Fibred Sasakian spaces with vanishing contact Bochner curvature tensor

Byung Hak Kim
(Received March 7, 1988)

Introduction

There have been many attempts to clarify geometric meanings of Bochner curvature since S. Bochner [3] introduced it as a Kaehlerian analogue of conformal curvature in 1949. S. Tachibana [12] gave the expression of Bochner curvature tensor in real form, M. Matsumoto and S. Tanno [10] proved that a Kaehlerian space with vanishing Bochner curvature tensor and of constant scalar curvature is a complex space form or a locally product of two complex space forms of constant holomorphic sectional curvature $c(\geq 0)$ and -c. Y. Kubo [8], I. Hasegawa and T. Nakane [5] obtained necessary conditions for a Kaehler manifold with vanishing Bochner curvature tensor to be a complex space form.

On the other hand, M. Matsumoto and G. Chūman [9] defined the contact Bochner (briefly, C-Bochner) curvature tensor in a Sasakian space and studied its properties. A Sasakian space form is a space with vanishing CBochner curvature tensor.

In this paper, we discuss properties of fibred Sasakian spaces with vanishing C-Bochner curvature tensor and construct an example of Sasakian space with vanishing C-Bochner curvature tensor which is not a Sasakian space form. As to notations and terminologies, we refer to the previous papers [7, 13].

Throughout this paper, the ranges of indices are as follows:

$$
\begin{aligned}
A, B, C, D, E & =1,2, \ldots, m \\
h, i, j, k, l & =1,2, \ldots, m \\
a, b, c, d, e & =1,2, \ldots, n \\
\alpha, \beta, \gamma, \delta, \varepsilon & =n+1, \ldots, n+p=m .
\end{aligned}
$$

The author expresses his gratitude to his teacher Y. Tashiro for valuable advices, in particular, the construction of the example in $\S 4$.

§ 1. Preliminaries

Let $\{\tilde{M}, M, \tilde{g}, \pi\}$ be a fibred Riemannian space, that is, $\{\tilde{M}, \tilde{g}\}$ is an m-dimensional total space with projectable Riemannian metric \tilde{g}, M an
n-dimensional base space, and $\pi: \tilde{M} \rightarrow M$ a projection with maximal rank n. The fibre passing through a point \widetilde{P} in \tilde{M} is denoted by \bar{M}, and it is p-dimensional, $n+p=m$.

We take coordinate neighborhoods $\left(\tilde{U}, z^{h}\right)$ in \tilde{M} and $\left(U, x^{a}\right)$ in M such that $\pi(\widetilde{U})=U$, then the projection π is expressed by equations

$$
\begin{equation*}
x^{a}=x^{a}\left(z^{h}\right), \tag{1.1}
\end{equation*}
$$

with Jacobian $\left(\partial x^{a} / \partial z^{i}\right)$ of maximum rank n. Take a fibre \bar{M} such that $\bar{M} \cap \tilde{U} \neq \varnothing$. Then there are local coordinates y^{α} in $\bar{M} \cap \tilde{U}$ and $\left(x^{a}, y^{\alpha}\right)$ form a coordinate system in \tilde{U}.

If we put

$$
\begin{equation*}
E_{i}^{a}=\frac{\partial x^{a}}{\partial z^{i}} \quad \text { and } \quad C_{\alpha}^{h}=\frac{\partial z^{h}}{\partial y^{\alpha}}, \tag{1.2}
\end{equation*}
$$

then E_{i}^{a} are components of a local covector field E^{a} in \tilde{U} for each fixed index a, and $C^{h}{ }_{\alpha}$ are those of a vector field C_{α} for each fixed index α. The vector fields C_{α} form a natural frame tangent to \bar{M} and

$$
\begin{equation*}
E_{i}^{a} C_{\beta}^{i}=0 . \tag{1.3}
\end{equation*}
$$

The induced metric tensor \bar{g} in each fibre \bar{M} is given by

$$
\begin{equation*}
\bar{g}_{\gamma \beta}=\tilde{g}\left(C_{\gamma}, C_{\beta}\right) \tag{1.4}
\end{equation*}
$$

If we put

$$
\begin{equation*}
g_{c b}=\tilde{g}\left(E_{c}, E_{b}\right), \tag{1.5}
\end{equation*}
$$

then $g_{c b}$ are components of the metric tensor g with respect to $\left(x^{a}\right)$ in the base space M. We put

$$
E_{a}^{h}=\tilde{g}^{h i} g_{a b} E_{i}^{b} \quad \text { and } \quad C_{i}^{\alpha}=\tilde{g}_{i h} \bar{g}^{\alpha \beta} C_{\beta}^{h}
$$

We write the frame $\left(E_{B}\right)$ for $\left(E_{b}, C_{\beta}\right)$ in all, if necessary. Let $h_{\gamma \beta}{ }^{a}$ be components of the second fundamental tensor with respect to the normal vector E_{a} and $L=\left(L_{c b}{ }^{\alpha}\right)$ the normal connection of each fibre \bar{M}. Then we have

$$
\begin{equation*}
h_{\gamma \beta}{ }^{a}=h_{\beta \gamma}{ }^{a} \quad \text { and } \quad L_{c b}{ }^{\alpha}+L_{b c}{ }^{\alpha}=0 . \tag{1.6}
\end{equation*}
$$

Denoting by $\tilde{\nabla}$ the Riemannian connection of the total space \tilde{M}, we have the following equations [6, 7, 13]:

$$
\begin{align*}
& \tilde{V}_{j} E^{h}{ }_{b}=\Gamma_{c b}^{a} E_{j}{ }^{c} E^{h}{ }_{a}-L_{c b}{ }^{\alpha} E_{j}{ }^{c} C^{h}{ }_{\alpha}+L_{b}{ }^{a}{ }_{\gamma} C_{j}{ }^{\gamma} E^{h}{ }_{a}-h_{\gamma}{ }^{\alpha}{ }_{b} C_{j}^{\gamma} C^{h}{ }_{\alpha}, \\
& \tilde{V}_{j} C^{h}{ }_{\beta}=L_{c}{ }^{a}{ }_{\beta} E_{j}{ }^{c} E^{h}{ }_{a}-\left(h_{\beta}{ }^{\alpha}{ }_{c}-P_{c \beta}{ }^{\alpha}\right) E_{j}{ }^{c} C^{h}{ }_{\alpha}+h_{\gamma \beta}{ }^{a} C_{j}{ }^{\gamma} E^{h}{ }_{a}+\bar{\Gamma}_{\gamma \beta}^{\alpha} C_{j}{ }^{\gamma} C^{h}{ }_{\alpha}, \tag{1.7}\\
& \tilde{V}_{j} E_{i}^{a}=-\Gamma_{c b}^{a} E_{j}^{c} E_{i}^{b}-L_{c}{ }^{a}{ }_{\beta}\left(E_{j}{ }^{c} C_{i}{ }^{\beta}+C_{j}{ }^{\beta} E_{i}{ }^{c}\right)-h_{\gamma \beta}{ }^{a} C_{j}{ }^{\gamma} C_{i}{ }^{\beta} \text {, } \\
& \tilde{\nabla}_{j} C_{i}{ }^{\alpha}=L_{c b}{ }^{\alpha} E_{j}{ }^{c} E_{i}{ }^{b}+\left(h_{\beta}{ }^{\alpha}{ }_{c}-P_{c \beta}{ }^{\alpha}\right) E_{j}{ }^{c} C_{i}{ }^{\beta}+h_{\gamma}{ }^{\alpha}{ }_{b} C_{j}{ }^{\gamma} E_{i}{ }^{b}-\bar{\Gamma}_{\gamma \beta}^{\alpha} C_{j}{ }^{\gamma} C_{i}{ }^{\beta} \text {, }
\end{align*}
$$

where $\Gamma_{c b}^{a}$ and $\bar{\Gamma}_{\gamma \beta}^{\alpha}$ are connection coefficients of the projection $\bar{\nabla}=p \tilde{\nabla}$ and $\bar{\nabla}$ of the induced metric \bar{g} in \bar{M}.

