On the oscillatory properties of the solutions of non-linear neutral functional differential equations of second order

D. D. BAINOV¹⁾, A. D. MYSHKIS²⁾ and A. I. ZAHARIEV¹⁾ (Received December 14, 1987)

1. Introduction

In the present paper sufficient conditions have been obtained for oscillation or tending to zero of all bounded solutions of equations of the form

(1)
$$[A(x_t)]'' + p(t)B(x_t) = 0,$$

where $x_t(\theta) = x(t + \theta), \ \theta \in [-\tau, 0], \ \tau = \text{const} > 0$ and the functionals $A, B: C[-\tau, 0] \rightarrow R$ are monotonic.

The oscillatory properties of linear and non-linear ordinary differential and functional differential equations have been an object of investigation by many authors [2]-[5], [8], [10]. The neutral equations of second order have numerous applications (see for instance [1], [6]) but their oscillatory and asymptotic properties are studied comparatively little. Some results in this direction for the case when the function p(t) is nonnegative have been obtained in [9], [11], [12].

2. Preliminary notes and main result

DEFINITION 1. We shall say that the function $\varphi: J_{\varphi} \to \mathbf{R}$ $(J_{\varphi} = [t_{\varphi}, \infty), t_{\varphi} \in \mathbf{R})$ is oscillating if sup $\{t | \varphi(t) = 0\} = \infty$ and sup $\{t | \varphi(t) \neq 0\} = \infty$.

DEFINITION 2. A function $x: J_x \to \mathbf{R}$ will be called a solution of equation (1) if $x \in C(J_x)$, $A(x_t) \in C^2(J_x + \tau)$ and satisfies equation (1) for $t \in J_x + \tau$, where $J_x + \tau = \{t | t - \tau \in J_x\}$.

By $\Omega^{\alpha,\beta}$ $(0 < \beta \leq \alpha)$ we shall denote the set of all continuous functionals $A: C[-\tau, 0] \rightarrow \mathbf{R}$ which satisfy the following conditions:

A1. For any function $\varphi \in C[-\tau, 0]$ with the property $\varphi(t) \neq 0$, $t \in [-\tau, 0]$, the following equality holds

$$\operatorname{sgn} A(\varphi) = \operatorname{sgn} \varphi(0)$$
.

A2. For any $\varepsilon > 0$ there exists $\delta > 0$ such that for any function $\varphi \in C[-\tau, \tau]$ with the property $\min_{[-\tau, \tau]} |\varphi(t)| > 0$ the inequality $\max_{[0, \tau]} |A(\varphi_t)| < \delta$ implies the inequality $|\varphi(0)| < \varepsilon$.

A3. For all constants b_1 , b_2 , $0 < b_1 \leq b_2$, and any function $\varphi \in C[-\tau, \alpha]$ with the property $\min_{[-\tau,\alpha]} |\varphi(t)| > 0$ for which the inequality $b_1 \leq |A(\varphi_t)| \leq b_2$, $t \in [-\tau, \alpha]$, holds, there exists a measurable set $Q \subset [-\tau, \alpha]$ and a constant $b_3 > 0$ such that $\mu(Q) \geq \beta$ (μ is the Lebesgue measure), $|\varphi(t)| \geq b_3$ for $t \in Q$ and the following equality holds

$$\operatorname{sgn} \varphi(t)|_Q = \operatorname{sgn} A(\varphi_t)|_{[0,\alpha]}.$$

EXAMPLE. It is immediately verified that for any α and correspondingly chosen β the functional A defined by the equality

$$A(\varphi) = \sum_{i=1}^{n} a_i \varphi(-\tau_i) \,,$$

 $n \ge 1, a_i > 0, 0 \le \tau_i \le \tau, i = 1, 2, \dots, n$, belongs to the set $\Omega^{\alpha, \beta}$.

For the function $p: J_p \to \mathbf{R}$ we introduce the notation

$$E_p^+ = \{ t \in J_p | p(t) \ge 0 \}, \qquad E_p^- = \{ t \in J_p | p(t) \le 0 \}.$$

By P^{γ} , $\gamma > 0$, we shall denote the set of continuous functions $p: J_p \to R$ satisfying the following property:

P1. There exists a number $\varepsilon > 0$ and a point $t_0 \in J_p$ such that for any $t \ge t_0$ for which p(t) > 0 one can find an interval $[t', t''] \subset J_p$ with length $t'' - t' \ge \gamma + \varepsilon$ with the property $t \in [t', t''] \subset E_p^+$ (i.e. the intervals in which the function is positive should be large enough).

By Λ we shall denote the set of continuous functionals $B: C[-\tau, 0] \rightarrow R$ satisfying the following properties:

B1. For any element $\varphi \in C[-\tau, 0]$ with the property $\min_{[-\tau, 0]} |\varphi(t)| > 0$ the following equality holds

$$\operatorname{sgn} B(\varphi) = \operatorname{sgn} \varphi(0)$$
.

