On the oscillatory properties of the solutions of non-linear neutral functional differential equations of second order

D. D. Bainov ${ }^{1)}$, A. D. Myshkis ${ }^{2}$) and A. I. Zahariev ${ }^{1)}$
(Received December 14, 1987)

1. Introduction

In the present paper sufficient conditions have been obtained for oscillation or tending to zero of all bounded solutions of equations of the form

$$
\begin{equation*}
\left[A\left(x_{t}\right)\right]^{\prime \prime}+p(t) B\left(x_{t}\right)=0, \tag{1}
\end{equation*}
$$

where $x_{t}(\theta)=x(t+\theta), \theta \in[-\tau, 0], \tau=\mathrm{const}>0$ and the functionals A, B : $C[-\tau, 0) \rightarrow \boldsymbol{R}$ are monotonic.

The oscillatory properties of linear and non-linear ordinary differential and functional differential equations have been an object of investigation by many authors [2]-[5], [8], [10]. The neutral equations of second order have numerous applications (see for instance [1], [6]) but their oscillatory and asymptotic properties are studied comparatively little. Some results in this direction for the case when the function $p(t)$ is nonnegative have been obtained in [9], [11], [12].

2. Preliminary notes and main result

Definition 1. We shall say that the function $\varphi: J_{\varphi} \rightarrow \boldsymbol{R}\left(J_{\varphi}=\left[t_{\varphi}, \infty\right)\right.$, $\left.t_{\varphi} \in \boldsymbol{R}\right)$) is oscillating if $\sup \{t \mid \varphi(t)=0\}=\infty$ and $\sup \{t \mid \varphi(t) \neq 0\}=\infty$.

Definition 2. A function $x: J_{x} \rightarrow \boldsymbol{R}$ will be called a solution of equation (1) if $x \in C\left(J_{x}\right), A\left(x_{t}\right) \in C^{2}\left(J_{x}+\tau\right)$ and satisfies equation (1) for $t \in J_{x}+\tau$, where $J_{x}+\tau=\left\{t \mid t-\tau \in J_{x}\right\}$.

By $\Omega^{\alpha, \beta}(0<\beta \leqq \alpha)$ we shall denote the set of all continuous functionals $A: C[-\tau, 0] \rightarrow \boldsymbol{R}$ which satisfy the following conditions:

A1. For any function $\varphi \in C[-\tau, 0]$ with the property $\varphi(t) \neq 0, t \in$ [$-\tau, 0$], the following equality holds

$$
\operatorname{sgn} A(\varphi)=\operatorname{sgn} \varphi(0) .
$$

A2. For any $\varepsilon>0$ there exists $\delta>0$ such that for any function $\varphi \in$ $C[-\tau, \tau]$ with the property $\min _{[-\tau, \tau]}|\varphi(t)|>0$ the inequality $\max _{[0, \tau]}\left|A\left(\varphi_{t}\right)\right|<\delta$ implies the inequality $|\varphi(0)|<\varepsilon$.

A3. For all constants $b_{1}, b_{2}, 0<b_{1} \leqq b_{2}$, and any function $\varphi \in C[-\tau, \alpha]$ with the property $\min _{[-\tau, \alpha]}|\varphi(t)|>0$ for which the inequality $b_{1} \leqq\left|A\left(\varphi_{t}\right)\right| \leqq b_{2}$, $t \in[-\tau, \alpha]$, holds, there exists a measurable set $Q \subset[-\tau, \alpha]$ and a constant $b_{3}>0$ such that $\mu(Q) \geqq \beta$ (μ is the Lebesgue measure), $|\varphi(t)| \geqq b_{3}$ for $t \in Q$ and the following equality holds

$$
\left.\operatorname{sgn} \varphi(t)\right|_{Q}=\left.\operatorname{sgn} A\left(\varphi_{t}\right)\right|_{[0, \alpha]}
$$

Example. It is immediately verified that for any α and correspondingly chosen β the functional A defined by the equality

$$
A(\varphi)=\sum_{i=1}^{n} a_{i} \varphi\left(-\tau_{i}\right),
$$

$n \geqq 1, a_{i}>0,0 \leqq \tau_{i} \leqq \tau, i=1,2, \ldots, n$, belongs to the set $\Omega^{\alpha, \beta}$.
For the function $p: J_{p} \rightarrow \boldsymbol{R}$ we introduce the notation

$$
E_{p}^{+}=\left\{t \in J_{p} \mid p(t) \geqq 0\right\}, \quad E_{p}^{-}=\left\{t \in J_{p} \mid p(t) \leqq 0\right\}
$$

