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Introduction

There have been many attempts to clarify geometric meanings of Bochner
curvature since S. Bochner [3] introduced it as a Kaehlerian analogue of
conformal curvature in 1949. S. Tachibana [12] gave the expression of
Bochner curvature tensor in real form, M. Matsumoto and S. Tanno [10]
proved that a Kaehlerian space with vanishing Bochner curvature tensor and of
constant scalar curvature is a complex space form or a locally product of two
complex space forms of constant holomorphic sectional curvature c (>0) and
— c. Y. Kubo [8], I. Hasegawa and T. Nakane [5] obtained necessary condi-
tions for a Kaehler manifold with vanishing Bochner curvature tensor to be a
complex space form.

On the other hand, M. Matsumoto and G. Chuman [9] denned the
contact Bochner (briefly, C-Bochner) curvature tensor in a Sasakian space and
studied its properties. A Sasakian space form is a space with vanishing C-
Bochner curvature tensor.

In this paper, we discuss properties of fibred Sasakian spaces with vanish-
ing C-Bochner curvature tensor and construct an example of Sasakian space
with vanishing C-Bochner curvature tensor which is not a Sasakian space form.
As to notations and terminologies, we refer to the previous papers [7, 13].

Throughout this paper, the ranges of indices are as follows:

A9B9C,D9E=l929...9m9

ft, i9j9 k9 1 = 1, 2, . . . , m ,

a9b9c9d9e=l929...9n9

α, β, 7, δ, ε = n + 1, ..., n + p = m .

The author expresses his gratitude to his teacher Y. Tashiro for valuable
advices, in particular, the construction of the example in § 4.

§ 1. Preliminaries

Let {M, M, g, π} be a fibred Riemannian space, that is, {M, g} is an
m-dimensional total space with projectable Riemannian metric g, M an
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rc-dimensional base space, and π: M -• M a. projection with maximal rank

n. The fibre passing through a point P in M is denoted by M, and it is

p-dimensional, n + p = m.

We take coordinate neighborhoods (£?, zh) in M and (U, xα) in M such that

π(Ό) = U, then the projection π is expressed by equations

(1.1) xα = xα(zh)9

with Jacobian (dxα/δzi) of maximum rank n. Take a fibre M such that

M r\Ό φ 0. Then there are local coordinates yα in M n U and (xα, yα) form a

coordinate system in £?.

If we put

(1.2) E,:* and * . - £ ,

then £ f

α are components of a local covector field Eα in ί7 for each fixed index α,

and Ch

α are those of a vector field Cα for each fixed index α. The vector fields

Cα form a natural frame tangent to M and

(1.3) EfCβ = 0 .

The induced metric tensor g in each fibre M is given by

(1.4) gyβ = g(C7, Cβ).

If we put

(1.5) gcb

then #ci, are components of the metric tensor g with respect to (xα) in the base

space M. We put

E\ = §ugΛEt

b and C,« = ^ ^ ^ C ^ .

We write the frame (EB) for (Eb, Cβ) in all, if necessary. Let hyβ

α be compo-

nents of the second fundamental tensor with respect to the normal vector Eα

and L = (Lcb*) the normal connection of each fibre M. Then we have

(1-6) V = V a n d Lcb" + L^ = 0.

Denoting by F the Riemannian connection of the total space M, we have the

following equations [6, 7, 13]:

PjE\ = ΓclEfE\ - Lcb*EfCh

x + Lb%C/E\ - hy'bC/C\ ,

Pfi? = - Γ3,EfEt

b - Lt'β(EfCf + C/E,') -

f t = LJEfE? + (V, - P«')EfCf + h^C/E? - Γγ«βC/Cf ,



Fibred Sasakian spaces 183

where Γcl and Γγ

a

β are connection coefficients of the projection V = pV and V
of the induced metric g in M.

The curvature tensor of M is defined by

κ(x, Ϋ)z = F$FyZ - PΪVΪZ - P[m2

for any vector fields X, Ϋ and Z in M. We put

(1-8) K(ED, EC)EB = KDCB

aEa + KjyQβ"^ ,

then KDCB

A are components of the curvature tensor with respect to the frame
(EB). Denoting by Kkji

h components of the curvature tensor of M in (U, zh),
we have the relations

(1-9) KDCB = Kkji Ek

DEi

cE'BEh

A .

