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It is well known that, in the classical potential theory, a polar set is
removable for Dirichlet finite harmonic functions (see, e.g., [1]). This result
was extended by the author to the case of self-adjoint harmonic spaces in [5].
But, as remarked in Remark 3 in [5], there seems to be no known results of
this type in the non-elliptic case, even for solutions of the heat equation.

In the present note, we prove that, on harmonic spaces with adjoint
structure, polar sets are removable for energy finite harmonic functions.
In case the constant functions are harmonic, the energy coincides with the
Dirichlet integral, so that our result implies the removability of heat polar sets
for Dirichlet-finite solutions of the heat equation. Also, our proof provides a
new proof to the classical result, which is quite different from the known proofs
(cf. e.g., [1] and [5]).

A preliminary abridged version of the present paper is given in the
APPENDIX of [7].

§1. Preliminaries

We consider a P-harmonic space (X, #°) with an adjoint harmonic space
(X, o*) as defined in [6]. By definition, there exists a Green function G(x, y)
associated with the structures s and s*, which satisfies conditions (G.0),
(G.1), (G*.1), (G.2) and (G*.2) given in [6]. For a non-negative measure y on
X, we write

Gu=fG(-,y)du(y) and G*u=JG(x, ") dp (x).

Gu (resp. G*p) is an s -potential (resp. S *-potential) on X if it is finite on a
dense set. We can easily show that this is the case if 1 is s#*-superharmonic
(resp. s -superharmonic) and u(X) < +oo.

By standard arguments (cf. e.g., [4; §4], [3; 1.VII and 1.XVII, §4 and §5]),
we obtain

ProrosITION 1. For any open set U in X, the harmonic spaces (U, #|y)
and (U, #*|,) are mutually adjoint with a Green function GY(x, y) such that
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G(x,y) = GY(x,y) + hU(x,y) forallx,yeU,

where hY is a function on X x X such that hV(-, y) (resp. hY(x, -)) is #-harmonic
(resp. #*-harmonic) on U for any y € U (resp. x € U).

As in [6], we assume that the constant function 1 is superharmonic for
both # and #*.

Let a: # — M (resp. o*: #* — ) be the measure representation associated
with G(x, y) (see [6]), where # (resp. #*) is the sheaf of functions which are
locally expressible as differences of continuous s#-superharmonic (resp. H#*-
superharmonic) functions, and ./ is the sheaf of signed measures on X. The
gradient measure J, of fe Z(U) (U: open c X) is defined by

o =3{2fo(f) — o(f?) — f?a(1)},

which is a non-negative measure on U (see [4]). The Dirichlet integral Dy[ f]
of fe Z(U) is the total mass of §,, namely

Dy[f1=6,(U),
and the energy E,[f] of fe #(U) is given by

BoL71 = DuLy] +3 | £ doth).

Thus, Ey[f]=Dy[f] if 6(1)=0 on U. The mapping f— E,[f]'* is a
semi-norm on the linear space Z;(U) = {fe Z(U)| Ey[f] < +o0}.

We consider the linear space of energy-finite (Dirichlet-finite, in case
a(1) = 0) harmonic functions; namely, for an open set U in X, let

Hp(U) = {ue #(U)| Ey[u] < +oo} = #(U) n Re(V).
We first establish the following

PROPOSITION 2. For any u € #5(U), the least #-harmonic majorant v of |u|
exists and v € H#z(U).

ProoF. Since o(u) =0, 26, + u’s(l) = —o(u?). Hence, u= —o(?) is
a non-negative measure on U and u(U) < +oo. It follows that GYu=
fGY(-, y) du(y) is a continuous #-potential on U and h=u?>+ GYyu is H#-
harmonic on U. Since h > u? and h'? is s#-superharmonic (cf. [4; the proof of
Lemma 6.2]), it follows that |u| has the least s#-harmonic majorant v such that
|lu] <v<h' Since h— v? is H#-superharmonic and majorized by h — u? =
GYyu, we have h —v?> = GYy with v = —g(v?). Since GYv < GYy, [6; Lemma
1.3] implies that v(U) < u(U) < +o00. This means that v e H#%(U), since v =
26, + v?a(1).
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COROLLARY 1. If ue #4(U), then u = u; — u, with u,, u, € #z(U), u; >0
and u, >0 on U.

§2. Polar sets

Let £ (resp. 2*) be the set of all #-potentials (resp. J#*-potentials) on
X and let Z; (resp. Z¥) be the subset consisting of all continuous ones in £
(resp. 2*).

A compact set K in X is said to be polar (with respect to #) if there is
p € 2 such that p(x) = +oo for all x e K.