By $P^{\gamma}, \gamma>0$, we shall denote the set of continuous functions $p: J_{p} \rightarrow \boldsymbol{R}$ satisfying the following property:

P1. There exists a number $\varepsilon>0$ and a point $t_{0} \in J_{p}$ such that for any $t \geqq t_{0}$ for which $p(t)>0$ one can find an interval [$\left.t^{\prime}, t^{\prime \prime}\right] \subset J_{p}$ with length $t^{\prime \prime}-t^{\prime} \geqq \gamma+\varepsilon$ with the property $t \in\left[t^{\prime}, t^{\prime \prime}\right] \subset E_{p}^{+}$(i.e. the intervals in which the function is positive should be large enough).

By Λ we shall denote the set of continuous functionals $B: C[-\tau, 0] \rightarrow \boldsymbol{R}$ satisfying the following properties:

B1. For any element $\varphi \in C[-\tau, 0]$ with the property $\min _{[-\tau, 0]}|\varphi(t)|>0$ the following equality holds

$$
\operatorname{sgn} B(\varphi)=\operatorname{sgn} \varphi(0) .
$$

B2. For any $\varepsilon>0$ there exists $\delta>0$ such that for any element $\varphi \in$ $C[-\tau, 0]$ with the property $\min _{[-\tau, 0]}|\varphi(t)|>0$ for which the inequality $|\varphi(0)| \geqq \varepsilon$ holds, the inequality $B(\varphi) \geqq \delta$ holds as well.

B3. $B(s 1(\cdot))$ is a non-decreasing function for $s \in \boldsymbol{R}$, where $1(\cdot)$ denotes the unit function $1(t) \equiv 1, t \in[-\tau, 0]$, and the following relation holds

$$
\int_{0}^{1}\left[\frac{1}{B(s 1(\cdot))}+\frac{1}{|B(s 1(\cdot))|}\right] d s<\infty
$$

Remark 1. We shall note that from condition B3 it follows that no functional $B \in \Lambda$ can be linear.

Lemma. Let the function $h:[a, b] \rightarrow[0, \infty)$ be absolutely continuous, $\varphi \in$ $C^{2}[a, b]$ and let the function $f \in C[\min \varphi, \max \varphi]$ be nonincreasing.

Then the following inequality holds

$$
\begin{aligned}
\int_{a}^{b} h(t) \varphi^{\prime \prime}(t) f(\varphi(t)) d t \geqq & h(b) \varphi^{\prime}(b) f(\varphi(b))-h(a) \varphi^{\prime}(a) f(\varphi(a)) \\
& -\int_{a}^{b} h^{\prime}(t) \varphi^{\prime}(t) f(\varphi(t)) d t
\end{aligned}
$$

Proof. If f is of class C^{1}, then the assertion of the lemma is proved by an integration by parts and in the case when f is of class C-by means of a uniform approximation of f by non-increasing functions of class C^{1}.

Theorem. Let for equation (1) numbers $\alpha, \beta(0<\beta \leqq \alpha)$ exist such that the following conditions be fulfilled:

1. $A \in \Omega^{\alpha, \beta}$.
2. $p \in P^{\alpha+\tau}$.
3. $B \in \Lambda$.
4. For any constant $a>0$ the following relation holds

$$
\sup \frac{B(\varphi)}{B(A(\varphi) 1(\cdot))}<\infty \quad \text { for } \quad \varphi \in C[-\tau, \tau] \quad \text { with } \quad 0<|\varphi(t)| \leqq a
$$

5. There exists a locally absolutely continuous function $h: J_{p} \rightarrow(0, \infty)$ with the properties $\operatorname{Var}_{\left[t_{p}, t\right]} h=0(t)$ for $t \rightarrow \infty, \operatorname{Var}_{\left[t_{p}, \infty\right)} h^{\prime}<\infty$, for which the following relation holds

$$
\begin{equation*}
\int_{E_{\bar{p}}} h(t)|p(t)| d t<\infty . \tag{2}
\end{equation*}
$$

6. There exists a number $\varepsilon>0$ for which the following inequality is satisfied

$$
\limsup _{t \rightarrow \infty} \mu\{s \in[t, t+\alpha+\tau] \mid h(s) p(s) \leqq \varepsilon\}<\beta
$$

Then each bounded solution of equation (1) either oscillates or tends to zero for $t \rightarrow \infty$.