The structure equations of M are written as follows:

(1.10) Kάcb" = Kdcb° - Ld\Lcb° + Lc\Lib> + 2Lic°Lb\ ,

(1.11) Rdcb* = - *ΓdLcb* + *FcLdb" - 2Ldc%\ ,

(1.12) £ * / = *Fthf% - *Fdh,% + 2**FβLdc* + Lde*L/β

- Lce°Lfβ - Λ.% Vc + K\h\ ,
(1.13) Kdyb° = *FdLb% - Ld\hy\ + Ldb%° - Lb\hy\ ,

(1.14) * V = - *FA"h + **^Λ' + Ld%Leb* + Λ/A% ,

(1.15) Kδyb° = Lδyb" + hδ\hy° - hy\hH

a ,

(1.16) Rδyβ

a = **Fδhyβ" - **Fy V ,

(1.17) £ 4 τ ,« = Kόγβ* + hδβ

ehy\ - hyβ

ehδ\ ,

where we have put

(i.i8) κ d c b ° = ddr;b - ecrfb + rd

a

ercι - rc

a

erd%,

(1.19) *FdLa' = dΛLeb' - Γd%Leb* - ΓZLJ + QSLJ ,

(1.20) *FdLc% = ddLc% + Γd°eLc

e

β - ΠLt% - Qdβ°Lc\ ,

(1.21) *Fd V = ddhyβ° + Γd°ehγβ° - Qdy%β" - Qiβ%c

a ,

(1.22) *Fdhβ\ = 3dhβ\ - Γd%hβ% + Qd*hβ\ - Qdβ%\ ,

(1.23) **FδLcb" = dδLcb« + Γ/εLcfc

£ - Lc'tLΛ' - Lb

e

δLce" ,
a

β

(1.25)

(1.26) W V ^
(1.27) Ldϊί>° = d,Lb% - dyLb"δ + Le\Lb% - Le"yLb

e

δ ,

(1.28) κδyβ" = δδfy*β - d y n β + fδ*εr;β - Γy%Γiβ.

a — P) T a Γ ε J a A -b β — vδL-tb β ι δβ^b ε i
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We denote by KCBi Kcb and Kyβ components of the Ricci tensors of {M, #},

the base space {M, g) and each fibre {M, g) respectively. Then we have the

relations

(1.29) Kcb = Kcb - 2LJLb\ - ΛΛVb + (\βψVchz\ + *rbhΛ'e),

(1.30) κyb = **ryhε\ - ** W * + *r .V, - 2*ΛV.>

(1.31) Kyβ = Ky, - V V e + * W - Le%
Le%

Denoting by K, K and K the scalar curvatures of M, M and each fibre M

respectively, we obtain the relation

(1.32) K = KL + K - LcbεL
cbε - hyβeh"e - hy\h/e + 2* Vehε

εe,

where KL is the horizontal lift of K.

§ 2. Complex space form and Sasakian space form

We recall properties of a complex space form and a Sasakian space form in

connection with Bochner curvature tensor and C-Bochner curvature tensor, for

the sake of the future.

We consider an n-dimensional Kaehlerian space M and denote the com-

plex structure by J. The tensor Hcb defined by

( 2 1 ) Hcb = J/Keb,

is skew-symmetric in the indices. The Bochner curvature tensor on M is

defined by

Bdch

a = Kdcb

a + ^t&aV ~ Kcbδd° + gdbK
a - gebKf

+ HdbJc

a — HcbJd

a + JdbHc

a - JcbHd

a + 2HdcJb

a

(2.2)
+ 2JdcHb

a) + ( t o y - Λ f t ^ + JdfeJc

fl

[3, 8, 10, 12].

A Kaehlerian space M is called a complex space form if the curvature

tensor is of the form

(2.3) Kdcb

a = (c/4)(δSgcb - δc

agdb + J/Jeb - Jc

aJdb - 2JdcJb

a)

The constant holomorphic sectional curvature c of M is equal to 4K/n(n + 2).

