Extremal problems with respect to ideal boundary components of an infinite network

Dedicated to Professor Kôtaro Oikawa on his 60th birthday
Atsushi Murakami and Maretsugu Yamasaki
(Received January 19, 1988)

Introduction

We introduce a notion of ideal boundary components of an infinite network as a discrete analogue of that in the theory of Riemann surfaces. This notion gives a fine information on the ideal boundary of the infinite network. Given an ideal boundary component α of N and a finite set A of nodes, the extremal length $E L_{p}(A$, $\alpha)$ and the extremal width $E W_{p}(A, \alpha)$ of N of order p relative to A and α will be studied in Section 2 and Section 4. A discrete analogue of the continuity lemma due to Marden and Rodin [3] plays an important role in our study. It will be shown that a generalized inverse relation $\left[E L_{p}(A, \alpha)\right]^{1 / p}\left[E W_{p}(A, \alpha)\right]^{1 / q}=1(1 / p+1 / q=1, p$ $>1)$ holds in the present case.

§1. Ideal boundary components

Let X be a countable set of nodes, Y be a countable set of arcs, K be the nodearc incidence function and r be a strictly positive real function on Y. We assume that the graph $\{X, Y, K\}$ is connected, locally finite and has no self-loop. The quartet N $=\{X, Y, K, r\}$ is called an infinite network. For notation and terminology, we mainly follow [2] and [4].

For each $a \in X$ and $y \in Y$, let us put

$$
\begin{aligned}
& Y(a)=\{y \in Y ; K(a, y) \neq 0\}, \\
& e(y)=\{x \in X ; K(x, y) \neq 0\}, \\
& X(a)=\bigcup\{e(y) ; y \in Y(a)\} .
\end{aligned}
$$

We say that a subset A of X is connected if, for every $x, x^{\prime} \in A$, there exists a path P from x to x^{\prime} such that $C_{X}(P) \subset A$. A node $a \in A$ is called an interior node of A if $X(a)$ $\subset A$, i.e., every neighboring node of a is contained in A. Denote by $i(A)$ the set of all interior nodes of A. We put $b(A)=A-i(A)$ and call it the boundary of A.

For two subnetworks $N^{\prime}=\left\langle X^{\prime}, Y^{\prime}\right\rangle$ and $N^{\prime \prime}=\left\langle X^{\prime \prime}, Y^{\prime \prime}\right\rangle$ of N, we write $N^{\prime} \leqslant N^{\prime \prime}$ if N^{\prime} is a subnetwork of $N^{\prime \prime}$ and $X^{\prime} \subset i\left(X^{\prime \prime}\right)$. An infinite subnetwork $N^{*}=\left\langle X^{*}, Y^{*}\right\rangle$ of N is called an end of N if the following conditions are fulfilled: $b\left(X^{*}\right)$ is a finite connected set,

$$
\begin{equation*}
Y^{*}=\left\{y \in Y ; e(y) \subset X^{*}\right\} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
X-X^{*} \text { is connected. } \tag{1.2}
\end{equation*}
$$

Denote by $\operatorname{ed}(N)$ the set of all ends of N.
A sequence $\left\{N_{n}^{*}\right\}\left(N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle\right)$ of ends is called a determining sequence of an ideal boundary component if the following conditions are fulfilled:

$$
\begin{align*}
& N_{n}^{*} \geqslant N_{n+1}^{*}, \tag{1.4}\\
& \cap_{n=1}^{\infty} X_{n}^{*}=\phi . \tag{1.5}
\end{align*}
$$

We say that two determining sequences $\left\{N_{n}^{*}\right\}$ and $\left\{\bar{N}_{n}^{*}\right\}$ are equivalent if for each N_{n}^{*} there exists \bar{N}_{m}^{*} such that $\bar{N}_{m}^{*} \leqslant N_{n}^{*}$ and if for each \bar{N}_{n}^{*} there exists N_{m}^{*} such that $N_{m}^{*} \leqslant \bar{N}_{n}^{*}$. Each equivalence class is called an ideal boundary component of N. Denote by $i b c(N)$ the totality of ideal boundary components.

For an end $N^{*}=\left\langle X^{*}, Y^{*}\right\rangle$ of N and a nonempty finite subset A of X, denote by $P_{A, \infty}^{*}\left(N^{*}\right)$ the set of all $P \in P_{A, \infty}$ (the set of all paths from A to the ideal boundary ∞ of N) such that $C_{X}(P)-X^{*}$ is a finite set (possibly, the empty set). Let $\alpha \in i b c(N)$ and $\left\{N_{n}^{*}\right\}$ be its determining sequence. Then $P_{A, \infty}^{*}\left(N_{n+1}^{*}\right) \subset P_{A, \infty}^{*}\left(N_{n}^{*}\right)$. Let us put

$$
\begin{equation*}
P_{A, \alpha}=\cap_{n=1}^{\infty} P_{A, \infty}^{*}\left(N_{n}^{*}\right) \tag{1.6}
\end{equation*}
$$

and call its element a path from A to α. Clearly this definition does not depend on the choice of the determining sequence of α. We may say that $\alpha \in \operatorname{ibc}(N)$ is an ideal boundary of an end N^{*} if $P_{A, \infty}^{*}\left(N^{*}\right)$ contains $P_{A, \alpha}$ for a nonempty finite set A.