We denote by €(X) the set of continuous functions on X and by %,(X) the
set of functions in ¥ (X) with compact support.

LEMMA 1. Let K be a compact polar set in X and let {V,} be a sequence of
open sets such that V, > V,,, and ﬂ;,"’zl V, =K. Then there is a sequence {p,}
in #. such that p, = 1 on a neighborhood of K, Supp a(p,) = V, for each n and
pn | 0 locally uniformly on X\ K.

Proor. By definition, there is p e 2 such that p(x) = +oo for all x € K.
For each n, let U, = {x € X |p(x) > n}, which is an open set containing K.
Choose ¢, € €,(X) such that 0 < ¢, <1 on X, ¢, =1 on a neighborhood of K
and Supp ¢, = U,nV,. Since p/n > ¢, on X, Re, < p/n, where R denotes the
reduction operator for s (cf. [2; pp. 39-40] or [4; §2-3]). p., = R, belongs
to #; and Supp a(p,) = U, V,. Obviously, p, =1 on a neighborhood of K.
We may assume that ¢, > ¢,;, so that p, > p,,,. Let p,=1lim,.,p, Since
pn is #-harmonic on X\ V,, p, is #-harmonic on X\K. Since p, < p/m for all
m, it follows that p, = 0 on X\ K. By Dini’s lemma, the convergence is locally
uniform on X\ K.

LEmMMA 2. If K is a compact polar set in X and U is an open set containing
K, then there is a non-negative measure u, on X such that Supp uo < U, Gu, is
finite continuous on X\ K and Guy(x) = +oo for x € K.

Proor. Choose {p,} as in the above lemma with {V,} such that V, c U
and let u, = o(p,). Then, p, = Gu, and Supp u, = V, = U. We can choose a
subsequence { p,,j} such that Y%, Pa, converges locally uniformly on X\K.
Then, p, = Z;’;lp,,j is finite continuous on X\K and py(x) = +oo for x € K.
Let vmzz;';lu,,j. For each yeK, there is z,e X\K such that G(z,,y)>0; for,
otherwise G(x,y)=0 for all xe X\ K, and since K has no interior point it would
follow that G(x, y) =0 for all x € X, which is absurd. By continuity, there is
an open neighborhood W, of y such that o, = inf, .4, G(z,, w) > 0. Then

W) < - f Gz, W) (W) < - polz) < +00

y y
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Since K is compact, there are yy, ..., y,€ K such that W= W, u---U W, o K.
Then {v,(W)} is bounded. Since Supp u, = W for sufficiently large n, it follows
that {v,} is vaguely convergent, so that u, =y'%, Hn, is @ non-negative measure
on X with Supp p, = U. Obviously, G, = p,.

LEmMMa 3. If K is a compact polar set and if G*v (v > 0) is bounded in a
neighborhood of K, then v(K) = 0.

PrROOF. Suppose G*v is bounded on U > K and let M = sup, G*v. Let
U, be the measure given in the above lemma for K and U. Since Guy(x) =
+oo for x € K, for any ¢ > 0 we have

v(K) SSJG#O dv = ejG*v duy < eMpg(X) .

Since po(X) < 400, it follows that v(K) = 0.

ProrosiTiON 3. If K is a compact polar set in X and U is an open set
containing K, then there exists a sequence {p,} in P such that p,=1 on a
neighborhood of K, Supp o(p,) = U for each n, p, |0 locally uniformly on X\ K
and o(p,)(X) - 0 (n > ).

Proor. It suffices to show that ¢(p,)(X)—>0 (n— o) for {p,} given in
Lemma 1 with {V,} such that V; « U. We may assume that U is relatively
compact. Choose ¥ € €,(X) such that 0 <y <1 on X and y =1 on U. Let
R* denote the reduction operator for s#* and let ¢ = R*y. Then q e £%, so
that g = G*A with 1 =0%g). Since q is bounded, A(K) =0 by the above
lemma. Hence

o(p,)(X) = o(p,)(U) = Jq do(p,) = jp,. di = J pn dA.
X\K
Since p,]0 on X\K and Supp A is compact, Lebesgue’s convergence theorem
implies [\ x p, d4 — 0 (n > o0). Thus a(p,)(X) - 0.

REMARK 1. Proposition 3 means that if K is a compact polar set, then
co(K) = 0 for the capacity ¢, defined in [7]. Conversely, using the arguments
as in the proof of Lemma 2 (taking a subsequence such that Vo, (X) < 274, say),
we can show that ¢,(K) = 0 implies that K is polar.