The curvature tensor of \tilde{M} is defined by

$$
\tilde{K}(\tilde{X}, \tilde{Y}) \tilde{Z}=\tilde{V}_{\tilde{X}} \tilde{\nabla}_{\tilde{Y}} \tilde{Z}-\tilde{V}_{\tilde{Y}} \tilde{\nabla}_{\tilde{X}} \tilde{Z}-\tilde{V}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}
$$

for any vector fields \tilde{X}, \tilde{Y} and \tilde{Z} in \tilde{M}. We put

$$
\begin{equation*}
\widetilde{K}\left(E_{D}, E_{C}\right) E_{B}=\widetilde{K}_{D C B}{ }^{a} E_{a}+\widetilde{K}_{D C B}{ }^{\alpha} C_{\alpha}, \tag{1.8}
\end{equation*}
$$

then $\tilde{K}_{D C B}{ }^{A}$ are components of the curvature tensor with respect to the frame $\left(E_{B}\right)$. Denoting by $\tilde{K}_{k j i}{ }^{h}$ components of the curvature tensor of \tilde{M} in $\left(\tilde{U}, z^{h}\right)$, we have the relations

$$
\begin{equation*}
\widetilde{K}_{D C B}{ }^{A}=\widetilde{K}_{k j i}{ }^{h} E_{D}^{k} E^{j}{ }_{C} E_{B}^{i} E_{h}{ }^{A} . \tag{1.9}
\end{equation*}
$$

The structure equations of \tilde{M} are written as follows:

$$
\begin{align*}
& \widetilde{K}_{d c b}{ }^{a}=K_{d c b}{ }^{a}-L_{d}{ }^{a} L_{c b}{ }^{\varepsilon}+L_{c}{ }_{c}{ }_{\varepsilon} L_{d b}{ }^{\varepsilon}+2 L_{d c}{ }^{\varepsilon} L_{b}{ }^{a}{ }_{\varepsilon}, \tag{1.10}\\
& \widetilde{K}_{d c b}{ }^{\alpha}=-{ }^{*} \nabla_{d} L_{c b}{ }^{\alpha}+{ }^{*} \nabla_{c} L_{d b}{ }^{\alpha}-2 L_{d c}{ }^{\varepsilon} h_{\varepsilon}{ }^{\alpha}{ }_{b} \text {, } \tag{1.11}\\
& \tilde{K}_{d c \beta}{ }^{\alpha}=* \nabla_{c} h_{\beta}{ }^{\alpha}{ }_{d}-* \nabla_{d} h_{\beta}{ }^{\alpha}{ }_{c}+2^{* *} \nabla_{\beta} L_{d c}{ }^{\alpha}+L_{d e}{ }^{\alpha} L_{c}{ }^{e}{ }_{\beta} \tag{1.12}\\
& -L_{c e}{ }^{\alpha} L_{d}{ }^{e}{ }_{\beta}-h_{\varepsilon}{ }^{\alpha}{ }_{d} h_{\beta}{ }^{\varepsilon}{ }_{c}+h_{\varepsilon}{ }^{\alpha}{ }_{c} h_{\beta}{ }^{\varepsilon}{ }_{d}, \\
& \widetilde{K}_{d \gamma b}{ }^{a}=* \nabla_{d} L_{b}{ }^{a}{ }_{\gamma}-L_{d}{ }^{a}{ }_{\varepsilon} h_{\gamma}{ }^{\varepsilon}{ }_{b}+L_{d b}{ }^{\varepsilon} h_{\gamma \varepsilon}{ }^{a}-L_{b}{ }^{a}{ }_{\varepsilon} h_{\gamma}{ }^{\varepsilon}{ }_{d}, \tag{1.13}\\
& \tilde{K}_{d \gamma b}{ }^{\alpha}=-{ }^{*} \nabla_{d} h_{\gamma}{ }^{\alpha}{ }_{b}+{ }^{* *} \nabla_{\gamma} L_{d b}{ }^{\alpha}+L_{d}{ }^{e}{ }_{\gamma} L_{e b}{ }^{\alpha}+h_{\gamma}{ }^{\varepsilon}{ }_{d} h_{\varepsilon}{ }^{\alpha}{ }^{6} \text {, } \tag{1.14}\\
& \tilde{K}_{\delta \gamma b}{ }^{a}=L_{\delta \gamma b}{ }^{a}+h_{\delta}{ }^{\varepsilon}{ }_{b} h_{\gamma \varepsilon}{ }^{a}-h_{\gamma}{ }^{\varepsilon}{ }_{b} h_{\delta \varepsilon}{ }^{a}, \tag{1.15}\\
& \tilde{K}_{\delta \gamma \beta}{ }^{a}={ }^{* *} \nabla_{\delta} h_{\gamma \beta}{ }^{a}-{ }^{* *} \nabla_{\gamma} h_{\delta \beta}{ }^{a} \text {, } \tag{1.16}\\
& \tilde{K}_{\delta \gamma \beta}{ }^{\alpha}=\bar{K}_{\delta \gamma \beta}{ }^{\alpha}+h_{\delta \beta}{ }^{e} h_{\gamma}{ }^{\alpha}{ }_{e}-h_{\gamma \beta}{ }^{e} h_{\delta}{ }^{\alpha}{ }_{e}, \tag{1.17}
\end{align*}
$$

where we have put

$$
\begin{align*}
& K_{d c b}{ }^{a}=\partial_{d} \Gamma_{c b}^{a}-\partial_{c} \Gamma_{d b}^{a}+\Gamma_{d e}^{a} \Gamma_{c b}^{e}-\Gamma_{c e}^{a} \Gamma_{d b}^{e}, \tag{1.18}\\
& { }^{*} \nabla_{d} L_{c b}{ }^{\alpha}=\partial_{d} L_{c b}{ }^{\alpha}-\Gamma_{d c}^{e} L_{e b}{ }^{\alpha}-\Gamma_{d b}^{e} L_{c e}{ }^{\alpha}+Q_{d \varepsilon}{ }^{\alpha} L_{c b}{ }^{\varepsilon} \text {, } \tag{1.19}\\
& * \nabla_{d} L_{c}{ }^{a}{ }_{\beta}=\partial_{d} L_{c}{ }^{a}{ }_{\beta}+\Gamma_{d e}^{a} L_{c}{ }^{e} \beta-\Gamma_{d c}^{e} L_{e}{ }^{a}{ }_{\beta}-Q_{d \beta}{ }^{\varepsilon} L_{c \varepsilon}{ }^{a}{ }^{a}, \tag{1.20}\\
& { }^{*} \nabla_{d} h_{\gamma \beta}{ }^{a}=\partial_{d} h_{\gamma \beta}{ }^{a}+\Gamma_{d e}^{a} h_{\gamma \beta}{ }^{e}-Q_{d \gamma}{ }^{\varepsilon} h_{\varepsilon \beta}{ }^{a}-Q_{d \beta}{ }^{\varepsilon} h_{\gamma \varepsilon}{ }^{a}, \tag{1.21}\\
& * \nabla_{d} h_{\beta}{ }^{\alpha}{ }_{b}=\partial_{d} h_{\beta}{ }^{\alpha}{ }_{b}-\Gamma_{d b}^{e} h_{\beta}{ }^{\alpha}{ }_{e}+Q_{d \varepsilon}{ }^{\alpha} h_{\beta}{ }^{\varepsilon}{ }_{b}-Q_{d \beta}{ }^{\varepsilon} h_{\varepsilon}{ }^{\alpha}{ }_{b}, \tag{1.22}\\
& { }^{* *} \nabla_{\delta} L_{c b}{ }^{\alpha}=\partial_{\delta} L_{c b}{ }^{\alpha}+\bar{\Gamma}_{\delta \varepsilon}^{\alpha} L_{c b}{ }^{\varepsilon}-L_{c}{ }^{e}{ }_{\delta} L_{e b}{ }^{\alpha}-L_{b}{ }^{e}{ }_{\delta} L_{c e}{ }^{\alpha}, \tag{1.23}\\
& { }^{* *} \nabla_{\delta} L_{b}{ }_{b}{ }_{\beta}=\partial_{\delta} L_{b}{ }^{a}{ }_{\beta}-\bar{\Gamma}_{\delta \beta}^{e} L_{b}{ }^{a}{ }_{\varepsilon}+L_{e}{ }^{a}{ }_{\delta} L_{b}{ }^{e}{ }_{\beta}-L_{b}{ }_{b}{ }_{\delta} L_{e}{ }_{e}{ }_{\beta}, \tag{1.24}\\
& { }^{* *} \nabla_{\delta} h_{\gamma \beta}{ }^{a}=\partial_{\delta} h_{\gamma \beta}{ }^{a}-\bar{\Gamma}_{\delta \gamma}^{\varepsilon} h_{\varepsilon \beta}{ }^{a}-\bar{\Gamma}_{\delta \beta}^{\varepsilon} h_{\gamma \varepsilon}{ }^{a}+L_{e}{ }^{a}{ }_{\delta} h_{\gamma \beta}{ }^{e} \text {, } \tag{1.25}\\
& * * \nabla_{\delta} h_{\beta}{ }_{\beta}{ }_{b}=\partial_{\delta} h_{\beta}{ }^{\alpha}{ }_{b}+\bar{\Gamma}_{\delta \varepsilon}^{\alpha} h_{\beta}{ }^{\varepsilon}{ }_{b}-\bar{\Gamma}_{\delta \beta}^{\varepsilon} h_{\varepsilon}{ }^{\alpha}{ }_{b}-L_{b}{ }_{b}{ }_{\delta} h_{\beta}{ }^{\alpha}{ }_{e}, \tag{1.26}\\
& L_{\delta \gamma b}{ }^{a}=\partial_{\delta} L_{b}{ }^{a}{ }_{\gamma}-\partial_{\gamma} L_{b}{ }^{a}{ }_{\delta}+L_{e}{ }_{e}{ }_{\delta} L_{b}{ }_{b}{ }_{\gamma}{ }_{\gamma}-L_{e}{ }^{a}{ }_{\gamma} L_{b}{ }^{e}{ }_{\delta}, \tag{1.27}\\
& \bar{K}_{\delta \gamma \beta}{ }^{\alpha}=\partial_{\delta} \bar{\Gamma}_{\gamma \beta}^{\alpha}-\partial_{\gamma} \bar{\Gamma}_{\delta \beta}^{\alpha}+\bar{\Gamma}_{\delta \varepsilon}^{\alpha} \bar{\Gamma}_{\gamma \beta}^{\varepsilon}-\bar{\Gamma}_{\gamma \varepsilon}^{\alpha} \bar{\Gamma}_{\delta \beta}^{\varepsilon} . \tag{1.28}
\end{align*}
$$