Let Γ be a family of paths. The extremal length $\lambda_{p}(\Gamma)$ of Γ of order $p(1<p<\infty)$ is defined by

$$
\lambda_{p}(\Gamma)^{-1}=\inf \left\{H_{p}(W) ; W \in E_{p}(\Gamma)\right\},
$$

where $H_{p}(w)=\sum_{y \in Y} r(y)|w(y)|^{p}$ and $E_{p}(\Gamma)$ is the set of all $W \in L^{+}(Y)$ such that $H_{p}(W)<\infty$ and

$$
\sum_{P} r(y) W(y)=\sum_{y \in C_{Y}(P)} r(y) W(y) \geqq 1
$$

for all $P \in \Gamma$. We also use notation $E L_{p}(A, \alpha)$ for $\lambda_{p}\left(P_{A, \alpha}\right)$. It is called the extremal length of order p of N relative to A and α. Since $E_{p}\left(P_{A, \alpha}\right) \neq \phi$ for a finite set A, we always have $E L_{p}(A, \alpha)>0$.

We say that a property holds for p-almost every path of Γ if it does for the members of Γ except for those belonging to a subfamily with infinite extremal length of order p.

For $u \in L(X)$ and $P \in P_{\infty}=\bigcup\left\{P_{\{x\}, \infty} ; x \in X\right\}$, denote by $u(P)$ the limit of $u(x)$ as x tends to the ideal boundary ∞ of N along P if it exists. It is proved in [2] that $u(P)$ exists for p-almost every $P \in P_{\infty}$ if u is a Dirichlet function of order p, i.e., $u \in D^{(p)}(N)$
$=\left\{u \in L(X) ; D_{p}(u)<\infty\right\}$, where

$$
D_{p}(u)=H_{p}(d u) \quad \text { and } \quad d u(y)=-r(y)^{-1} \sum_{x \in X} K(x, y) u(x) .
$$

We write $u(\alpha)=t$ for $\alpha \in i b c(N)$ and $t \in R$ if $u(P)$ exists and is equal to t for p-almost every $P \in P_{\alpha}=\bigcup\left\{P_{\{x\}, \alpha} ; x \in X\right\}$.

We prepare some lemmas. By [2; Theorem 2.3], we have
Lemma 1.1. If $W \in L^{+}(Y)$ and $H_{p}(W)<\infty$, then $\sum_{p} r(y) W(y)=\infty$ for p almost every $P \in P_{\infty}$.

For later use, we introduce an operation on the set of paths. Let P^{\prime} be a path from a to b with $C_{X}\left(P^{\prime}\right)=\left\{x_{0}^{\prime}, x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right\}\left(x_{0}^{\prime}=a, x_{n}^{\prime}=b\right), C_{Y}\left(P^{\prime}\right)=\left\{y_{1}^{\prime}, \cdots, y_{n}^{\prime}\right\}$ and let $P^{\prime \prime}$ be a path from b to c with $C_{X}\left(P^{\prime \prime}\right)=\left\{x_{0}^{\prime \prime}, x_{1}^{\prime \prime}, \cdots, x_{m}^{\prime \prime}\right\} \quad\left(x_{0}^{\prime \prime}=b, x_{m}^{\prime \prime}=c\right), C_{Y}\left(P^{\prime \prime}\right)$ $=\left\{y_{1}^{\prime \prime}, \cdots, y_{m}^{\prime \prime}\right\}$. Put $v=\max \left\{k ; x_{k}^{\prime \prime} \in C_{X}\left(P^{\prime}\right)\right\}$ and let $x_{v}^{\prime \prime}=x_{q}^{\prime}$. We define two ordered set $X_{0}=\left\{x_{k} ; 0 \leqq k \leqq m+q-v\right\}$ and $Y_{0}=\left\{y_{k} ; 1 \leqq k \leqq m+q-v\right\}$ by

$$
\begin{aligned}
& x_{0}=x_{0}^{\prime}, x_{k}=x_{k}^{\prime} \quad \text { and } \quad y_{k}=y_{k}^{\prime} \quad \text { if } \quad 1 \leqq k \leqq q \\
& x_{k}=x_{k-q+v}^{\prime \prime} \quad \text { and } y_{k}=y_{k-q+v}^{\prime \prime} \quad \text { if } q+1 \leqq k \leqq m+q-v .
\end{aligned}
$$