The following proposition is well known [12].
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PROPOSITION 2.1. A Kaehlerίan space M is a complex space form if and

only if M is an Einstein space and the Bochner curvature tensor Bdcb

a vanishes.

Next we consider a p-dimensional Sasakian manifold M and denote the

contact metric structure by (φβ

a, ξa

9 ηβ, gβa). They satisfy the relations

Φ2= -
F φFη = φ, (W)Ϋ = g(X, Ϋ)ξ - η(Ϋ)X

[1], where V is the Riemannian connection on M and X, Y are arbitrary vector

fields. The tensor Hβa defined by Hβa = φβ

yKγa is skew-symmetric in α and β.

The C-Bochner curvature on M is defined by

Bδyβ* —Kδyβ

Λ + ——r{Kδβδγ — Kγβδ£ + gδβKy

Λ — gγβKδ

a

+ HΛβφf + Hyβφδ* - φδβHy* + φγβH/ + 2ίϊδγφβ* + 2φδ7Hf

- Kδβηγξ
a + Kγβηδξ

α - ηδηβKγ* + ηyηβKδ"

- ( k + p - \){φδβφy

a - φyβφδ

a + 2φδyφβ

a)

Hgδβηyξ* + ηδηβδ; - gyβηδξ
a -

where /c = (K + p — l)/(p +1) . It can be constructed from the Bochner curva-

ture tensor in a Kaehlerian space by the fibering of Boothby-Wang (see [9]).

If the Ricci curvature Kβa on M is of the form

(2.6) Kβa = agβa + bηβηΛ ,

with constants a and b, we call M an η-Einstein space. Since we have the

equation

KHξ' = (p- ί)ηf

in a Sasakian space, the constants a and b satisfy the relation

(2.7) a + b = p - 1 .

A Sasakian space M is called a Sasakian space form if the curvature

tensor is of the form

Kayβ* = C~^-(^gyβ - δΛ

ygδβ) - C-^~{δ*δηyηβ - δ

(2.8)
+ θyβiδξ" ~ gδβiyξ" + ΦδfiΦy" ~ ΦyβΦδ' +

Contracting this equation in α and β, we see that the Sasakian space form is an

f7-Einstein space with constants
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a = {c(p + 1) + 3p - 5}/4 and b = (p + 1)(1 - c)/4 .

The constant c is conversely given by c = (4a — 3p + 5)/(p -f 1) by means of

(2.8) and it is known that the C-Bochner curvature tensor of the Sasakian space

form vanishes identically.

Conversely we assume that M is an ^/-Einstein space and the C-Bochner

curvature tensor vanishes. Then we get

(p

k = (p- \)(a + 2)/(p + 1)

and

*3yβa = - ^ « 2 α - * + Wsffyβ ~ δΪ9*β) ~(2a-k-p+ l)(δδ%ηβ

(2.10) P _ _ _ _ _ _
δa + gγfiηδξ" ~ gδβηγξ

a + φδβΦy

Λ + ^ ^ / + 2φδγφβ

a)}

by use of b = p — a — 1. Therefore M becomes a Sasakian space form of

constant ^-holomorphic sectional curvature c = (4a — 3p -f 5)/(/? +1) . Thus

the following result is valid.

PROPOSITION 2.2. A Sasakian space M is a Sasakian space form if and only

if M is η-Einstein and has the vanishing C-Bochner curvature tensor.

§ 3. Fibred Sasakian space with vanishing contact

Bochner curvature tensor

We consider a fibred Riemannian space M such that the base space M is

almost Hermitian and each fibre M is almost contact metric, and denote the lift

of the almost Hermitian structure of M to the total space M by the same

characters (J, g) and the almost contact metric structure of each fibre M by

(φ, ξ, η, g). The present author [7] has introduced an almost contact metric

structure (φ9 ξ, ή, g) on the total space M by putting

+ φβ«Cβ ® C α ,

(3.1) ξ = ξ"Ca, ή = ηaC" and

g = gbaE
b ® Ea + gβaC

β ® C" .