Proof. Let $x: J_{x} \rightarrow \boldsymbol{R}$ be a bounded solution of equation (1) which is not identically equal to zero for sufficiently large values of t.

Without loss of generality we can assume that $x(t)>0$ for $t \in J_{x}$.
Multiplying both sides of equation (1) by the expression $h(t) / B\left(A\left(x_{t}\right) 1(\cdot)\right)$ and integrating from $t_{1}=t_{x}+\tau$ to $t>t_{1}$ we obtain the equality

$$
\int_{t_{1}}^{t} \frac{\left[A\left(x_{s}\right)\right]^{\prime \prime} h(s)}{B\left(A\left(x_{s}\right) 1(\cdot)\right)} d s+\int_{t_{1}}^{t} h(s) p(s) \frac{B\left(x_{s}\right)}{B\left(A\left(x_{s}\right) 1(\cdot)\right)} d s=0 .
$$

Applying to the first integral the lemma and integrating once more from t_{1} to $t>t_{1}$, we obtain the inequality
(3) $\int_{t_{1}}^{t} \frac{h(s)\left[A\left(x_{s}\right)\right]^{\prime}}{B\left(A\left(x_{s}\right) 1(\cdot)\right)} d s-\frac{\left.h\left(t_{1}\right)\left[A\left(x_{t}\right)\right]^{\prime}\right|_{t=t_{1}}}{B\left(A\left(x_{t_{1}}\right) 1(\cdot)\right)}\left(t-t_{1}\right)$

$$
-\int_{t_{1}}^{t}\left(\int_{t_{1}}^{s} \frac{h^{\prime}(y)\left[A\left(x_{y}\right)\right]^{\prime}}{B\left(A\left(x_{y}\right) 1(\cdot)\right)} d y\right) d s+\int_{t_{1}}^{t}\left(\int_{t_{1}}^{s} h(y) p(y) \frac{B\left(x_{y}\right)}{B\left(A\left(x_{y}\right) 1(\cdot)\right)} d y\right) d s \leqq 0 .
$$

Taking into account the properties of the function $h(t)$ and setting $\phi(t)=$ $\int_{0}^{t} \frac{d s}{B(s 1(\cdot))}$ we obtain for $t \rightarrow \infty$ the following relations
(4)

$$
\begin{aligned}
\int_{t_{1}}^{t} \frac{h(s)\left[A\left(x_{s}\right)\right]^{\prime}}{B\left(A\left(x_{s}\right) 1(\cdot)\right)} d s & =\int_{t_{1}}^{t} h(s) d \phi\left(A\left(x_{s}\right)\right)=h(t) \phi\left(A\left(x_{t}\right)\right)-h\left(t_{1}\right) \phi\left(A\left(x_{t_{1}}\right)\right) \\
-\int_{t_{1}}^{t} \phi\left(A\left(x_{s}\right)\right) d h(s) & =O(t), \\
\int_{t_{1}}^{t} \frac{h^{\prime}(s)\left[A\left(x_{s}\right)\right]^{\prime}}{B\left(A\left(x_{s}\right) 1(\cdot)\right)} d s & =\int_{t_{1}}^{t} h^{\prime}(s) d \phi\left(A\left(x_{s}\right)\right)=h^{\prime}(t) \phi\left(A\left(x_{t}\right)\right)-h^{\prime}\left(t_{1}\right) \phi\left(A\left(x_{t_{1}}\right)\right) \\
-\int_{t_{1}}^{t} \phi\left(A\left(x_{s}\right)\right) d h^{\prime}(s) & =O(1) .
\end{aligned}
$$

From inequality (3), in view of relations (2), (4) and condition 4 of the theorem, we obtain for $t \rightarrow \infty$ the relation

$$
\begin{equation*}
\int_{t_{1}}^{t}\left(\int_{\left[t_{1}, s\right] \cap E_{p}^{+}} h(y) p(y) \frac{B\left(x_{y}\right)}{B\left(A\left(x_{y}\right) 1(\cdot)\right)} d y\right) d s=O(t) \tag{5}
\end{equation*}
$$