Let p^{\prime} and $p^{\prime \prime}$ be the path indexes of P^{\prime} and $P^{\prime \prime}$ respectively and define $p \in L(Y)$ by

$$
\begin{array}{ll}
p(y)=p^{\prime}(y) & \text { if } \quad y \in Y_{0} \cap C_{Y}\left(P^{\prime}\right), \\
p(y)=p^{\prime \prime}(y) & \text { if } \quad y \in Y_{0} \cap C_{Y}\left(P^{\prime \prime}\right)-C_{Y}\left(P^{\prime}\right), \\
p(y)=0 & \text { if } \\
y \notin Y_{0} .
\end{array}
$$

Then the triple $\left\{X_{0}, Y_{0}, p\right\}$ defines a path P from a to c. We call P the path generated by P^{\prime} and $P^{\prime \prime}$ and denote it by $P^{\prime}+P^{\prime \prime}$. In the case where $P^{\prime \prime}$ is a path from b to the ideal boundary ∞, we can define $P^{\prime}+P^{\prime \prime}$ similarly.

Lemma 1.2. Let A_{1} and A_{2} be nonempty finite subsets of X and $\alpha \in i b c(N)$. Then $\lambda_{p}\left(P_{A_{1}, \alpha}\right)=\infty$ if and only if $\lambda_{p}\left(P_{A_{2}, \alpha}\right)=\infty$.

Proof. Assume that $\lambda_{p}\left(\mathrm{P}_{A_{1}, \alpha}\right)=\infty$. Then there exists $W \in L^{+}(Y)$ such that $H_{p}(W)<\infty$ and $\sum_{P} r(y) W(y)=\infty$ for every $P \in P_{A_{1}, \alpha}$ by Lemma 2.3 in [2]. Let $P \in P_{A_{2}, \alpha}$. If $C_{X}(P) \cap A_{1} \neq \phi$, then P contains a subpath $P^{\prime} \in P_{A_{1}, \alpha}$, so that $\sum_{P} r(y) W(y)$ $\geqq \sum_{P^{\prime}} r(y) W(y)=\infty$. If $C_{X}(P) \cap A_{1}=\phi$, then there exists a path P_{0} from A_{1} to A_{2} such that $P^{\prime \prime}=P_{0}+P \in P_{A_{1}, \alpha}$, so that

$$
\sum_{P} r(y) W(y)=\sum_{P^{\prime \prime}} r(y) W(y)-\sum_{P_{0}} r(y) W(y)=\infty,
$$

since $C_{Y}\left(P_{0}\right)$ is a finite set. Therefore $\sum_{P} r(y) W(y)=\infty$ for every $P \in P_{A_{2}, \alpha}$, and hence $\lambda_{p}\left(P_{A_{2}, \alpha}\right)=\infty$ by Lemma 2.3 in [2].

As a discrete analogue of the fundamental lemma due to Marden and Rodin [3], we have

Lemma 1.3. Assume that $W_{n} \in L^{+}(Y)$ and $H_{p}\left(W_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then there exists a subsequence $\left\{W_{n_{k}}\right\}$ of $\left\{W_{n}\right\}$ such that for p-almost every $P \in P_{\infty}$

$$
\lim _{k \rightarrow \infty} \sum_{P} r(y) W_{n_{k}}(y)=0
$$

Proof. Choose a subsequence $\left\{W_{n_{k}}\right\}$ such that $H_{p}\left(W_{n_{k}}\right)<2^{-2 k p}$. Set Γ_{k} $=\left\{P \in P_{\infty} ; \sum_{P} r(y) W_{n_{k}}(y)>2^{-k}\right\}, \Gamma_{k}^{\prime}=\bigcup_{\ell=k}^{\infty} \Gamma_{\ell}$ and $\Gamma^{\prime}=\bigcap_{k=1}^{\infty} \Gamma_{k}^{\prime}$. Since $2^{k} W_{n_{k}} \in$ $E_{p}\left(\Gamma_{k}\right)$ for each k, we have by Lemma 2.2 in [2]

$$
\lambda_{p}\left(\Gamma^{\prime}\right)^{-1} \leqq \lambda_{p}\left(\Gamma_{k}^{\prime}\right)^{-1} \leqq \sum_{\ell=k}^{\infty} \lambda_{p}\left(\Gamma_{\ell}\right)^{-1} \leqq \sum_{\ell=k}^{\infty} H_{p}\left(2^{\ell} W_{n_{\ell}}\right) \leqq \sum_{\ell=k}^{\infty} 2^{-\ell p} \rightarrow 0
$$

as $k \rightarrow \infty$. Hence $\lambda_{p}\left(\Gamma^{\prime}\right)=\infty$. If limsup ${ }_{k \rightarrow \infty} \sum_{P} r(y) W_{n_{k}}(y)>0$ for some $P \in P_{\infty}$, then $P \in \Gamma_{k}^{\prime}$ for all k and therefore $P \in \Gamma^{\prime}$.

