d_{A} its covariant derivative. Then, we get a sequence

$$
\Omega^{0}(\mathrm{ad} \eta) \xrightarrow{d_{A}} \Omega^{1}(\mathrm{ad} \eta) \xrightarrow{d_{A}} \Omega^{2}(\mathrm{ad} \eta) .
$$

And $d_{A} d_{A}(\varphi)=\left[F_{A}, \varphi\right]$, where $F_{A}=d A+A \wedge A \in \Omega^{2}(\operatorname{ad} \eta)$ is the curvature of A. A connection A is called self-dual if $* F_{A}=F_{A}$, where $*$ is the Hodge's star operator with respect to g. The space \mathscr{S} of self-dual connections is invariant under the operation of \mathscr{G}. The operation of $\mathscr{G}^{*}=\mathscr{G} / \operatorname{Center}(G)$ is free at a connection A if and only if A is an irreducible connection. Let \mathscr{C}^{*} be the space of irreducible connections on η.

Now $\Omega^{p}(\operatorname{ad} \eta)$ has an L^{2}-innerproduct defined by

$$
\langle\alpha, \beta\rangle=\int_{M}(\alpha, \beta) \quad \text { with } \quad(\alpha, \beta)=-\operatorname{Tr}(\alpha \wedge * \beta) .
$$

This innerproduct is invariant under the operation of \mathscr{G}. Note also that $\gamma^{*}\left(d_{A} \alpha\right)=d_{\gamma^{*} A} \gamma^{*} \alpha$ for $\gamma \in \mathscr{G}$.

Thus the following innerproducts on $\Omega^{1}(\mathrm{ad} \eta)$, identified with the tangent space of \mathscr{C}^{*} at the class of an irreducible connection A, induce Riemannian symmetric tensors $g_{\mathrm{J}}\left(\mathrm{J}=\mathrm{I}\right.$, II and I-II) on $\mathscr{C}^{*} / \mathscr{G}=\mathscr{C}^{*} / \mathscr{G}^{*}$ with the projection $\rho: \mathscr{C}^{*} \rightarrow \mathscr{C}^{*} / \mathscr{G}$.

Type I: $\langle\alpha, \beta\rangle_{\mathrm{I}}=\left\langle\alpha^{h}, \beta^{h}\right\rangle \quad\left(=g_{\mathrm{I}}\left(\rho_{*} \alpha, \rho_{*} \beta\right)\right)$,
where α^{h} is the orthogonal projection of α to the orthogonal complement $\operatorname{Ker} \delta_{A}$ of $d_{A} \Omega^{0}(\mathrm{ad} \eta)$ in $\Omega^{1}(\mathrm{ad} \eta)$ and $\delta_{A}=-* d_{A} *$ is the adjoint operator.

Type II: $\langle\alpha, \beta\rangle_{\mathrm{II}}=\left\langle\left(d_{A} \alpha\right)^{h},\left(d_{A} \beta\right)^{h}\right\rangle \quad\left(=g_{\mathrm{II}}\left(\rho_{*} \alpha, \rho_{*} \beta\right)\right)$,
where $\left(d_{A} \alpha\right)^{h}$ is the orthogonal projection of $d_{A} \alpha\left(\in \Omega^{2}(\operatorname{ad} \eta)\right)$ to the orthogonal complement C of $d_{A} d_{A} \Omega^{0}(\mathrm{ad} \eta)$ in the L^{2}-completion of $\Omega^{2}(\mathrm{ad} \eta)$. Note that Ker $\delta_{A} \delta_{A}$ is contained in C.

Type I-II: $\langle\alpha, \beta\rangle_{\mathrm{I}-\mathrm{II}}=\left\langle d_{A}\left(\alpha^{h}\right), d_{A}\left(\beta^{h}\right)\right\rangle \quad\left(=g_{\mathrm{I}-\mathrm{II}}\left(\rho_{*} \alpha, \rho_{*} \beta\right)\right)$.
The constant multiple of the L^{2}-innerproduct gives the same constant multiple to the Riemannian symmetric tensors. Note also that g_{II} is independent of the conformal change of g and g_{1} is changed to $c^{2} g_{\mathrm{I}}$ if we change g to $c^{2} g$.

Type I always gives a Riemannian metric on $\mathscr{C}^{*} / \mathscr{G}$ but type I-II and type II may have a direction of zero length. Moreover $g_{\text {II }}$ might have some difficulty with regularity and type I-II is introduced by Ryoichi Kobayashi.

When $\mathscr{M}^{*}=\left(\mathscr{C}^{*} \cap \mathscr{S}\right) / \mathscr{G}$ is a submanifold of $\mathscr{C}^{*} / \mathscr{G}$, these Riemannian symmetric tensors induce those on \mathscr{M}^{*}. This is the case for a generic Riemannian metric on M when $G=S U(2)$ [4]. Since a self-dual connection is of class C^{∞}, \mathscr{M}^{*} is independent of the choice of Sobolev completions.