We denote by $\tilde{K}_{C B}, K_{c b}$ and $\bar{K}_{\gamma \beta}$ components of the Ricci tensors of $\{\tilde{M}, \tilde{g}\}$, the base space $\{M, g\}$ and each fibre $\{\bar{M}, \bar{g}\}$ respectively. Then we have the relations

$$
\begin{align*}
& \tilde{K}_{c b}=K_{c b}-2 L_{c e}{ }^{\varepsilon} L_{b}{ }^{e}{ }_{\varepsilon}-h_{\alpha}{ }^{\varepsilon}{ }_{c} h_{\varepsilon}{ }^{\alpha}{ }_{b}+(1 / 2)\left({ }^{*} \nabla_{c} h_{\varepsilon}{ }^{\varepsilon}{ }_{b}+* \nabla_{b} h_{\varepsilon}{ }^{\varepsilon}\right), \tag{1.29}\\
& \tilde{K}_{\gamma b}={ }^{* *} \nabla_{\gamma} h_{\varepsilon}{ }^{\varepsilon}{ }_{b}-{ }^{* *} \nabla_{\varepsilon} h_{\gamma}{ }^{\varepsilon}{ }_{b}+{ }^{*} \nabla_{e} L_{b}{ }^{e}{ }_{\gamma}-2 h_{\gamma}{ }^{\varepsilon}{ }_{e} L_{b}{ }^{e}{ }_{\varepsilon}, \tag{1.30}\\
& \tilde{K}_{\gamma \beta}=\bar{K}_{\gamma \beta}-h_{\gamma \beta}{ }^{e} h_{\varepsilon}{ }^{\varepsilon}{ }_{e}+{ }^{*} \nabla_{e} h_{\gamma \beta}{ }^{e}-L_{a}{ }^{e}{ }_{\gamma} L_{e}{ }^{a}{ }_{\beta} . \tag{1.31}
\end{align*}
$$

Denoting by \tilde{K}, K and \bar{K} the scalar curvatures of \tilde{M}, M and each fibre \bar{M} respectively, we obtain the relation

$$
\begin{equation*}
\tilde{K}=K^{L}+\bar{K}-L_{c b \varepsilon} L^{c b \varepsilon}-h_{\gamma \beta e} h^{\gamma \beta e}-h_{\gamma}{ }^{\gamma} e_{\beta} h_{\beta}^{\beta e}+2^{*} \nabla_{e} h_{\varepsilon}^{\varepsilon e} \tag{1.32}
\end{equation*}
$$

where K^{L} is the horizontal lift of K.

§ 2. Complex space form and Sasakian space form

We recall properties of a complex space form and a Sasakian space form in connection with Bochner curvature tensor and C-Bochner curvature tensor, for the sake of the future.

We consider an n-dimensional Kaehlerian space M and denote the complex structure by J. The tensor $H_{c b}$ defined by

$$
\begin{equation*}
H_{c b}=J_{c}^{e} K_{e b}, \tag{2.1}
\end{equation*}
$$

is skew-symmetric in the indices. The Bochner curvature tensor on M is defined by

$$
\begin{align*}
B_{d c b}{ }^{a}= & K_{d c b}{ }^{a}+\frac{1}{n+4}\left(K_{d b} \delta_{c}^{a}-K_{c b} \delta_{d}^{a}+g_{d b} K_{c}{ }^{a}-g_{c b} K_{d}{ }^{a}\right. \\
& +H_{d b} J_{c}{ }^{a}-H_{c b} J_{d}{ }^{a}+J_{d b} H_{c}{ }^{a}-J_{c b} H_{d}{ }^{a}+2 H_{d c} J_{b}{ }^{a} \\
& \left.+2 J_{d c} H_{b}{ }^{a}\right)+\frac{K}{(n+2)(n+4)}\left(g_{d b} \delta_{c}^{a}-g_{c b} \delta_{d}^{a}+J_{d b} J_{c}{ }^{a}\right. \tag{2.2}\\
& \left.-J_{c b} J_{d}{ }^{a}+2 J_{d c} J_{b}{ }^{a}\right),
\end{align*}
$$

[3, 8, 10, 12].
A Kaehlerian space M is called a complex space form if the curvature tensor is of the form

$$
\begin{equation*}
K_{d c b}{ }^{a}=(c / 4)\left(\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+J_{d}{ }^{a} J_{c b}-J_{c}^{a} J_{d b}-2 J_{d c} J_{b}{ }^{a}\right) . \tag{2.3}
\end{equation*}
$$

The constant holomorphic sectional curvature c of M is equal to $4 K / n(n+2)$.
The following proposition is well known [12].

Proposition 2.1. A Kaehlerian space M is a complex space form if and only if M is an Einstein space and the Bochner curvature tensor $B_{d c b}{ }^{a}$ vanishes.

Next we consider a p-dimensional Sasakian manifold \bar{M} and denote the contact metric structure by $\left(\bar{\phi}_{\beta}^{\alpha}, \bar{\xi}^{\alpha}, \bar{\eta}_{\beta}, \bar{g}_{\beta \alpha}\right)$. They satisfy the relations

$$
\begin{align*}
& \bar{\phi}^{2}=-I+\bar{\eta} \otimes \bar{\xi}, \quad \bar{\eta} \otimes \bar{\phi}=0, \quad \bar{\phi}(\bar{\xi})=0, \quad \bar{\eta}(\bar{\xi})=1, \\
& \bar{\nabla} \bar{\eta}=\bar{\phi}, \quad\left(\bar{\nabla}_{\bar{X}} \bar{\phi}\right) \bar{Y}=\bar{g}(\bar{X}, \bar{Y}) \bar{\xi}-\bar{\eta}(\bar{Y}) \bar{X} \tag{2.4}
\end{align*}
$$

[1], where \bar{V} is the Riemannian connection on \bar{M} and \bar{X}, \bar{Y} are arbitrary vector fields. The tensor $\bar{H}_{\beta \alpha}$ defined by $\bar{H}_{\beta \alpha}=\bar{\phi}_{\beta}{ }^{\gamma} \bar{K}_{\gamma \alpha}$ is skew-symmetric in α and β.