The structure is said to be induced on M. Conversely, it is known [13] that a

fibred almost contact metric space with ^-invariant fibres tangent to ξ defines

an almost Hermitian structure in the base space and an almost contact metric

structure in each fibre.
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If the horizontal mapping covering any curve in M is an isometry (resp.

conformal mapping) of fibres, then M is called a fibred Riemannian space with

isometric (resp. conformal) fibres. A necessary and sufficient condition for M to

have isometric (resp. conformal) fibres is hyβ

a = 0 (resp. hyβ

a = gyβA
a, where

A = AaEa is the mean curvature vector of each fibre M in M), see [6, 13].

We recall the following propositions for the later use.

PROPOSITION 3.1 ([7]). The induced almost contact metric structure (φ,ζ,

ή, g) on M is Sasakian if and only if

(1) the base space M is Kaehlerian.

(2) each fibre M is Sasakian,

(3) Lcb> = jcbξ\

(4) hy\φλ" - h/aJb" = 0 and

(5) *VcφJ = 0,

where we have put

PROPOSITION 3.2([7]). // a fibred Sasakian space M with induced structure

has conformal fibres, then M has isometric and totally geodesic fibres.

Now we assume that a fibred Sasakian space Aί has conformal fibres and

the C-Bochner curvature tensor on M vanishes. If we put ββ = φ)kKki, then

the tensor BJt satisfies the equations

(3.2) £,; + #,, = (),

(3.3) Bj& = 0 ,

(3.4) Hj^-Kji + im-Dήjήi,

(3.5) Hjij = K-m+l,

and, by means of the equation in M similar to (2.5), the curvature tensor KkJi

h

of M is given by the expression

Kkii"= ~7ΪT3{{

- Hnφk

h + φkiHj> - φ}iHk

h + 2Άkjφt + 2φkjH?

(3.6) - Kkiήjξh + Rnήkξ
h - R

-(k + m- 1 ) (&# - φβφk

k + 2φkjφt)

SuδJ - Sjiδk

h)

Λ - %»f A*)},
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where k = (K + m - l)/(m + 1)
By the equations (1.29) ~ (1.32), Propositions 3.1 and 3.2, we have

(3-7) KnE'cE\ = Kcb - 2gcb,

(3.8) RμE>cσt = Q,

(3.9) ZjiC\σβ = Kyβ + riηyηβ ,

(3.10) βJtEJeE
i

b = Hcb-2J€b,

(3.11) /J,(E>eC'. = 0 ,

(3.12) ββVy?,, = Hyβ

and

(3.13) R = KL + K - n .

Referring the expression (3.6) to the frame (EΛ) = (Ea, CJ, we obtain the
equations

] δ t ' - Kcbδ°d + Kc°gdb - K/gcb + HibJm + 5

. . . . . - HcbJd" + Hc"
(3.14)

m + 5

- HcbJd" + Hc"Jdb — HdJcb + 2HdcJb" + 2Hb"Jdc)

+
(m + l)(m + 3)

δ! - gcbδ
a

d),

J' ~ JcbJd" + 2Jd

(3.15) ' _ _
+ KebJ/φy* + Kβ*φ/Jdb - Kdbηyξ* = 0

and
1

- Hyβφδ* + Hy"φδβ - Hδ*φyβ + 2Hδyφβ* + 2Hβ"φδy

- Kδβηyξ" + Kyβηδξ* - Ky"ηδηβ + Kδ*ηβηy)

(3.16) + niη,ηβδ; - ηyηβδδ* + ηyξ*gδβ - ηδξ%β)

- ( k + m- l)(φδβφy

x - φyβφδ' + 2φδyφβ

x)

δ? - gyβδS)

" +

by means of the equations (1.9), (1.10), (1.14), (1.17) and (3.9) ~ (3.13). More-
over, contracting gdb and the indices γ and α in (3.15), we obtain

(3.17) (p - l)(p + l)K + n(n + 2)(K + p - 1) = 0 .
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By use of this equation and (3.14), the curvature tensor of M is given by

(3.18) - HcbJf + Hc

aJdb - Hd

aJcb + 2HdcJb° + 2Hb"Jdc)

Hence, comparing this expression in the case of p = 1 with (2.2), we can state

that

PROPOSITION 3.3. // a fibred Sasakian space M has 1-dimensional fibres

and the C-Bochner curvature tensor of M vanishes, then so does the Bochner

curvature tensor of the base space M.