2. Case of $\mathbf{1}$-instantons over $\boldsymbol{S}^{\mathbf{4}}$

The stereographic projection of S^{4} - $\{$ North pole $\}$ onto \mathbf{R}^{4} induces a conformally flat metric

$$
d s^{2}=\left(4 /\left(1+|x|^{2}\right)^{2}\right)|d x|^{2}
$$

Since the Hodge's star operator on the 2-forms over 4-manifolds is conformally invariant, a modification [3] of a BPST solution [2],

$$
A=\frac{\operatorname{Im}\left\{\left(1+\lambda^{2}|a|^{2}\right) x d \bar{x}+\left(\lambda^{2}-1\right) a d \bar{x}\right\}}{|x-a|^{2}+\lambda^{2}|a \bar{x}+1|^{2}} \quad\left(0<\lambda \leqq 1, a \in \mathbf{H} \cong \mathbf{R}^{4}\right),
$$

gives a self-dual connection on η over S^{4} with gauge group $S U(2)$ and $c_{2}(\eta)=-1 . \quad$ In fact.

$$
F=\frac{\left\{\lambda^{2}\left(1+|a|^{2}\right)+\left(\lambda^{2}-1\right)\left(1+\lambda^{2}|a|^{2}\right)(a \bar{x}+x \bar{a}-\bar{a} x-\bar{x} a)\right\} d x \wedge d \bar{x}}{\left(|x-a|^{2}+\lambda^{2}|a \bar{x}+1|^{2}\right)^{2}}
$$

In case $\lambda=1, A$ is the central element $\operatorname{Im}(x d \bar{x}) /\left(1+|x|^{2}\right)$ independent of a. A $S U(2)$-equivariant coordinate system is given by (a, λ) with $\lambda \in(0,1)$ for an open dense subset of $\mathscr{M}=\mathscr{M}^{*} \cong D^{5} \cong(\mathbf{H} \cup\{\infty\}) \times(0,1] /(\mathbf{H} \cup\{\infty\}) \times 1$. Here, $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is identified with $x=x_{1}+x_{2} i+x_{3} j+x_{4} \boldsymbol{k}$ of the field
\mathbf{H} of quaternion numbers. Note that $\bar{x}=x_{1}-x_{2} \boldsymbol{i}-x_{3} \boldsymbol{j}-x_{4} \boldsymbol{k}, d x=d x_{1}+$ $\boldsymbol{i} d x_{2}+\boldsymbol{j} d x_{3}+\boldsymbol{k} d x_{4}$ and $|x|^{2}=x \bar{x}, \quad \operatorname{Im} \mathbf{H}=\left\{x_{2} \boldsymbol{i}+x_{3} \boldsymbol{j}+x_{4} \boldsymbol{k}\right\}$ is also identified with the Lie algebra of $S U(2)$. The innerproduct of $\operatorname{Im} \mathbf{H}$ is given by $(x, y)=2 \operatorname{Re}(x \bar{y})$ in this identification.

Now we present an expression of the metrics on \mathscr{M} in the coordinate system (a, λ) with $\lambda \in(0,1)$ and discuss some properties.

Type I (Doi-Matsumoto-Matumoto [3], cf. Groisser-Parker [5]): Since $\delta_{A}(\partial A / \partial \lambda)=0$ and $\left(\partial A / \partial a_{v}\right)^{h}=\partial A / \partial a_{v}+\left(\left(1-\lambda^{2}\right)^{2} /\left(1+\lambda^{2}\right)\right) d_{A}\left(A_{v}\right)$ with $\left(\lambda^{2}+|x|^{2}\right) A_{v}=\operatorname{Im}(x),-\operatorname{Im}(i \bar{x}),-\operatorname{Im}(j \bar{x})$ and $-\operatorname{Im}(k \bar{x})(v=1,2,3$ and 4 respectively) as is proved in [3], we have

$$
\begin{aligned}
d s^{2}= & \frac{16 \pi^{2}}{5}\left[\left(\frac{1-\lambda^{2}}{1+\lambda^{2}}\right)^{2}\left\{5-\lambda^{4} F\left(4,3,6 ; 1-\lambda^{2}\right)\right\} \frac{|d a|^{2}}{\left(1+|a|^{2}\right)^{2}}\right. \\
& \left.+\lambda^{2} F\left(4,3,6 ; 1-\lambda^{2}\right) d \lambda^{2}\right]
\end{aligned}
$$

where $F(4,3,6 ; 1-\xi)=10\left\{1 / \xi+12 /(1-\xi)^{2}+6(1+\xi) \log \xi /(1-\xi)^{3}\right\} /(1-\xi)^{2}$ is a hypergeometric function. We have proved in [3] that

$$
3 / 16 \pi^{2}<\text { sectional curvature } \leqq 5 / 16 \pi^{2}
$$

and the maximum is taken in all the planes at the center $(\lambda=1)$. From the above we see easily that the metric is asymptotically

$$
d s^{2} \sim 16 \pi^{2}\left\{\left(1-6 \lambda^{2}\right)|d a|^{2} /\left(1+|a|^{2}\right)^{2}+2\left(12 \lambda^{2} \log \lambda+14 \lambda^{2}+1\right) d \lambda^{2}\right\}
$$

as $\lambda \rightarrow 0$. This implies that the metric extends to $\overline{\mathcal{M}}$ in C^{1} sense and $\partial \mathscr{M}$ is isomorphic to 4 -sphere of radius 2π but the metric on $\overline{\mathcal{M}}$ cannot be of class C^{2} (cf. [6]).