The C-Bochner curvature on \bar{M} is defined by

$$
\begin{align*}
B_{\delta \gamma \beta}{ }^{\alpha}= & \bar{K}_{\delta \gamma \beta}{ }^{\alpha}+\frac{1}{p+3}\left\{\bar{K}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{K}_{\gamma \beta} \delta_{\delta}^{\alpha}+\bar{g}_{\delta \beta} \bar{K}_{\gamma}{ }^{\alpha}-\bar{g}_{\gamma \beta} \bar{K}_{\delta}^{\alpha}\right. \\
& +\bar{H}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}+\bar{H}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}-\bar{\phi}_{\delta \beta} \bar{H}_{\gamma}^{\alpha}+\bar{\phi}_{\gamma \beta} \bar{H}_{\delta}^{\alpha}+2 \bar{H}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{H}_{\beta}^{\alpha} \\
& -\bar{K}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{K}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{\eta}_{\delta} \bar{\eta}_{\beta} \bar{K}_{\gamma}^{\alpha}+\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \bar{K}_{\delta}^{\alpha} \\
& -(\bar{k}+p-1)\left(\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right) \tag{2.5}\\
& -(\bar{k}-4)\left(\bar{g}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \delta_{\delta}^{\alpha}\right) \\
& \left.+\bar{k}\left(\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}\right)\right\}
\end{align*}
$$

where $\bar{k}=(\bar{K}+p-1) /(p+1)$. It can be constructed from the Bochner curvature tensor in a Kaehlerian space by the fibering of Boothby-Wang (see [9]).

If the Ricci curvature $\bar{K}_{\beta \alpha}$ on \bar{M} is of the form

$$
\begin{equation*}
\bar{K}_{\beta \alpha}=a \bar{g}_{\beta \alpha}+b \bar{\eta}_{\beta} \bar{\eta}_{\alpha}, \tag{2.6}
\end{equation*}
$$

with constants a and b, we call \bar{M} an η-Einstein space. Since we have the equation

$$
\bar{K}_{\beta \alpha} \bar{\xi}^{\alpha}=(p-1) \bar{\eta}_{\beta}
$$

in a Sasakian space, the constants a and b satisfy the relation

$$
\begin{equation*}
a+b=p-1 \tag{2.7}
\end{equation*}
$$

A Sasakian space \bar{M} is called a Sasakian space form if the curvature tensor is of the form

$$
\begin{align*}
\bar{K}_{\delta \gamma \beta}{ }^{\alpha}= & \frac{\bar{c}+3}{4}\left(\delta_{\delta}^{\alpha} \bar{g}_{\gamma \beta}-\delta_{\gamma}^{\alpha} \bar{g}_{\delta \beta}\right)-\frac{\bar{c}-1}{4}\left(\delta_{\delta}^{\alpha} \bar{\eta}_{\gamma} \bar{\eta}_{\beta}-\delta_{\gamma}^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}\right. \\
& \left.+\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right) . \tag{2.8}
\end{align*}
$$

Contracting this equation in α and β, we see that the Sasakian space form is an η-Einstein space with constants

$$
a=\{\bar{c}(p+1)+3 p-5\} / 4 \quad \text { and } \quad b=(p+1)(1-\bar{c}) / 4 .
$$

The constant \bar{c} is conversely given by $\bar{c}=(4 a-3 p+5) /(p+1)$ by means of (2.8) and it is known that the C-Bochner curvature tensor of the Sasakian space form vanishes identically.

Conversely we assume that \bar{M} is an η-Einstein space and the C-Bochner curvature tensor vanishes. Then we get

$$
\begin{align*}
\bar{K} & =(p-1)(a+1) \\
\bar{k} & =(p-1)(a+2) /(p+1) \tag{2.9}
\end{align*}
$$

and

$$
\begin{align*}
\bar{K}_{\delta \gamma \beta}^{\alpha}= & \frac{1}{p+3}\left\{(2 a-\bar{k}+4)\left(\delta_{\delta}^{\alpha} \bar{g}_{\gamma \beta}-\delta_{\gamma}^{\alpha} \bar{g}_{\delta \beta}\right)-(2 a-\bar{k}-p+1)\left(\delta_{\delta}^{\alpha} \bar{\eta}_{\gamma} \bar{\eta}_{\beta}\right.\right. \\
& \left.\left.-\delta_{\gamma}^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}+\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}+\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right)\right\} \tag{2.10}
\end{align*}
$$

by use of $b=p-a-1$. Therefore \bar{M} becomes a Sasakian space form of constant $\bar{\phi}$-holomorphic sectional curvature $\bar{c}=(4 a-3 p+5) /(p+1)$. Thus the following result is valid.

Proposition 2.2. A Sasakian space \bar{M} is a Sasakian space form if and only if \bar{M} is η-Einstein and has the vanishing C-Bochner curvature tensor.

§ 3. Fibred Sasakian space with vanishing contact Bochner curvature tensor

We consider a fibred Riemannian space \tilde{M} such that the base space M is almost Hermitian and each fibre \bar{M} is almost contact metric, and denote the lift of the almost Hermitian structure of M to the total space \tilde{M} by the same characters (J, g) and the almost contact metric structure of each fibre \bar{M} by ($\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g}$). The present author [7] has introduced an almost contact metric structure ($\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ on the total space \tilde{M} by putting

$$
\begin{align*}
& \tilde{\phi}=J_{b}{ }^{a} E^{b} \otimes E_{a}+\bar{\phi}_{\beta}{ }^{\alpha} C^{\beta} \otimes C_{\alpha}, \\
& \tilde{\xi}=\tilde{\xi}^{\alpha} C_{\alpha}, \quad \tilde{\eta}=\bar{\eta}_{\alpha} C^{\alpha} \quad \text { and } \tag{3.1}\\
& \tilde{g}=g_{b a} E^{b} \otimes E^{a}+\bar{g}_{\beta \alpha} C^{\beta} \otimes C^{\alpha} .
\end{align*}
$$

The structure is said to be induced on \tilde{M}. Conversely, it is known [13] that a fibred almost contact metric space with $\tilde{\phi}$-invariant fibres tangent to $\tilde{\xi}$ defines an almost Hermitian structure in the base space and an almost contact metric structure in each fibre.

If the horizontal mapping covering any curve in M is an isometry (resp. conformal mapping) of fibres, then \tilde{M} is called a fibred Riemannian space with isometric (resp. conformal) fibres. A necessary and sufficient condition for \tilde{M} to have isometric (resp. conformal) fibres is $h_{\gamma \beta}{ }^{a}=0$ (resp. $h_{\gamma \beta}{ }^{a}=\bar{g}_{\gamma \beta} A^{a}$, where $A=A^{a} E_{a}$ is the mean curvature vector of each fibre \bar{M} in \tilde{M}), see $[6,13]$.

We recall the following propositions for the later use.
Proposition 3.1 ([7]). The induced almost contact metric structure ($\tilde{\phi}, \tilde{\xi}$, $\tilde{\eta}, \tilde{g}$) on \tilde{M} is Sasakian if and only if
(1) the base space M is Kaehlerian.
(2) each fibre \bar{M} is Sasakian,
(3) $L_{c b}{ }^{\gamma}=J_{c b} \bar{\xi}^{\gamma}$,
(4) $h_{\gamma}{ }^{\lambda}{ }_{b} \bar{\phi}_{\lambda}{ }^{\mu}-h_{\gamma}{ }^{\mu}{ }_{a} J_{b}{ }^{a}=0$ and
(5) ${ }^{*} \nabla_{c} \bar{\phi}_{\alpha}^{\gamma}=0$,
where we have put

$$
{ }^{*} \nabla_{c} \bar{\phi}_{\alpha}{ }^{\gamma}=\partial_{c} \bar{\phi}_{\alpha}^{\gamma}+\left(P_{c \beta}{ }^{\gamma}-h_{\beta}{ }^{\gamma}{ }_{c}\right) \bar{\phi}_{\alpha}{ }^{\beta}-\left(P_{c \alpha}{ }^{\beta}-h_{\alpha}{ }^{\beta}{ }_{c}\right) \bar{\phi}_{\beta}{ }^{\gamma} .
$$

Proposition 3.2([7]). If a fibred Sasakian space \tilde{M} with induced structure has conformal fibres, then \tilde{M} has isometric and totally geodesic fibres.