B2. For any $\varepsilon > 0$ there exists $\delta > 0$ such that for any element $\varphi \in C[-\tau, 0]$ with the property $\min_{[-\tau, 0]} |\varphi(t)| > 0$ for which the inequality $|\varphi(0)| \ge \varepsilon$ holds, the inequality $B(\varphi) \ge \delta$ holds as well.

B3. $B(s1(\cdot))$ is a non-decreasing function for $s \in \mathbf{R}$, where $1(\cdot)$ denotes the unit function $1(t) \equiv 1$, $t \in [-\tau, 0]$, and the following relation holds

$$\int_0^1 \left[\frac{1}{B(s1(\cdot))} + \frac{1}{|B(s1(\cdot))|} \right] ds < \infty .$$

REMARK 1. We shall note that from condition B3 it follows that no functional $B \in A$ can be linear.

LEMMA. Let the function $h:[a, b] \to [0, \infty)$ be absolutely continuous, $\varphi \in C^2[a, b]$ and let the function $f \in C[\min \varphi, \max \varphi]$ be nonincreasing.

Then the following inequality holds

$$\int_{a}^{b} h(t)\varphi''(t)f(\varphi(t)) dt \ge h(b)\varphi'(b)f(\varphi(b)) - h(a)\varphi'(a)f(\varphi(a))$$
$$-\int_{a}^{b} h'(t)\varphi'(t)f(\varphi(t)) dt .$$

PROOF. If f is of class C^1 , then the assertion of the lemma is proved by an integration by parts and in the case when f is of class C – by means of a uniform approximation of f by non-increasing functions of class C^1 .

THEOREM. Let for equation (1) numbers α , β ($0 < \beta \leq \alpha$) exist such that the following conditions be fulfilled:

- 1. $A \in \Omega^{\alpha, \beta}$.
- 2. $p \in P^{\alpha+\tau}$.
- 3. $B \in \Lambda$.
- 4. For any constant a > 0 the following relation holds

 $\sup \frac{B(\varphi)}{B(A(\varphi)1(\cdot))} < \infty \qquad for \quad \varphi \in C[-\tau, \tau] \quad with \quad 0 < |\varphi(t)| \leq a.$

5. There exists a locally absolutely continuous function $h: J_p \to (0, \infty)$ with the properties $\operatorname{Var}_{[t_p,t]} h = 0(t)$ for $t \to \infty$, $\operatorname{Var}_{[t_p,\infty)} h' < \infty$, for which the following relation holds

(2)
$$\int_{E_p^-} h(t)|p(t)| dt < \infty .$$

6. There exists a number $\varepsilon > 0$ for which the following inequality is satisfied

$$\limsup_{t\to\infty}\mu\{s\in[t,t+\alpha+\tau]|h(s)p(s)\leq\varepsilon\}<\beta$$

Then each bounded solution of equation (1) either oscillates or tends to zero for $t \rightarrow \infty$.

PROOF. Let $x: J_x \to \mathbf{R}$ be a bounded solution of equation (1) which is not identically equal to zero for sufficiently large values of t.

Without loss of generality we can assume that x(t) > 0 for $t \in J_x$.

Multiplying both sides of equation (1) by the expression $h(t)/B(A(x_t)1(\cdot))$ and integrating from $t_1 = t_x + \tau$ to $t > t_1$ we obtain the equality

$$\int_{t_1}^t \frac{[A(x_s)]''h(s)}{B(A(x_s)1(\cdot))} \, ds + \int_{t_1}^t h(s)p(s)\frac{B(x_s)}{B(A(x_s)1(\cdot))} \, ds = 0 \, .$$

Applying to the first integral the lemma and integrating once more from t_1 to $t > t_1$, we obtain the inequality

$$(3) \quad \int_{t_1}^t \frac{h(s)[A(x_s)]'}{B(A(x_s)1(\cdot))} \, ds - \frac{h(t_1)[A(x_t)]'|_{t=t_1}}{B(A(x_{t_1})1(\cdot))} (t-t_1) \\ - \int_{t_1}^t \left(\int_{t_1}^s \frac{h'(y)[A(x_y)]'}{B(A(x_y)1(\cdot))} \, dy \right) \, ds + \int_{t_1}^t \left(\int_{t_1}^s h(y)p(y) \frac{B(x_y)}{B(A(x_y)1(\cdot))} \, dy \right) \, ds \leq 0 \, .$$

Taking into account the properties of the function h(t) and setting $\phi(t) = \int_0^t \frac{ds}{B(s1(\cdot))}$ we obtain for $t \to \infty$ the following relations

$$\int_{t_1}^t \frac{h(s)[A(x_s)]'}{B(A(x_s)1(\cdot))} \, ds = \int_{t_1}^t h(s) \, d\phi(A(x_s)) = h(t)\phi(A(x_t)) - h(t_1)\phi(A(x_{t_1}))$$

$$-\int_{t_1}^t \phi(A(x_s)) \, dh(s) = O(t) \,,$$
(4)
$$\int_{t_1}^t \frac{h'(s)[A(x_s)]'}{B(A(x_s)1(\cdot))} \, ds = \int_{t_1}^t h'(s) \, d\phi(A(x_s)) = h'(t)\phi(A(x_t)) - h'(t_1)\phi(A(x_{t_1}))$$

$$-\int_{t_1}^t \phi(A(x_s)) \, dh'(s) = O(1) \,.$$

From inequality (3), in view of relations (2), (4) and condition 4 of the theorem, we obtain for $t \to \infty$ the relation