Type II (cf. [8]):
Since $d_{A}(\partial A / \partial t)=\partial F / \partial t$ and $\delta_{A} \delta_{A}(\partial F / \partial t)=0$ for $t=\lambda$ and $t=a_{v}$ with $v=1,2$, 3 and 4 , we have

$$
d s^{2}=\frac{32 \pi^{2}}{5}\left[\frac{\left(1-\lambda^{2}\right)^{2}}{\lambda^{2}} \frac{|d a|^{2}}{\left(1+|a|^{2}\right)^{2}}+\frac{d \lambda^{2}}{\lambda^{2}}\right]
$$

This metric has a constant negative sectional curvature $-5 / 32 \pi^{2}$. So, the metric is hyperbolic and complete.

Type I-II:
By calculating $\left(\left(1-\lambda^{2}\right)^{4} /\left(1+\lambda^{2}\right)^{2}\right)\left\langle d_{A}\left(A_{v}\right), d_{A}\left(A_{v}\right)\right\rangle$, we get

$$
d s^{2}=\frac{32 \pi^{2}}{5}\left[\frac{\left(1-\lambda^{2}\right)^{2}}{\lambda^{2}}\left(1+\frac{\left(1-\lambda^{2}\right)^{2}}{2\left(1+\lambda^{2}\right)^{2}}\right) \frac{|d a|^{2}}{\left(1+|a|^{2}\right)^{2}}+\frac{d \lambda^{2}}{\lambda^{2}}\right] .
$$

The sectional curvature K is a convex combination of $K I$ and $K I I$, where $K \mathrm{I}=K\left(\partial / \partial a_{\mu}, \partial / \partial \lambda\right)=\left(-5 / 32 \pi^{2}\right)\left\{\left(9 \lambda^{12}+30 \lambda^{10}+183 \lambda^{8}+196 \lambda^{6}+\right.\right.$ $\left.\left.183 \lambda^{4}+30 \lambda^{2}+9\right) / D E N\right\}, K I I=K\left(\partial / \partial a_{\mu}, \partial / \partial a_{v}\right)=\left(-5 / 32 \pi^{2}\right)\left\{\left(9 \lambda^{12}+\right.\right.$ $\left.\left.66 \lambda^{10}+167 \lambda^{8}+156 \lambda^{6}+167 \lambda^{4}+66 \lambda^{2}+9\right) / D E N\right\}$ and $D E N=9 \lambda^{12}+$ $30 \lambda^{10}+55 \lambda^{8}+68 \lambda^{6}+55 \lambda^{4}+30 \lambda^{2}+9$. Hence, K is negative everywhere and $K \rightarrow-25 / 64 \pi^{2}(\lambda \rightarrow 1), K \rightarrow-5 / 32 \pi^{2}(\lambda \rightarrow 0)$. In consequence the metric is complete.

References

[1] M. F. Atiyah, N. J. Hitchin and I. M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London A362 (1978), 425-461.
[2] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin: Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. 59B (1975), 85-87.
[3] H. Doi, Y. Matsumoto and T. Matumoto: An explicit formula of the metric on the moduli space of BPST-instantons over S^{4}, A Fête of Topology, Academic Press, 1988, 543-556.
[4] D. S. Freed and K. K. Uhlenbeck: Instantons and Four-manifolds, Math. Sci. Res. Inst. Publ. 1, Springer-Verlag, New York, 1984.
[5] D. Groisser and T. H. Parker: The Riemannian geometry of the Yang-Mills moduli space, Comm. Math. Phys. 112 (1987), 663-689.
[6] D. Groisser and T. H. Parker: The geometry of the Yang-Mills moduli space for definite manifolds, Preprint.
[7] H. B. Lawson, Jr.: The Theory of Gauge Fields in Four Dimensions, Regional conference series in Math. 58, Amer. Math. Soc., 1985.
[8] T. Matumoto: Hyperbolic metric on the moduli space of BPST instantons over S^{4}, A Fête of Topology, Academic Press, 1988, 557-561.
[9] L. Habermann: On the geometry of the space of Sp(1)-instantons with Pontryagin index 1 on the 4 -sphere, Preprint 146, Humboldt-Univ. zu Berlin, 1987 (Added in Proof).

Department of Mathematics,
Faculty of Science, Hiroshima University