In the case of p φ 1, by the contraction in the indices a and d of (3.18), we

get

(3.19) Kcb = (K/n)gcb,

and the base space M is an Einstein space provided n > 2. Substituting (3.19)

into (3.18) and noting Hcb = (K/n)Jcb, we get

(3.20) Kdcb

a = -J^(gcbδd

a - gdbδc

a + JcbJd

a - JdbJc

a - 2JdcJb

a)

Hence we can state

LEMMA 3.4. Let M be a fibred Sasakian space with conformal fibres of

dimension p φ 1. If the C-Bochner curvature tensor of M vanishes, then the base

space M is a complex space form provided n > 2.

On the other hand, from the equation (3.17), we get

,3.2,, κ = _ n ί n + 2 ) i _ _ _ + _

Substituting this into (3.16), we see that the curvature tensor of the fibre M has

the expression

1

- Hyβφs* + Hy*φ3β - H/φyβ + 2HSyφβ° + 2Hβ*φSy

+ Kyβηδξ" — Ky

aηδηβ + Ka"ηβηy)
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X (Φ,βΦy" ~ ΦyβΦt'

n+p+l[\ (p+ l)(p -l)J p+ί

(3.22) x (giβδ; - gyβδϊ)

X (βδβtjyξ* + Wβδy - θyβtjδϊ" ~ ) •

Then the contraction with respect to α and δ gives

—(KnKyβ = —(Kηyηβ - Kgyβ)

(3-23) + [nP + n - P

φ + 2) - (p + l)(p -

Differentiating covariantly this equation on M, noting VβKa

β = (l/2)(FaK) and

using (2.4), we have

(3.24) l-FβK = ̂ - { ^ - (

Transvecting ξβ

9 we see ξβVβK = 0 and furthermore

(3.25) P,X = 0

provided p > 3, that is, K is constant on each fibre M. Therefore it follows

from (3.23) that the Ricci tensor Kβa of M has the form

(3.26) Kβa = α^ α + fcfyijβ ,

where the constant coefficients a and b are put by

p+
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and satisfy

a + b = p - 1 .

Substituting (3.26) into (3.16) and taking account of Hβa = aφβa, we obtain

the equation

- (p - a - l)(δϊηsηβ - δ^ηyηβ + gδβηγξ* - gyβηδξ
x)

+ a(giβfjyξ" ~ QyβΆil* + ^ηtηp -

- 2a(φδβφy

Λ - φyβφδ' + 2φδyφβ*)

Φy" - ΦyβΦs"

~ Mi)
- hg»fn-,l" +

that is,

1
κ*yβ* =

P + 1

(3.27) + (p — a — l)(δ%ηγηβ — δ!fηδηβ — QδβΫ\^ξCί + gyβηδξ
a

+ ΦsβΦy" ~ ΦyβΦs" + WδyΦβ')}

by use of

(3.28) k
P I" A

Thus we obtain

LEMMA 3.5. Let M be a fibred Sasakian space with conformal fibres of

dimension p > 3. // the C-Bochner curvature of M vanishes, then the fibre M

is a Sasakian space form of constant φ-holomorphic sectional curvature c =

(4a - 3p + 5)/(p + 1).

Combining Lemmas 3.4 and 3.5, we have established

THEOREM 3.6. Let M be a fibred Sasakian space with base space M of

dimension n > 2 and conformal fibres of dimension p > 3. // the C-Bochner

curvature of M vanishes, then the base space M is a complex space form and each

fibre M is a Sasakian space form.
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§ 4. Examples

As we have shown in [7], a Sasakian space form Em( — 3) is a fibred space

having a Euclidean base space En of even dimension and a Sasakian space form

Ep( — 3) as fibre. It is a trivial example.

Next, we shall give a fibred Sasakian space with vanishing C-Bochner

curvature tensor, which is not a Sasakian space form.