In order to assure the existence of a limit function of a sequence of functions on Y or X, we need the following type of Clarkson's inequality (cf. [1], [5]):

Lemma 1.4. For $w, w^{\prime} \in L_{p}(Y ; r)=\left\{w \in L(Y) ; H_{p}(w)<\infty\right\}$, the following inequalities hold:

$$
\begin{align*}
& H_{p}\left(w+w^{\prime}\right)+H_{p}\left(w-w^{\prime}\right) \leqq 2^{p-1}\left[H_{p}(w)+H_{p}\left(w^{\prime}\right)\right] \text { in case } 2 \leqq p ; \tag{1.7}\\
& {\left[H_{p}\left(w+w^{\prime}\right)\right]^{1 /(p-1)}+\left[H_{p}\left(w-w^{\prime}\right)\right]^{1 /(p-1)}} \tag{1.8}\\
& \quad \leqq 2\left[H_{p}(w)+H_{p}\left(w^{\prime}\right)\right]^{1 /(p-1)} \text { in case } 1<p \leqq 2 .
\end{align*}
$$

§2. Extremum problems related to $\alpha \in \operatorname{ibc}(\boldsymbol{N})$

Let $\alpha \in i b c(N), c \in L^{+}(Y)$ and A be a nonempty finite subset of X. Consider the following linear programming problems related to α :

$$
\begin{align*}
& \text { Find } N\left(P_{A, \alpha} ; c\right)=\inf \left\{\sum_{P} c(y) ; P \in P_{A, \alpha}\right\} \tag{2.1}\\
& \text { Find } N^{*}(A, \alpha ; c) \tag{2.2}\\
& \quad=\sup \left\{\left[\inf _{x \in A} u(x)\right]-\left[\sup _{P \in \Gamma_{A, \alpha ; c}} u(P)\right] ; u \in S^{*}\right\}
\end{align*}
$$

where S^{*} is the set of all $u \in L(X)$ satisfying $\left|\sum_{x \in X} K(x, y) u(x)\right| \leqq c(y)$ on Y and $\Gamma_{A, \alpha ; c}$ $=\left\{P \in P_{A, \alpha} ; \sum_{P} c(y)<\infty\right\}$. We remark that $u(P)$ exists for any $u \in S^{*}$ and $P \in \Gamma_{A, \alpha ; c}$.

We have the following duality theorem:
Theorem 2.1. If $\Gamma_{A, \alpha ; c} \neq \phi$, then $N\left(P_{A, \alpha} ; c\right)=N^{*}(A, \alpha ; c)$ holds and problem (2.2) has an optimal solution.

Proof. Let $u \in S^{*}$ and $P \in \Gamma_{A, \alpha ; c}$ with $C_{X}(P)=\left\{x_{n} ; n \geqq 0\right\}\left(x_{0} \in A\right)$ and $C_{Y}(P)$ $=\left\{y_{n} ; n \geqq 1\right\}$. Then we have

$$
\begin{aligned}
\sum_{P} c(y) & \geqq \sum_{k=1}^{n+1} c\left(y_{k}\right) \geqq \sum_{k=0}^{n}\left|u\left(x_{k+1}\right)-u\left(x_{k}\right)\right| \\
& \geqq u\left(x_{0}\right)-u\left(x_{n+1}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have $\sum_{P} c(y) \geqq u\left(x_{0}\right)-u(P)$ and hence

$$
\sum_{P} c(y) \geqq \inf _{x \in A} u(x)-\sup _{P \in \Gamma_{A, \alpha ; c}} u(P) .
$$

Thus the inequality $N\left(P_{A, \alpha} ; c\right) \geqq N^{*}(A, \alpha ; c)$ holds.
Next we define $\hat{u} \in L(X)$ by

$$
\hat{u}(x)=\inf \left\{\sum_{P} c(y) ; P \in P_{\{x\}, \alpha}\right\}
$$

for $x \in X$. By the assumption of the theorem, $\hat{u}(x)<\infty$. To prove that $\hat{u} \in S^{*}$, let $\bar{y} \in Y$ with $e(\bar{y})=\left\{x_{1}, x_{2}\right\}$. Let $P \in P_{\left\{x_{1}\right\}, \alpha}$ be arbitrarily given. In case $\bar{y} \in C_{Y}(P)$, there exists a subpath P^{\prime} of P such that $P^{\prime} \in P_{\left\{x_{2}\right\}, \alpha^{*}}$ Then $\hat{u}\left(x_{2}\right) \leqq \sum_{P}, c(y) \leqq \sum_{P} c(y)+c(\bar{y})$. In case $\bar{y} \notin C_{Y}(P)$, let $P^{\prime \prime} \in P_{\left\{x_{2}\right\}, \alpha}$ be the path generated by $\{\bar{y}\}$ and P. Then $\hat{u}\left(x_{2}\right)$ $\leqq \sum_{P / \prime} c(y)=\sum_{P} c(y)+c(\bar{y})$. Thus we have $\hat{u}\left(x_{2}\right) \leqq \sum_{P} c(y)+c(\bar{y})$ for any $P \in P_{\left(x_{1}\right), \alpha}$, and hence $\hat{u}\left(x_{2}\right) \leqq \hat{u}\left(x_{1}\right)+c(\bar{y})$. By interchanging the role of x_{1} and x_{2}, we have $\hat{u}\left(x_{1}\right)$ $\leqq \hat{u}\left(x_{2}\right)+c(\bar{y})$ and hence $\left|\sum_{x \in X} K(x, \bar{y}) \hat{u}(x)\right| \leqq c(\bar{y})$.