We shall prove that the following relation holds

$$
\begin{equation*}
\int_{\left[t_{1}, \infty\right) \cap E_{D}^{+}} h(t) p(t) \frac{B\left(x_{t}\right)}{B\left(A\left(x_{t}\right) 1(\cdot)\right)} d t=\infty \tag{6}
\end{equation*}
$$

which obviously contradicts relation (5).
From condition A2 it follows that $\limsup _{t \rightarrow \infty} A\left(x_{t}\right)>0$, so let us set $c=\limsup \mathrm{s}_{t \rightarrow \infty} A\left(x_{t}\right)$. On the other hand, from equation (1) it follows that the function $A\left(x_{\text {. }}\right.$) is concave (convex) in any interval belonging to $\left\{J_{x}+\tau\right\} \cap$ $E_{p}^{+}\left(\left\{J_{x}+\tau\right\} \cap E_{p}^{-}\right)$. In view of condition 6 of the theorem we conclude that $\sup E_{p}^{+}=\infty$, hence there exists a sequence $\left\{t_{i}\right\} \subset E_{p}^{+}$with the property $\lim _{i \rightarrow \infty}\left(t_{i+1}-t_{i}\right)=\infty$ such that $\lim _{i \rightarrow \infty} A\left(x_{t_{i}}\right)=c$. From condition P1 it follows that there exists a sequence of disjoint intervals $\left\{l_{i}\right\}, t_{i} \in l_{i}$, with length $\alpha+\tau$ such that the inequality $\inf _{i} \min _{l_{i}} A\left(x_{t}\right)>0$ holds.

Then by condition A3 there exist measurable sets $Q_{i} \subset l_{i}$ with the property $\mu\left(Q_{i}\right) \geqq \beta, \quad i=1,2, \ldots$, such that the inequality $\inf _{i} \min _{t \in Q_{i}} x(t)>0$ holds. From the last inequality and condition B 2 it follows that $\inf _{i} \inf _{t \in Q_{i}} B\left(x_{t}\right)>0$, hence the following inequality holds

$$
\begin{equation*}
\inf _{i} \inf _{t \in Q_{i}} \frac{B\left(x_{t}\right)}{B\left(A\left(x_{t}\right) 1(\cdot)\right)}>0 . \tag{7}
\end{equation*}
$$

From condition 6 of the theorem it follows that there exist sets $Q_{i}^{\prime} \subset Q_{i}$ for which $\liminf _{i \rightarrow \infty} \mu\left(Q_{i}^{\prime}\right)>0$ and the inequality

$$
\begin{equation*}
\liminf _{i \rightarrow \infty}\left[\inf _{t \in Q_{i}^{\prime}} h(t) p(t)\right]>0 \tag{8}
\end{equation*}
$$

holds. Inequalities (7) and (8) immediately imply relation (6).
Remark 2. If, moreover, it is given that the function $p(t) \geqq 0$, then each bounded solution which for sufficiently large values of t is not identically zero oscillates. In this case, if $x(t) \geqq 0$ for $t \geqq t_{x}$, then the function $A\left(x_{\text {. }}\right)$ for $t \geqq t_{x}$ is concave, hence $x(t)$ may tend to zero for $t \rightarrow \infty$ only if it is identically zero for $t>t_{x}$.

References

[1] R. Brayton, Nonlinear oscillation in a distributed network, Quart. Appl. Math. 24 (1967), 289-301.
[2] G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), 190-200.
[3] W. J. Coles, An oscillation criterion for second order differential equations, Proc. Amer. Math. Soc. 19 (1968), 755-759.
[4] P. Hartman, On nonoscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389-400.
[5] I. V. Kamenev, Some specific nonlinear oscillation theorems, Mat. Zametki 10 (1971), 129-134 (in Russian).
[6] V. B. Kolmanovskii and V. R. Nosov, Stability and Periodic Régimes of Controlled Systems with Aftereffect, Moscow, 1981 (in Russian).
[7] T. Kusano and H. Onose, Nonlinear oscillation of second order functional differential equations with advanced argument, J. Math. Soc. Japan 29 (1977), 541-559.
[8] A. D. Myshkis, Linear Differential Equations with Delayed Argument, Moscow, 1972 (in Russian).
[9] A. D. Myshkis, D. D. Bainov and A. I. Zahariev, Oscillatory and asymptotic properties of a class of operator-differential inequalities, Proc. Royal Soc. Edinburgh 96A (1984), 5-13.
[10] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117.
[11] A. I. Zahariev and D. D. Bainov, Oscillating properties of a class of neutral type functional differential equations, Bull. Austral. Math. Soc. 22 (1980), 365-372.
[12] A. I. Zahariev and D. D. Bainov, On some oscillation criteria for a class of neutral type functional differential equations, J. Austral. Math. Soc. Ser. B 28 (1986), 229-239.

1) Plovdiv University
"Paissii Hilendrski"
Bulgaria
and
2) Moscow Institute of

Railway Engineering
USSR