Now we assume that a fibred Sasakian space \tilde{M} has conformal fibres and the C-Bochner curvature tensor on \tilde{M} vanishes. If we put $\tilde{H}_{j i}=\tilde{\phi}_{j}^{k} \widetilde{K}_{k i}$, then the tensor $\widetilde{H}_{j i}$ satisfies the equations

$$
\begin{align*}
& \tilde{H}_{i j}+\tilde{H}_{j i}=0, \tag{3.2}\\
& \tilde{H}_{j i} \tilde{\xi}^{j}=0, \tag{3.3}\\
& \tilde{H}_{k i} \tilde{\phi}_{j}^{k}=-\tilde{K}_{j i}+(m-1) \tilde{\eta}_{j} \tilde{\eta}_{i}, \tag{3.4}\\
& \tilde{H}_{i j} \tilde{\phi}^{i j}=\widetilde{K}-m+1, \tag{3.5}
\end{align*}
$$

and, by means of the equation in \tilde{M} similar to (2.5), the curvature tensor $\widetilde{K}_{k j i}{ }^{h}$ of \tilde{M} is given by the expression

$$
\begin{align*}
\tilde{K}_{k j i}^{h}= & -\frac{1}{m+3}\left\{\left(\tilde{K}_{k i} \delta_{j}^{h}-\tilde{K}_{j i} \delta_{k}^{h}+\tilde{g}_{k i} \tilde{K}_{j}^{h}-\tilde{g}_{j i} \tilde{K}_{k}^{h}+\tilde{H}_{k i} \tilde{\phi}_{j}^{h}\right.\right. \\
& -\tilde{H}_{j i} \tilde{\phi}_{k}^{h}+\tilde{\phi}_{k i} \tilde{H}_{j}^{h}-\tilde{\phi}_{j i} \tilde{H}_{k}^{h}+2 \tilde{H}_{k j} \tilde{\phi}_{i}^{h}+2 \tilde{\phi}_{k j} \tilde{H}_{i}^{h} \\
& \left.-\tilde{K}_{k i} \tilde{\eta}_{j} \tilde{\xi}^{h}+\tilde{K}_{j i} \tilde{\eta}_{k} \tilde{\xi}^{h}-\tilde{K}_{j}^{h} \tilde{\eta}_{k} \tilde{\eta}_{i}+\tilde{K}_{k}^{h} \tilde{\eta}_{j} \tilde{\eta}_{i}\right) \tag{3.6}\\
& -(\tilde{k}+m-1)\left(\tilde{\phi}_{k i} \tilde{\phi}_{j}^{h}-\tilde{\phi}_{j i} \tilde{\phi}_{k}^{h}+2 \tilde{\phi}_{k j} \tilde{\phi}_{i}^{h}\right) \\
& -(\tilde{k}-4)\left(\tilde{g}_{k i} \delta_{j}^{h}-\tilde{g}_{j i} \delta_{k}^{h}\right) \\
& \left.+\tilde{k}\left(\tilde{g}_{k i} \tilde{\eta}_{j} \tilde{\xi}^{h}+\tilde{\eta}_{k} \tilde{\eta}_{i} \delta_{j}^{h}-\tilde{g}_{j i} \tilde{\eta}_{k} \tilde{\xi}^{h}-\tilde{\eta}_{j} \tilde{\eta}_{i} \delta_{k}^{h}\right)\right\},
\end{align*}
$$

where $\tilde{k}=(\tilde{K}+m-1) /(m+1)$
By the equations (1.29) ~ (1.32), Propositions 3.1 and 3.2, we have

$$
\begin{align*}
& \tilde{K}_{j i} E^{j}{ }_{c} E^{i}=K_{c b}-2 g_{c b}, \tag{3.7}\\
& \tilde{K}_{j i} E^{j}{ }_{c} C^{i}{ }_{\beta}=0, \tag{3.8}\\
& \tilde{K}_{j i} C^{j} C^{i}{ }_{\beta}=\bar{K}_{\gamma \beta}+n \bar{\eta}_{\gamma} \bar{\eta}_{\beta}, \tag{3.9}\\
& \tilde{H}_{j i} E^{j}{ }_{c}^{i} E_{b}=H_{c b}-2 J_{c b}, \tag{3.10}\\
& \tilde{H}_{j i} E^{j}{ }_{c} C^{i}=0, \tag{3.11}\\
& \tilde{H}_{j i} C^{j}{ }_{\gamma} C^{i}{ }_{\beta}=\bar{H}_{\gamma \beta} \tag{3.12}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{K}=K^{L}+\bar{K}-n \tag{3.13}
\end{equation*}
$$

Referring the expression (3.6) to the frame $\left(E_{A}\right)=\left(E_{a}, C_{\alpha}\right)$, we obtain the equations

$$
\begin{align*}
K_{d c b}{ }^{a}= & -\frac{1}{m+3}\left(K_{d b} \delta_{c}^{a}-K_{c b} \delta_{d}^{a}+K_{c}{ }^{a} g_{d b}-K_{d}{ }^{a} g_{c b}+H_{d b} J_{c}^{a}\right. \\
& \left.-H_{c b} J_{d}{ }^{a}+H_{c}^{a} J_{d b}-H_{d}{ }^{a} J_{c b}+2 H_{d c} J_{b}{ }^{a}+2 H_{b}{ }^{a} J_{d c}\right) \\
& +\frac{K+\bar{K}+p-1}{(m+1)(m+3)}\left(J_{d b} J_{c}{ }^{a}-J_{c b} J_{d}{ }^{a}+2 J_{d c} J_{b}{ }^{a}\right. \tag{3.14}\\
& \left.+g_{d b} \delta_{c}^{a}-g_{c b} \delta_{d}^{a}\right), \\
K_{d b} \delta_{\gamma}^{\alpha}- & (k-2)\left(g_{d b_{\gamma}}^{\alpha}+J_{d b} \bar{\phi}_{\gamma}^{\alpha}\right)+\bar{K}_{\gamma}{ }^{\alpha} g_{d b}+(k+n-m-1) g_{d b} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha} \tag{3.15}\\
& +K_{e b} J_{d}{ }^{e} \bar{\phi}_{\gamma}{ }^{\alpha}+\bar{K}_{\beta}{ }^{\alpha} \bar{\phi}_{\gamma}{ }^{\beta} J_{d b}-K_{d b} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}=0
\end{align*}
$$

and

$$
\begin{align*}
\bar{K}_{\delta \gamma \beta}^{\alpha}= & -\frac{1}{m+3}\left\{\left(\bar{K}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{K}_{\gamma \beta} \delta_{\delta}^{\alpha}+\bar{K}_{\gamma}^{\alpha} \bar{g}_{\delta \beta}-\bar{K}_{\delta}^{\alpha} \bar{g}_{\gamma \beta}+\bar{H}_{\delta \beta} \bar{\phi}_{\gamma}{ }^{\alpha}\right.\right. \\
& -\bar{H}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+\bar{H}_{\gamma}{ }^{\alpha} \bar{\phi}_{\delta \beta}-\bar{H}_{\delta}{ }^{\alpha} \bar{\phi}_{\gamma \beta}+2 \bar{H}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}+2 \bar{H}_{\beta}^{\alpha} \bar{\phi}_{\delta \gamma} \\
& \left.-\bar{K}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{K}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{K}_{\gamma}{ }^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}+\bar{K}_{\delta}^{\alpha} \bar{\eta}_{\beta} \bar{\eta}_{\gamma}\right) \\
& +n\left(\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}+\bar{\eta}_{\gamma} \bar{\xi}^{\alpha} \bar{g}_{\delta \beta}-\bar{\eta}_{\delta} \bar{\xi}^{\alpha} \bar{g}_{\gamma \beta}\right) \tag{3.16}\\
& -(\tilde{k}+m-1)\left(\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right) \\
& -(\tilde{k}-4)\left(\bar{g}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \delta_{\delta}^{\alpha}\right) \\
& \left.+\tilde{k}\left(\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}\right)\right\}
\end{align*}
$$

by means of the equations (1.9), (1.10), (1.14), (1.17) and (3.9) ~ (3.13). Moreover, contracting $g^{d b}$ and the indices γ and α in (3.15), we obtain

$$
\begin{equation*}
(p-1)(p+1) K+n(n+2)(\bar{K}+p-1)=0 . \tag{3.17}
\end{equation*}
$$