Let $P \in \Gamma_{A, \alpha ; c}$ with $C_{X}(P)=\left\{x_{n} ; n \geqq 0\right\}\left(x_{0} \in A\right)$ and denote by P_{n} the subpath of P from x_{n} to α. Then we have $\hat{u}\left(x_{n}\right) \leqq \sum_{P_{n}} c(y) \rightarrow 0$ as $n \rightarrow \infty$, so that $\hat{u}(P)=0$. Therefore $\sup _{P \in \Gamma_{A, \alpha ; c}} \hat{u}(P)=0$ and $N\left(P_{A, \alpha} ; c\right)=\inf _{x \in A} \hat{u}(x) \leqq N^{*}(A, \alpha ; c)$. Note that \hat{u} is an optimal solution of problem (2.2). This completes the proof.

As a dual quantity of $E L_{p}(A, \alpha)=\lambda_{p}\left(P_{A, \alpha}\right)$, let us consider the following value of an extremum problem:

$$
\begin{equation*}
\text { Find } d_{p}(A, \alpha)=\inf \left\{D_{p}(u) ; u=1 \text { on } A, u(\alpha)=0\right\} \tag{2.3}
\end{equation*}
$$

Note that $d_{p}(A, \alpha)<\infty$, since A is a finite set. We have
Theorem 2.2. $\quad d_{p}(A, \alpha)=\lambda_{p}\left(P_{A, \alpha}\right)^{-1}$.
Proof. In case $\lambda_{p}\left(P_{A, \alpha}\right)=\infty$, we have $d_{p}(A, \alpha)=0$, since $u=1$ is an admissible function for problem (2.3). We consider the case where $\lambda_{p}\left(P_{A, \alpha}\right)<\infty$. To prove the inequality $\lambda_{p}\left(P_{A, \alpha}\right)^{-1} \leqq d_{p}(A, \alpha)$, let $u \in D^{(p)}(N)$ satisfy $u=1$ on A and $u(\alpha)=0$. Put $W(y)=|d u(y)|$. Then $W \in L^{+}(Y)$ and $H_{p}(W)=D_{p}(u)$. Set $\Gamma(\alpha)=\left\{P \in P_{A, \alpha} ; u(P)\right.$ $=0\}$. Then we see easily that $\sum_{P} r(y) W(y) \geqq 1-u(P)=1$ for all $P \in \Gamma(\alpha)$, so that $W \in E_{p}(\Gamma(\alpha))$. Since $\lambda_{p}\left(P_{A, \alpha}-\Gamma(\alpha)\right)=\infty$, we have by Lemma 2.2 in [2]

$$
\lambda_{p}\left(P_{A, \alpha}\right)^{-1}=\lambda_{p}(\Gamma(\alpha))^{-1} \leqq H_{p}(W)=D_{p}(u) .
$$

Thus $\lambda_{p}\left(P_{A, \alpha}\right)^{-1} \leqq d_{p}(A, \alpha)$. To prove the converse inequality, let $W \in E_{p}\left(P_{A, \alpha}\right)$. Then $\sum_{P} r(y) W(y)<\infty$ for p-almost every $P \in P_{A, \alpha}$ by Lemma 1.1. On account of Theorem 2.1, we can find $u \in L(X)$ such that $u(x) \geqq 1$ on $A, u(\alpha)=0$ and $\left|\sum_{x \in X} K(x, y) u(x)\right|$ $\leqq r(y) W(y)$ on Y. Define $v \in L(X)$ by $v(x)=\min (u(x), 1)$. Then $v(x)=1$ on $A, v(\alpha)$ $=0$ and $|d v(y)| \leqq|d u(y)| \leqq W(y)$, so that $d_{p}(A, \alpha) \leqq D_{p}(v) \leqq H_{p}(W)$. Therefore $d_{p}(A$, $\alpha) \leqq \lambda_{p}\left(P_{A, \alpha}\right)^{-1}$.