Let Cnβ be a complex space of complex dimension n/2 and denote complex

coordinates by xs, s = 1, 2, ..., n/2, and their conjugates by xs. If we consider

the real valued function

F = (2/c) log 5 , 5 = 1 + (c/2) £ s xsxs

with real constant c, then the metric tensor

d2F _δst cxsxι

Gst* " dx'δx1 " y ~ 2S2

defines a Fubini-Study metric of constant holomorphic sectional curvature c

[2]. If we put

.dF ixs .dF ixs

then the fundamental 2-form J = 2ίgst^ dxs A dxx is given by

(4.2) Jab = (l/2)(daωb-dbωa).

If c > 0, then the 1-form ω = ωadxa is locally defined in the complex space

form M. If c < 0, the 1-form ω is globally defined in the open domain

in Cn / 2, which is the underlying space of the complex space form M. If c = 0,

the 1-form ω is globally defined in the complex Euclidean space M = Cnβ by

putting S = 1 in (4.1). The equation (4.2) may be valid in real coordinates.

Let (M, φ9 ξ, g) be a p-dimensional Sasakian space form with constant

^-holomorphic sectional curvature — c — 3. We take the product space

M x M as the underlying space of M, and put

a + ω f tωα ωbηc

a n d
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with respect to the coordinate system zh = (xa, ya). Then we have

and verify that (φ, ξ, ή, g) is an almost contact metric structure on M. The

covariant components of the metric g are equal to

where ωb = ωag
ba.

The vector fields EΛ = (Ea, Cα) and EA = (Eb, Cβ) are given by

£,« = ( # , ( » , C? = (ξ"ωb,δ$)

and EA form a frame field in M and we have the relations

(4.5) g(Ec, Eb) = gch a n d g{Cβ9 Cα) = gβa.

Therefore the space M has an induced almost contact fibred structure.

By straightforward computations on account of properties of the Kaehlerian

structure in the base space M and the Sasakian structure in the fibre M, the

connection V of g in the total space M has the following coefficients with

respect to the coordinate system zh = (xa, ya):

rcωh)ξα + (Jacωb + Jabωc)ωaξ

(4.6) Γ*-J.*β> _
Γ*β=-ω°Jceηβξ*-ωcφβ\

1 yβ - 1 yβ '

where Γcl and Γy

a

β are connection coefficients of V in M and V in M respec-

tively. Then it follows from the equations (1.7) that the second fundamental

tensor h = (hyβ

a) with respect to Ea is equal to

(4.7) V = % = 0

and the normal connection L = (Lcb

a) of each fibre M in M is

(4.8) Lcb* = Jcbξ".

Therefore each fibre is totally geodesic. According to (4.6), we can see that
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Pjβ* = dJβ* ~ Γc

d

βφdΛ - Γc}φyoι - Γc

dJβd - ΓjJβγ

are equal to zero. From this fact and (4.4), we have

Hence, by means of Proposition 3.1, M is a fibred Sasakian space with the base

space M and the fibre M.

Put q = n/2 and r = (p — l)/2 for short, and take a ^-basis {el9..., em) at

every point of M such that eί9 ..., eq9 eq+1 = φel9 . . ., en = φeq are horizontal

vectors and en+1, ..., en+nen+r+1 = φen+ί, . . ., ̂ Λ+J,__! = φen+r, em = ξ are vertical

vectors. We denote by H(X9 Y) the sectional curvature with respect to the

plane spanned by X and Y. By means of (1.10) - (1.17) and (4.7) - (4.8), we

obtain

H(es, φes) = c - 3 for 1 <s<q,

H(esi et) = - for 1 < s , t < q , s Φ t,

H(eai φea) = -c - 3 for n + 1 < α < n + r ,

^fe» £/?) = - T for w + 1 < α , jS < n + r , α / jS and

H(ea,ea) = 0,

and see that the relation

(4.9) SH(eλ9 eμ)-6 = H(eλi φeλ) + H{eμ, φeμ) (λ Φ μ)

is satisfied for λ, μ = 1, . . . , q, n + 1, ..., n + r. That the equation (4.9) is

satisfied for a ^-basis is an equivalent condition to the vanishing C-Bochner

curvature tensor in a Sasakian space of dimension m > 5 [cf. 4, 11]. Hence M

is a Sasakian space with vanishing C-Bochner curvature tensor but not of

constant ^-holomorphic sectional curvature because H(es, φes) φ H{eα, φeα).

This is an example we seek for.
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