By use of this equation and (3.14), the curvature tensor of M is given by

$$
\begin{align*}
K_{d c b}{ }^{a}= & -\frac{1}{n+p+3}\left(K_{d b} \delta_{c}^{a}-K_{c b} \delta_{d}^{a}+K_{c}{ }^{a} g_{d b}-K_{d}{ }^{a} g_{c b}+H_{d b} J_{c}^{a}\right. \\
& \left.-H_{c b} J_{d}{ }^{a}+H_{c}{ }^{a} J_{d b}-H_{d}{ }^{a} J_{c b}+2 H_{d c} J_{b}{ }^{a}+2 H_{b}{ }^{a} J_{d c}\right) \tag{3.18}\\
& +\frac{K(n-p+1)}{n(n+2)(n+p+3)}\left(J_{d b} J_{c}^{a}-J_{c b} J_{d}{ }^{a}+2 J_{d c} J_{b}{ }^{a}+g_{d b} \delta_{c}^{a}-g_{c b} \delta_{d}^{a}\right) .
\end{align*}
$$

Hence, comparing this expression in the case of $p=1$ with (2.2), we can state that

Proposition 3.3. If a fibred Sasakian space \tilde{M} has 1-dimensional fibres and the C-Bochner curvature tensor of \tilde{M} vanishes, then so does the Bochner curvature tensor of the base space M.

In the case of $p \neq 1$, by the contraction in the indices a and d of (3.18), we get

$$
\begin{equation*}
K_{c b}=(K / n) g_{c b}, \tag{3.19}
\end{equation*}
$$

and the base space M is an Einstein space provided $n>2$. Substituting (3.19) into (3.18) and noting $H_{c b}=(K / n) J_{c b}$, we get

$$
\begin{equation*}
K_{d c b}^{a}=\frac{K}{n(n+2)}\left(g_{c b} \delta_{d}^{a}-g_{d b} \delta_{c}^{a}+J_{c b} J_{d}^{a}-J_{d b} J_{c}^{a}-2 J_{d c} J_{b}^{a}\right) . \tag{3.20}
\end{equation*}
$$

Hence we can state
Lemma 3.4. Let \tilde{M} be a fibred Sasakian space with conformal fibres of dimension $p \neq 1$. If the C-Bochner curvature tensor of \tilde{M} vanishes, then the base space M is a complex space form provided $n>2$.

On the other hand, from the equation (3.17), we get

$$
\begin{equation*}
K=-n(n+2)\left\{\frac{\bar{K}}{(p-1)(p+1)}+\frac{1}{p+1}\right\} . \tag{3.21}
\end{equation*}
$$

Substituting this into (3.16), we see that the curvature tensor of the fibre \bar{M} has the expression

$$
\begin{aligned}
\bar{K}_{\delta \gamma \beta}{ }^{\alpha}= & -\frac{1}{n+p+3}\left[\left(\bar{K}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{K}_{\gamma \beta} \delta_{\delta}^{\alpha}+\bar{K}_{\gamma}{ }^{\alpha} \bar{g}_{\delta \beta}-\bar{K}_{\delta}^{\alpha} \bar{g}_{\gamma \beta}+\bar{H}_{\delta \beta} \bar{\phi}_{\gamma}{ }^{\alpha}\right.\right. \\
& -\bar{H}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+\bar{H}_{\gamma}{ }^{\alpha} \bar{\phi}_{\delta \beta}-\bar{H}_{\delta}{ }^{\alpha} \bar{\phi}_{\gamma \beta}+2 \bar{H}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}+2 \bar{H}_{\beta}{ }^{\alpha} \bar{\phi}_{\delta \gamma} \\
& \left.-\bar{K}_{\delta \beta} \bar{\eta}_{\xi} \bar{\xi}^{\alpha}+\bar{K}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{K}_{\gamma}{ }^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}+\bar{K}_{\delta}{ }^{\alpha} \bar{\eta}_{\beta} \bar{\eta}_{\gamma}\right) \\
& +n\left(\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}+\bar{\eta}_{\gamma} \bar{\xi}^{\alpha} \bar{g}_{\delta \beta}-\bar{\eta}_{\delta} \bar{\xi}^{\alpha} \bar{g}_{\gamma \beta}\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{n+p+1}\left\{\left(1-\frac{n(n+2)}{(p+1)(p-1)}\right) \bar{K}-\frac{n(n+2)}{p+1}+(n+p)^{2}+p\right\} \\
& \times\left(\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right) \\
& -\frac{1}{n+p+1}\left\{\left(1-\frac{n(n+2)}{(p+1)(p-1)}\right) \bar{K}-\frac{n(n+2)}{p+1}-4 n-3 p-5\right\} \\
& \times\left(\bar{g}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \delta_{\delta}^{\alpha}\right) \tag{3.22}\\
& +\frac{1}{n+p+1}\left\{\left(1-\frac{n(n+2)}{(p+1)(p-1)}\right) \bar{K}-\frac{n(n+2)}{p+1}+p-1\right\} \\
& \left.\times\left(\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}\right)\right] .
\end{align*}
$$

Then the contraction with respect to α and δ gives

$$
\begin{align*}
n \bar{K}_{\gamma \beta}= & -\frac{n}{p-1}\left(\bar{K} \bar{\eta}_{\gamma} \bar{\eta}_{\beta}-\bar{K} \bar{g}_{\gamma \beta}\right) \\
& +\left\{n p+n-p+1+\frac{(\mathrm{p}+1)(p-1)-n(n+2)}{n+p+1}\right\} \bar{\eta}_{\gamma} \bar{\eta}_{\beta} \tag{3.23}\\
& +\left\{p-2 n-1+\frac{n(n+2)-(p+1)(p-1)}{n+p+1}\right\} \bar{g}_{\gamma \beta} .
\end{align*}
$$

Differentiating covariantly this equation on \bar{M}, noting $\bar{\nabla}_{\beta} \bar{K}_{\alpha}{ }^{\beta}=(1 / 2)\left(\bar{\nabla}_{\alpha} K\right)$ and using (2.4), we have

$$
\begin{equation*}
\frac{1}{2} \bar{\nabla}_{\beta} \bar{K}=\frac{1}{p-1}\left\{\bar{V}_{\beta} \bar{K}-\left(\bar{V}_{\gamma} \bar{K}\right) \bar{\xi}^{\gamma} \bar{\eta}_{\beta}\right\} . \tag{3.24}
\end{equation*}
$$

Transvecting $\bar{\xi}^{\beta}$, we see $\bar{\xi}^{\beta} \bar{D}_{\beta} \bar{K}=0$ and furthermore

$$
\begin{equation*}
\bar{\nabla}_{\beta} \bar{K}=0 \tag{3.25}
\end{equation*}
$$

provided $p>3$, that is, \bar{K} is constant on each fibre \bar{M}. Therefore it follows from (3.23) that the Ricci tensor $\bar{K}_{\beta \alpha}$ of \bar{M} has the form

$$
\begin{equation*}
\bar{K}_{\beta \alpha}=a \bar{g}_{\beta \alpha}+b \bar{\eta}_{\beta} \bar{\eta}_{\alpha} \tag{3.26}
\end{equation*}
$$

where the constant coefficients a and b are put by

$$
\begin{aligned}
& a=\frac{1}{n}\left\{p-2 n-1+\frac{n(n+2)-(p+1)(p-1)}{n+p+1}+\frac{n}{p-1} \bar{K}\right\}, \\
& b=\frac{1}{n}\left\{n+n p-p+1+\frac{(p+1)(p-1)-n(n+2)}{n+p+1}-\frac{n}{p-1} \bar{K}\right\}
\end{aligned}
$$

and satisfy

$$
a+b=p-1
$$

Substituting (3.26) into (3.16) and taking account of $\bar{H}_{\beta \alpha}=a \bar{\phi}_{\beta \alpha}$, we obtain the equation