As for the existence of an optimal solution of problem (2.3), we have
Theorem 2.3. There exists a unique optimal solution of problem (2.3).
Proof. Let $\left\{u_{n}\right\}$ be a sequence in $D^{(p)}(N)$ such that $u_{n}=1$ on $A, u_{n}(\alpha)=0$ and $D_{p}\left(u_{n}\right) \rightarrow d_{p}(A, \alpha)$ as $n \rightarrow \infty$. Since $\left(u_{n}+u_{m}\right) / 2$ is an admissible function, we see by Clarkson's inequality that $D_{p}\left(u_{n}-u_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ (cf. [5]). Since $D^{(p)}(N)$ is a Banach space with the norm $\|u\|_{p}=\left[D_{p}(u)+|u(b)|^{p}\right]^{1 / p} \quad(b \in X)$, there exists $\hat{u} \in D^{(p)}(N)$ such that $\left\|u_{n}-\hat{u}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $\hat{u}=1$ on A and $d_{p}(A, \alpha)$ $=D_{p}(\hat{u})$. To prove $\hat{u}(\alpha)=0$, put $W_{n}(y)=\left|d u_{n}(y)-d \hat{u}(y)\right|$. Then $H_{p}\left(W_{n}\right)=D_{p}\left(u_{n}-\hat{u}\right)$ $\rightarrow 0$ as $n \rightarrow \infty$. Set $\Gamma^{\prime}(\alpha)=\left\{P \in P_{A, \alpha} ; \hat{u}(P)\right.$ exists and $u_{n}(P)=0$ for all $\left.n\right\}$. Then $\lambda_{p}\left(P_{A, \alpha}\right.$ $\left.-\Gamma^{\prime}(\alpha)\right)=\infty$. By means of Lemma 1.3, we can find a subfamily $\Gamma^{\prime \prime}(\alpha)$ of $\Gamma^{\prime}(\alpha)$ and a subsequence $\left\{W_{n_{k}}\right\}$ of $\left\{W_{n}\right\}$ such that $\lim _{k \rightarrow \infty} \sum_{P} r(y) W_{n_{k}}(y)=0$ for every $P \in \Gamma^{\prime \prime}(\alpha)$ and $\lambda_{p}\left(\Gamma^{\prime}(\alpha)-\Gamma^{\prime \prime}(\alpha)\right)=\infty$. Denoting by $p(y)$ the path index of P, we have the relations

$$
\sum_{P} r(y) p(y) d u_{n}(y)=1 \quad \text { and } \quad \sum_{P} r(y) p(y) d \hat{u}(y)=1-\hat{u}(P)
$$

for every $P \in \Gamma^{\prime}(\alpha)$, so we see that $\hat{u}(P)=0$ for every $P \in \Gamma^{\prime \prime}(\alpha)$. Since $\lambda_{p}\left(P_{A, \alpha}-\Gamma^{\prime \prime}(\alpha)\right)$ $=\infty$, we have $\hat{u}(\alpha)=0$, and hence \hat{u} is an optimal solution of problem (2.3). The uniqueness of the optimal solution follows from Clarkson's inequality.

Let $\left\{N_{n}^{*}\right\}\left(N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle\right)$ be a determining sequence of $\alpha \in i b c(N)$ such that $A \cap X_{1}^{*}=\phi$. Denote by $P_{A, X_{n}^{*}}$ the set of all paths from A to X_{n}^{*}. Let us study the relation between $\lambda_{p}\left(P_{A, \alpha}\right)$ and the extremal length $\lambda_{p}\left(P_{A, X_{n}^{*}}^{*}\right)$ of order p of N relative to A and X_{n}^{*}.

We begin with
Lemma2.1. Let $c \in L^{+}(Y)$ and set $t=N\left(P_{A, \alpha} ; c\right)$ and $t_{n}=N\left(P_{A, X_{n}^{*}} ; c\right)$ $=\inf \left\{\sum_{P} c(y) ; P \in P_{A, X_{n}^{*}}^{*}\right\}$. Then $t_{n} \leqq t_{n+1} \leqq t$ and $t_{n} \rightarrow t$ as $n \rightarrow \infty$.