In [7], we have shown that c,(K) = c§(K). Hence we have

COROLLARY 2. If K is a compact polar set in X and U is an open set
containing K, then there is a sequence {q,} in P& such that q,=1 on a
neighborhood of K, Supp o*(q,) = U for each n, q, |0 locally uniformly on X\ K
and o*(q,)(X) - 0 (n > o0).
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LEMMA 4. Let K be a compact polar set in X and suppose pe P is
H# -harmonic on X\ K. Then there exists a non-negative measure i on X such
that Supp u < K and p = Gp.

PrROOF. As in the proof of Lemma 2, for each ye K there is x, € X\K
such that G(x,, y) >0. Choose a relatively compact open neighborhood W,
of x, such that VVyr\K = ¢, and choose ¢, e 4(X) such that ¢, =0 on
a neighborhood of x,, ¢,=1 on X\W, and 0<¢,<1 in X. Put gq,=
R*(G(x,, ")¢,). Then, q,€ Z¢#, Supp 6*(q,) = W, and q,(y) = G(x,,y) >0. By
continuity, there is an open neighborhood V, of y such that q,>0 on V.
Choose yy, ..., yy € K such that V, u---UV, o K, and let gx = q,, + " + g,,.
Then, qx € 2%, Supp o*(qx) " K = & and qk(z) >0 for all ze K. Put a=
infxgqx and V = {ye X|qg(y) > a/2}. Then V is an open set containing K.
Choose a sequence {U,} of relatively compact open sets such that ¥V > U, o
Uysy 2 K and ()2, U, = K, and then choose ¥, € €(X) such that ¢, =1 on
X\U,, y,=0o0n U,,; and 0<y, <1 on X. Put p,=R(®W,p). Then p,e %,
and p,=p on X\U, Since p is #-harmonic on X\U, we see that
Supp a(p,) = U, = V. Put p, = a(p,) and vx = 6*(gx). Then

2 2 2
Aun(X) = “n(V) < & JqK d#n = & ‘[pn de < &' j‘p de .

Since Supp vx is compact and disjoint from K, p is bounded on Supp vg.
Hence, {u,(X)} is bounded, so that there exists a non-negative measure yu on
X such that a subsequence {u,} of {u,} converges vaguely to u. Then
Supp 4 = K and p,(x) > Gu(x) (j— o) for any xe X\K. Hence p=Gu on
X\K. Since K is polar, it follows that p = Gu on X.

§3. Removability theorem

THEOREM. Let K be a compact polar set in X. Then K is removable with
respect to H#g; namely, for any ue€ Hy(X\K) there exists i € #(X) such that
lx\x = u.

Proor. By Corollary 1, we may assume that u > 0. By [2; Theorem
6.2.1], there exists an s -superharmonic function & on X such that i|y g = u.
Then &i = h + p with he #(X) and pe & It suffices to show that p = 0.

Since p is s#-harmonic on X\K, Lemma 4 implies that p = Gu with
a non-negative measure u such that Suppuc K. Let V be any relatively
compact open set containing K. Since E,[h] < oo, we see that Eyp\x[p] <
+00. Choose ¢ € ¥(X) such that ¢ =0 on a neighborhood of K, ¢ =1 on a
neighborhood W of X\V and 0 < ¢ <1 on X. Put p'’=R(pp). Then p' e
P, p' = p on W and Supp a(p’) is compact (in fact, contained in V\K). Thus,
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Ewlp] = Ex[p'] < Ex[p'] < fp’ do(p’) < +o0

by [6; Theorem 3.1]. Hence Ex\x[p] < +c0.

Put v =26, + p*a(1) on X\K. Since v(X\K) = Ex\x[p] < 40, v can be

regarded as a non-negative measure on X and we see that Gve 2. Since p is
#-harmonic on X\K, v= —o(p?) on X\K. Thus, (Gv + p?)|x\x € #(X\K).
Again by [2; Theorem 6.2.1] and Lemma 4, there exists a non-negative measure
vo such that Suppv, = K and Gv + p?> =h' + Gv, on X\K with h’'e #(X).
Since p is bounded outside a compact set (cf. e.g., [4; Proposition 2.5]), we see
that ' = 0. By Corollary 2, there is a sequence {4,} of non-negative measures
on X such that G*1,e #¥ G*1,=1 on a neighborhood of K, Supp 4, is
compact for each n and 1,(X)—>0 (n— o). Since p* < Gv, on X\K and
A,(K) = 0 (by Lemma 3), we have

jpz i, < JGvo di, = jc*x,, dvy = vo(K) < +00 .

Hence

u(X) = wK) = JG*/L. dp = fp i, < <Jp2 din>1/2 An(X)12

< v(K)21,(X)"? 50 (n—> ).

Thus, 4 = 0, and hence p =0, q.e.d.
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