$$
\begin{aligned}
\bar{K}_{\delta \gamma \beta}^{\alpha}= & \frac{1}{n+p+3}\left\{2 a\left(\delta_{\delta}^{\alpha} \bar{g}_{\gamma \beta}-\delta_{\gamma}^{\alpha} \bar{g}_{\delta \beta}\right)\right. \\
& -(p-a-1)\left(\delta_{\gamma}^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}-\delta_{\delta}^{\alpha} \bar{\eta}_{\gamma} \bar{\eta}_{\beta}+\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}-\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}\right) \\
& +a\left(\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}-\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}+\delta_{\gamma}^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}-\delta_{\delta}^{\alpha} \bar{\eta}_{\beta} \bar{\eta}_{\gamma}\right) \\
& -2 a\left(\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right) \\
& -n\left(\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}+\bar{\eta}_{\gamma} \bar{\xi}^{\alpha} \bar{g}_{\delta \beta}-\bar{\eta}_{\delta} \bar{\xi}^{\alpha} \bar{g}_{\gamma \beta}\right) \\
& +(\tilde{k}+n+p-1)\left(\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}^{\alpha}\right) \\
& +(\tilde{k}-4)\left(\bar{g}_{\delta \beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \delta_{\delta}^{\alpha}\right) \\
& \left.-\tilde{k}\left(\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{\eta}_{\delta} \bar{\eta}_{\beta} \delta_{\gamma}^{\alpha}-\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}-\bar{\eta}_{\gamma} \bar{\eta}_{\beta} \delta_{\delta}^{\alpha}\right)\right\},
\end{aligned}
$$

that is,

$$
\begin{align*}
\bar{K}_{\delta \gamma \beta}{ }^{\alpha}= & \frac{1}{p+1}\left\{(a+2)\left(\delta_{\delta}^{\alpha} \bar{g}_{\gamma \beta}-\delta_{\gamma}^{\alpha} \bar{g}_{\delta \beta}\right)\right. \\
& +(p-a-1)\left(\delta_{\delta}^{\alpha} \bar{\eta}_{\gamma} \bar{\eta}_{\beta}-\delta_{\gamma}^{\alpha} \bar{\eta}_{\delta} \bar{\eta}_{\beta}-\bar{g}_{\delta \beta} \bar{\eta}_{\gamma} \bar{\xi}^{\alpha}+\bar{g}_{\gamma \beta} \bar{\eta}_{\delta} \bar{\xi}^{\alpha}\right. \tag{3.27}\\
& \left.\left.+\bar{\phi}_{\delta \beta} \bar{\phi}_{\gamma}{ }^{\alpha}-\bar{\phi}_{\gamma \beta} \bar{\phi}_{\delta}^{\alpha}+2 \bar{\phi}_{\delta \gamma} \bar{\phi}_{\beta}{ }^{\alpha}\right)\right\}
\end{align*}
$$

by use of

$$
\begin{equation*}
\tilde{k}=-\frac{(a+2)(n-p+1)}{p+1} \tag{3.28}
\end{equation*}
$$

Thus we obtain
Lemma 3.5. Let \tilde{M} be a fibred Sasakian space with conformal fibres of dimension $p>3$. If the C-Bochner curvature of \tilde{M} vanishes, then the fibre \bar{M} is a Sasakian space form of constant $\bar{\phi}$-holomorphic sectional curvature $\bar{c}=$ $(4 a-3 p+5) /(p+1)$.

Combining Lemmas 3.4 and 3.5 , we have established
Theorem 3.6. Let \tilde{M} be a fibred Sasakian space with base space M of dimension $n>2$ and conformal fibres of dimension $p>3$. If the C-Bochner curvature of \tilde{M} vanishes, then the base space M is a complex space form and each fibre \bar{M} is a Sasakian space form.

§4. Examples

As we have shown in [7], a Sasakian space form $E^{m}(-3)$ is a fibred space having a Euclidean base space E^{n} of even dimension and a Sasakian space form $E^{p}(-3)$ as fibre. It is a trivial example.

Next, we shall give a fibred Sasakian space with vanishing C-Bochner curvature tensor, which is not a Sasakian space form.

Let $C^{n / 2}$ be a complex space of complex dimension $n / 2$ and denote complex coordinates by $x^{s}, s=1,2, \ldots, n / 2$, and their conjugates by \bar{x}^{s}. If we consider the real valued function

$$
F=(2 / c) \log S, \quad S=1+(c / 2) \sum_{s} x^{s} \bar{x}^{s}
$$

with real constant c, then the metric tensor

$$
g_{s t *}=\frac{\partial^{2} F}{\partial x^{s} \partial \bar{x}^{t}}=\frac{\delta_{s t}}{S}-\frac{c \bar{x}^{s} x^{t}}{2 S^{2}}
$$

defines a Fubini-Study metric of constant holomorphic sectional curvature c [2]. If we put

$$
\begin{equation*}
\omega_{s}=-i \frac{\partial F}{\partial x^{s}}=-\frac{i \bar{x}^{s}}{S}, \quad \omega_{s *}=i \frac{\partial F}{\partial \bar{x}^{s}}=\frac{i x^{s}}{S} \tag{4.1}
\end{equation*}
$$

then the fundamental 2-form $J=2 i g_{s t *} d x^{s} \wedge d \bar{x}^{t}$ is given by

$$
\begin{equation*}
J_{a b}=(1 / 2)\left(\partial_{a} \omega_{b}-\partial_{b} \omega_{a}\right) \tag{4.2}
\end{equation*}
$$

If $c>0$, then the 1 -form $\omega=\omega_{a} d x^{a}$ is locally defined in the complex space form M. If $c<0$, the 1 -form ω is globally defined in the open domain

$$
\left\{x^{s} \mid \sum_{s} x^{s} \bar{x}^{s}<-2 / c\right\}
$$

in $C^{n / 2}$, which is the underlying space of the complex space form M. If $c=0$, the 1 -form ω is globally defined in the complex Euclidean space $M=C^{n / 2}$ by putting $S=1$ in (4.1). The equation (4.2) may be valid in real coordinates.

Let $(\bar{M}, \bar{\phi}, \bar{\xi}, \bar{g})$ be a p-dimensional Sasakian space form with constant $\bar{\phi}$-holomorphic sectional curvature $-c-3$. We take the product space $M \times \bar{M}$ as the underlying space of \tilde{M}, and put

$$
\begin{align*}
& \tilde{g}_{j i}=\left(\begin{array}{cc}
g_{b a}+\omega_{b} \omega_{a} & \omega_{b} \bar{\eta}_{\alpha} \\
\bar{\eta}_{\beta} \omega_{a} & \bar{g}_{\beta \alpha}
\end{array}\right), \\
& \tilde{\phi}_{i}^{h}=\left(\begin{array}{cc}
J_{b}{ }^{a} & 0 \\
-J_{b}{ }^{d} \omega_{d} \bar{\xi}^{\alpha} & \bar{\phi}_{\beta}^{\alpha}
\end{array}\right) \quad \text { and } \tag{4.3}\\
& \tilde{\xi}^{h}=\binom{0}{\bar{\xi}^{\alpha}}
\end{align*}
$$

with respect to the coordinate system $z^{h}=\left(x^{a}, y^{\alpha}\right)$. Then we have

$$
\tilde{\eta}_{i}=\tilde{g}_{i h} \tilde{\xi}^{h}=\left(\omega_{b}, \bar{\eta}_{\beta}\right)
$$

and verify that $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is an almost contact metric structure on \tilde{M}. The covariant components of the metric \tilde{g} are equal to

$$
\tilde{g}^{i h}=\left(\begin{array}{cc}
g^{b a} & -\omega^{b} \bar{\xi}^{\alpha} \\
-\bar{\xi}^{\beta} \omega^{a} & \bar{g}^{\beta \alpha}+\left(\omega_{d} \omega^{d}\right) \bar{\xi}^{\beta} \bar{\xi}^{\alpha}
\end{array}\right),
$$

where $\omega^{b}=\omega_{a} g^{b a}$.
The vector fields $E^{A}=\left(E^{a}, C^{\alpha}\right)$ and $E_{A}=\left(E_{b}, C_{\beta}\right)$ are given by

$$
\begin{array}{ll}
E_{i}^{a}=\left(\delta_{b}^{a}, 0\right), & C_{i}^{\alpha}=\left(\bar{\xi}^{\alpha} \omega_{b}, \delta_{\beta}^{\alpha}\right) \\
E_{b}^{h}=\binom{\delta_{b}^{a}}{-\omega_{b} \bar{\xi}^{\alpha}}, & C^{h}{ }_{\beta}=\binom{0}{\delta_{\beta}^{\alpha}} \tag{4.4}
\end{array}
$$

and E_{A} form a frame field in \tilde{M} and we have the relations

$$
\begin{equation*}
\tilde{g}\left(E_{c}, E_{b}\right)=g_{c b} \quad \text { and } \quad \tilde{g}\left(C_{\beta}, C_{\alpha}\right)=\bar{g}_{\beta \alpha} . \tag{4.5}
\end{equation*}
$$