Proof. Since each path of $P_{A, X_{n+1}^{*}}$ (resp. $P_{A, \alpha}$) contains a path of $P_{A, X_{n}^{*}}$ (resp. $P_{A, X_{n+1}^{*}}^{*}$), we have $t_{n} \leqq t_{n+1} \leqq t$. Suppose that $\lim _{n \rightarrow \infty} t_{n}=t_{0}<t$. Let ε be a positive number such that $\varepsilon<t-t_{0}$. For each n there exists $P_{n} \in P_{A, X_{n}^{*}}^{*}$ such that $\sum_{P_{n}} c(y)<t_{n}$ $+\varepsilon / 4^{n}$. Since $\left\{t_{n}\right\}$ is monotone, by taking a subsequence if necessary, we may assume that $t_{0}-t_{n}<1 / 2^{n}$. Since A is a finite set, we may also assume that all elements of $\left\{P_{n}\right\}$ have the same node $a \in A$. Let $C_{X}\left(P_{n}\right)=\left\{x_{i}^{(n)} ; 0 \leqq i \leqq q_{n}\right\}\left(x_{0}^{(n)}=a, x_{q_{n}}^{(n)} \in b\left(X_{n}^{*}\right)\right)$. For every n and k with $n>k$, let $v(k, n)=\max \left\{i ; x_{i}^{(n)} \in b\left(X_{k}^{*}\right)\right\}$. Then $x_{i}^{(n)} \in X_{k}^{*}$ for all i with $v(k, n) \leqq i \leqq q_{n}$. We call $x_{v(k, n)}^{(n)}(n>k)$ the last exit node of P_{n} from $X-X_{k}^{*}$. Since $b\left(X_{1}^{*}\right)$ is a finite set, we can select a subsequence $\left\{P_{n_{i}}^{(1)}\right\}$ of $\left\{P_{n}\right\}$, all elements of which have the same last exit node z_{1} from $X-X_{1}^{*}$. Put $n_{1}^{(1)}=n_{1}$. Similarly we can select a subsequence $\left\{P_{n_{i}(2)}\right.$) of $\left\{P_{n_{i}}^{(1)}\right\}$, all of whose elements have the same last exit node z_{2} from $X-X_{2}^{*}$. Let n_{2} be the first number of $\left\{n_{i}^{(2)}\right\}$ such that $n_{i}^{(2)}>n_{1}$. By induction we obtain for each k a subsequence $\left\{P_{n_{i}^{k}}^{(k)}\right\}$ of the preceding one, all of whose elements
have the same last exit node z_{k} from $X-X_{k}^{*}$, and the number n_{k}. We consider the sequence of paths $\left\{P_{n_{k}}\right\}$ and denote it by $\left\{\tilde{P}_{k}\right\}$. Let k_{0} be a number such as $\sum_{n=k_{0}}^{\infty} 1 / 2^{n}$ $<\varepsilon / 2$. We shall construct a path $P^{*} \in P_{\{a\}, \infty}$. For each $k \geqq 2$, let P_{k}^{\prime} be the subpath of \widetilde{P}_{k} such that P_{k}^{\prime} is a path from z_{k-1} to z_{k} and let $P_{k}^{\prime \prime}$ be the subpath of \widetilde{P}_{k} such that $P_{k}^{\prime \prime}$ is a path from a to z_{k-1}. We define a set $\left\{P_{k}^{*} ; k \geqq k_{0}\right\}$ of paths by $P_{k_{0}}^{*}=P_{k_{0}}^{\prime \prime}+P_{k_{0}}^{\prime}$ (the path generated by $P_{k_{0}}^{\prime \prime}$ and $P_{k_{0}}^{\prime}$) and $P_{k+1}^{*}=P_{k}^{*}+P_{k+1}^{\prime}$ for $k \geqq k_{0}$. We see that for each $k \geqq k_{0}$, the restriction of P_{m}^{*} to the subnetwork $N-N_{k}^{*}=\left\langle X-X_{k}^{*}, Y-Y_{k}^{*}\right\rangle$ is identical for all $m \geqq k+1$. Thus we can define an infinite path $P^{*} \in P_{\{a\}, \infty}$ by the condition that the restriction of P^{*} to $N-N_{k}^{*}$ is equal to P_{k+1}^{*} for every $k \geqq k_{0}$. Then $P^{*} \in P_{A, \alpha^{*}}$. Since $P_{k}^{\prime \prime}$ contains a path belonging to $P_{A, x_{k-1}^{*}}, \sum_{P_{k}^{\prime \prime}} c(y) \geqq t_{k-1}$, so that

$$
\sum_{P_{k}^{\prime}} c(y) \leqq \sum_{\tilde{P}_{k}} c(y)-\sum_{p_{k}^{\prime \prime}} c(y)<t_{n_{k}}+\varepsilon / 4^{k}-t_{k-1}<\varepsilon / 4^{k}+1 / 2^{k-1} .
$$

We have

$$
\begin{aligned}
\sum_{P_{k}^{*}}^{*} c(y) & \leqq \sum_{P_{k_{0}}^{*}} c(y)+\sum_{i=k_{0}+1}^{k} \sum_{P_{i}^{\prime}} c(y) \\
& <t_{n_{k_{0}}}+\varepsilon / 4^{k_{0}}+\sum_{i=k_{0}+1}^{k}\left(\varepsilon / 4^{i}+1 / 2^{i-1}\right) \\
& <t_{0}+\varepsilon
\end{aligned}
$$

for all $k \geqq k_{0}+1$, so that $\sum_{P^{*}} c(y) \leqq t_{0}+\varepsilon<t$. This is a contradiction. Therefore $t_{n} \rightarrow t$ as $n \rightarrow \infty$.