(5)
$$\int_{t_1}^t \left(\int_{[t_1,s] \cap E_p^+} h(y) p(y) \frac{B(x_y)}{B(A(x_y)1(\cdot))} \, dy \right) ds = O(t) \, .$$

We shall prove that the following relation holds

(6)
$$\int_{[t_1,\infty)\cap E_p^+} h(t)p(t)\frac{B(x_t)}{B(A(x_t)1(\cdot))}\,dt = \infty\,,$$

which obviously contradicts relation (5).

From condition A2 it follows that $\limsup_{t\to\infty} A(x_t) > 0$, so let us set $c = \limsup_{t\to\infty} A(x_t)$. On the other hand, from equation (1) it follows that the function $A(x_i)$ is concave (convex) in any interval belonging to $\{J_x + \tau\} \cap E_p^+(\{J_x + \tau\} \cap E_p^-)$. In view of condition 6 of the theorem we conclude that $\sup E_p^+ = \infty$, hence there exists a sequence $\{t_i\} \subset E_p^+$ with the property $\lim_{i\to\infty} (t_{i+1} - t_i) = \infty$ such that $\lim_{i\to\infty} A(x_{t_i}) = c$. From condition P1 it follows that there exists a sequence of disjoint intervals $\{l_i\}$, $t_i \in l_i$, with length $\alpha + \tau$ such that the inequality $\inf_i \min_{t_i} A(x_t) > 0$ holds.

Then by condition A3 there exist measurable sets $Q_i \subset l_i$ with the property $\mu(Q_i) \ge \beta$, i = 1, 2, ..., such that the inequality $\inf_i \min_{t \in Q_i} x(t) > 0$ holds. From the last inequality and condition B2 it follows that $\inf_i \inf_{t \in Q_i} B(x_i) > 0$, hence the following inequality holds

(7)
$$\inf_{i} \inf_{t \in Q_i} \frac{B(x_t)}{B(A(x_t)1(\cdot))} > 0.$$

From condition 6 of the theorem it follows that there exist sets $Q'_i \subset Q_i$ for which $\liminf_{i \to \infty} \mu(Q'_i) > 0$ and the inequality

(8)
$$\liminf_{i\to\infty}\left[\inf_{t\in Q'_i}h(t)p(t)\right]>0$$

holds. Inequalities (7) and (8) immediately imply relation (6).

REMARK 2. If, moreover, it is given that the function $p(t) \ge 0$, then each bounded solution which for sufficiently large values of t is not identically zero oscillates. In this case, if $x(t) \ge 0$ for $t \ge t_x$, then the function A(x) for $t \ge t_x$ is concave, hence x(t) may tend to zero for $t \to \infty$ only if it is identically zero for $t > t_x$.

References

- [1] R. Brayton, Nonlinear oscillation in a distributed network, Quart. Appl. Math. 24 (1967), 289-301.
- [2] G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), 190-200.
- [3] W. J. Coles, An oscillation criterion for second order differential equations, Proc. Amer. Math. Soc. 19 (1968), 755-759.
- [4] P. Hartman, On nonoscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389-400.
- [5] I. V. Kamenev, Some specific nonlinear oscillation theorems, Mat. Zametki 10 (1971), 129-134 (in Russian).
- [6] V. B. Kolmanovskii and V. R. Nosov, Stability and Periodic Régimes of Controlled Systems with Aftereffect, Moscow, 1981 (in Russian).
- [7] T. Kusano and H. Onose, Nonlinear oscillation of second order functional differential equations with advanced argument, J. Math. Soc. Japan 29 (1977), 541-559.
- [8] A. D. Myshkis, Linear Differential Equations with Delayed Argument, Moscow, 1972 (in Russian).
- [9] A. D. Myshkis, D. D. Bainov and A. I. Zahariev, Oscillatory and asymptotic properties of a class of operator-differential inequalities, Proc. Royal Soc. Edinburgh 96A (1984), 5–13.
- [10] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117.
- [11] A. I. Zahariev and D. D. Bainov, Oscillating properties of a class of neutral type functional differential equations, Bull. Austral. Math. Soc. 22 (1980), 365–372.

[12] A. I. Zahariev and D. D. Bainov, On some oscillation criteria for a class of neutral type functional differential equations, J. Austral. Math. Soc. Ser. B 28 (1986), 229-239.

> Plovdiv University "Paissii Hilendrski" Bulgaria and
> Moscow Institute of Railway Engineering USSR