Therefore the space \tilde{M} has an induced almost contact fibred structure.
By straightforward computations on account of properties of the Kaehlerian structure in the base space M and the Sasakian structure in the fibre \bar{M}, the connection $\tilde{\nabla}$ of \tilde{g} in the total space \tilde{M} has the following coefficients with respect to the coordinate system $z^{h}=\left(x^{a}, y^{\alpha}\right)$:

$$
\begin{align*}
& \tilde{\Gamma}_{c b}^{a}=\Gamma_{c b}^{a}+J_{c}^{a} \omega_{b}+J_{b}^{a} \omega_{c}, \\
& \tilde{\Gamma}_{c b}^{\alpha}=\frac{1}{2}\left(V_{b} \omega_{c}+\nabla_{c} \omega_{b}\right) \bar{\xi}^{\alpha}+\left(J_{a c} \omega_{b}+J_{a b} \omega_{c}\right) \omega^{a} \bar{\xi}^{\alpha}, \\
& \tilde{\Gamma}_{c \beta}^{a}=J_{c}^{a} \bar{\eta}_{\beta}, \\
& \tilde{\Gamma}_{c \beta}^{\alpha}=-\omega^{e} J_{c e} \bar{\eta}_{\beta} \bar{\xi}^{\alpha}-\omega_{c} \bar{\phi}_{\beta}^{\alpha}, \tag{4.6}\\
& \tilde{\Gamma}_{\gamma \beta}^{a}=0, \\
& \tilde{\Gamma}_{\gamma \beta}^{\alpha}=\bar{\Gamma}_{\gamma \beta}^{\alpha},
\end{align*}
$$

where $\Gamma_{c b}^{a}$ and $\bar{\Gamma}_{\gamma \beta}^{\alpha}$ are connection coefficients of $\bar{\nabla}$ in M and $\bar{\nabla}$ in \bar{M} respectively. Then it follows from the equations (1.7) that the second fundamental tensor $h=\left(h_{\gamma \beta}{ }^{a}\right)$ with respect to E_{a} is equal to

$$
\begin{equation*}
h_{\beta \alpha}{ }^{a}=\tilde{\Gamma}_{\beta \alpha}^{a}=0 \tag{4.7}
\end{equation*}
$$

and the normal connection $L=\left(L_{c b}{ }^{\alpha}\right)$ of each fibre \bar{M} in \tilde{M} is

$$
\begin{equation*}
L_{c b}{ }^{\alpha}=J_{c b} \bar{\xi}^{\alpha} . \tag{4.8}
\end{equation*}
$$

Therefore each fibre is totally geodesic. According to (4.6), we can see that

$$
\tilde{V}_{c} \tilde{\phi}_{\beta \alpha}=\partial_{c} \tilde{\phi}_{\beta \alpha}-\tilde{\Gamma}_{c \beta}^{d} \tilde{\phi}_{d \alpha}-\tilde{\Gamma}_{c \beta}^{\gamma} \tilde{\phi}_{\gamma \alpha}-\tilde{\Gamma}_{c \alpha}^{d} \tilde{\phi}_{\beta d}-\tilde{\Gamma}_{c \alpha}^{\gamma} \tilde{\phi}_{\beta \gamma}
$$

are equal to zero. From this fact and (4.4), we have

$$
{ }^{*} \nabla_{c} \bar{\phi}_{\beta \alpha}=\left(\tilde{\nabla}_{j} \tilde{\phi}_{i h}\right) E_{c}^{j} C_{\beta}^{i} C_{\alpha}^{h}=0 .
$$

Hence, by means of Proposition 3.1, \tilde{M} is a fibred Sasakian space with the base space M and the fibre \bar{M}.

Put $q=n / 2$ and $r=(p-1) / 2$ for short, and take a $\tilde{\phi}$-basis $\left\{e_{1}, \ldots, e_{m}\right\}$ at every point of \tilde{M} such that $e_{1}, \ldots, e_{q}, e_{q+1}=\tilde{\phi} e_{1}, \ldots, e_{n}=\tilde{\phi} e_{q}$ are horizontal vectors and $e_{n+1}, \ldots, e_{n+r}, e_{n+r+1}=\tilde{\phi} e_{n+1}, \ldots, e_{n+p-1}=\tilde{\phi} e_{n+r}, e_{m}=\tilde{\xi}$ are vertical vectors. We denote by $H(X, Y)$ the sectional curvature with respect to the plane spanned by X and Y. By means of $(1.10) \sim(1.17)$ and (4.7) $\sim(4.8)$, we obtain

$$
\begin{array}{lll}
H\left(e_{s}, \tilde{\phi} e_{s}\right)=c-3 & \text { for } & 1 \leq s \leq q, \\
H\left(e_{s}, e_{t}\right)=\frac{c}{4} & \text { for } & 1 \leq s, t \leq q, s \neq t, \\
H\left(e_{\alpha}, \tilde{\phi} e_{\alpha}\right)=-c-3 & \text { for } & n+1 \leq \alpha \leq n+r, \\
H\left(e_{\alpha}, e_{\beta}\right)=-\frac{c}{4} & \text { for } & n+1 \leq \alpha, \beta \leq n+r, \alpha \neq \beta \quad \text { and } \\
H\left(e_{\alpha}, e_{s}\right)=0, &
\end{array}
$$

and see that the relation

$$
\begin{equation*}
8 H\left(e_{\lambda}, e_{\mu}\right)-6=H\left(e_{\lambda}, \tilde{\phi} e_{\lambda}\right)+H\left(e_{\mu}, \tilde{\phi} e_{\mu}\right) \quad(\lambda \neq \mu) \tag{4.9}
\end{equation*}
$$

is satisfied for $\lambda, \mu=1, \ldots, q, n+1, \ldots, n+r$. That the equation (4.9) is satisfied for a $\tilde{\phi}$-basis is an equivalent condition to the vanishing C-Bochner curvature tensor in a Sasakian space of dimension $m \geq 5$ [cf. 4, 11]. Hence \tilde{M} is a Sasakian space with vanishing C -Bochner curvature tensor but not of constant $\tilde{\phi}$-holomorphic sectional curvature because $H\left(e_{s}, \tilde{\phi} e_{s}\right) \neq H\left(e_{\alpha}, \tilde{\phi} e_{\alpha}\right)$. This is an example we seek for.

References

[1] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Springer-Verlag, 1976.
[2] S. Bochner, Curvature in Hermitian metric, Bull. Amer. Math. Soc., 53 (1947), 179-195.
[3] S. Bochner, Curvature and Betti numbers II, Ann. of Math., 50 (1949), 77-93.
[4] M. Fujimura, Mean curvature for certain p-planes in Sasakian manifolds, Hokkaido Math. J., 11 (1982), 205-215.
[5] I. Hasegawa and T. Nakane, Remarks on Kaehlerian manifolds with vanishing Bochner curvature tensor, J. Hokkaido Univ. of Education, 31 (1980), 1-4.
[6] S. Ishihara and M. Konishi, Differential geometry of fibred spaces, Publ. Study Group of Differential Geometry, vol. 7, Tokyo, 1973.
[7] B. H. Kim, Fibred Riemannian manifolds with contact structure, Hiroshima Math. J., 18 (1988), 493-508.
[8] Y. Kubo, Kaehlerian manifolds with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep., 28 (1976), 85-89.
[9] M. Matsumoto and G. Chūman, On the C-Bochner curvature tensor, TRU Math., 5 (1969), 21-30.
[10] M. Matsumoto and S. Tanno, Kählerian spaces with parallel or vanishing Bochner curvature tensor, Tensor, N.S., 27 (1973), 291-294.
[11] M. Seino, On vanishing contact Bochner curvature tensor, Hokkaido Math. J., 9 (1980), 258-267.
[12] S. Tachibana, On the Bochner curvature tensor, Natural Science Report, Ochanomizu Univ., 18 (1967), 15-19.
[13] Y. Tashiro and B. H. Kim, Almost complex and almost contact structures in fibred Riemannian spaces, Hiroshima Math. J., 18 (1988), 161-188.

> Department of Mathematics, Faculty of Science, Hiroshima University