Now we have a discrete analogue of the continuity lemma due to Marden and Rodin [3]:

Theorem 2.4. $\quad \lim _{n \rightarrow \infty} \lambda_{p}\left(P_{A, X_{n}^{*}}\right)=\lambda_{p}\left(P_{A, \alpha}\right)$.
Proof. Since $E_{p}\left(P_{A, \alpha}\right) \supset E_{p}\left(P_{A, X_{n+}^{*}}\right) \supset E_{p}\left(P_{A, \mathrm{X}_{n}^{*}}\right)$, we have $\lambda_{p}\left(P_{A, \alpha}\right)$ $\geqq \lambda_{p}\left(P_{A, X_{n+1}^{*}}\right) \geqq \lambda_{p}\left(P_{A, X_{n}^{*}}\right)$. Put $s=\lim _{n \rightarrow \infty} \lambda_{p}\left(P_{A, X_{n}^{*}}^{*}\right)$. Then $0<s \leqq \lambda_{p}\left(P_{A, \alpha}\right)$. To prove the converse inequality, let $W \in E_{p}\left(P_{A, \alpha}\right)$ and put $c(y)=r(y) W(y)$. Then, by Lemma 2.1, we have $t_{n}=N\left(P_{A, X_{n}^{*}}^{*} ; c\right) \rightarrow t=N\left(P_{A, x} ; c\right)$ as $n \rightarrow \infty$. We note that $t \geqq 1$ since $W \in E_{p}\left(P_{A, \alpha}\right)$. For any ε with $0<\varepsilon<1$, there exists n_{0} such that $t_{n}>1-\varepsilon>0$ for all n $\geqq n_{0}$. Then $W /(1-\varepsilon)$ belongs to $E_{p}\left(P_{A, X_{n}^{*}}\right)$ and

$$
1 / s \leqq \lambda_{p}\left(P_{A, X_{n}^{*}}\right)^{-1} \leqq H_{p}(W /(1-\varepsilon))=H_{p}(W) /(1-\varepsilon)^{p}
$$

for all $n \geqq n_{0}$. Since ε is arbitrary, we have $1 / s \leqq H_{p}(W)$, so that $1 / s \leqq \lambda_{p}\left(P_{A, \alpha}\right)^{-1}$. This completes the proof.

§3. Flow problems

For a node $x \in X$, a subset B of X and $w \in L(Y)$, let us put

$$
I(w ; x)=\sum_{y \in Y} K(x, y) w(y),
$$

$$
I(w ; B)=\sum_{x \in B} I(w ; x) \quad \text { if } \quad \sum_{x \in B}|I(w ; x)|<\infty
$$

Let A be a nonempty finite subset of $X, \alpha \in i b c(N)$ and $\left\{N_{n}^{*}\right\}\left(N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle\right)$ be a determining sequence of α. Denote by $F\left(A, X_{n}^{*}\right)$ the set of all flows w from A to X_{n}^{*}, i.e., the set of $w \in L(Y)$ satisfying the conditions: $I(w ; x)=0$ for all $x \in X-A-X_{n}^{*}$ and $I(w ; A)+I\left(w ; X_{n}^{*}\right)=0$. Note that $F\left(A, X_{n+1}^{*}\right) \subset F\left(A ; X_{n}^{*}\right)$. Let $L_{0}(Y)$ be the set of all $w \in L(Y)$ with finite support and $F_{q}\left(A, X_{n}^{*}\right)$ be the closure of $F\left(A, X_{n}^{*}\right) \cap L_{0}(Y)$ in the Banach space $L^{q}(Y ; r)$ with the norm $\left[H_{q}(w)\right]^{1 / q}$. Here q is a positive number such that $1<q<\infty$.

We say that $w \in L(Y)$ is a flow of order q from A to α if there exists a sequence $\left\{w_{n}\right\}$ of flows such that $w_{n} \in F_{q}\left(A, X_{n}^{*}\right)$ and $H_{q}\left(w_{n}-w\right) \rightarrow 0$ as $n \rightarrow \infty$. Denote by $F_{q}(A$, α) the set of all flows of order q from A to α. Let us consider the following extremum problems related to flows:
(3.1) Find $d_{q}^{*}\left(A, X_{n}^{*}\right)=\inf \left\{H_{q}(w) ; w \in F_{q}\left(A, X_{n}^{*}\right), I(w ; A)=-1\right\}$;

$$
\begin{equation*}
\text { Find } d_{q}^{*}(A, \alpha)=\inf \left\{H_{q}(w) ; w \in F_{q}(A, \alpha), I(w ; A)=-1\right\} \tag{3.2}
\end{equation*}
$$

We have
Theorem 3.1. $\lim _{n \rightarrow \infty} d_{q}^{*}\left(A, X_{n}^{*}\right)=d_{q}^{*}(A, \alpha)$.
Proof. Since $F_{q}\left(A, X_{n+1}^{*}\right) \subset F_{q}\left(A, X_{n}^{*}\right), d_{q}^{*}\left(A, X_{n}^{*}\right) \leqq d_{q}^{*}\left(A, X_{n+1}^{*}\right)$. Let $w \in F_{q}(A$, $\alpha)$ such that $I(w ; A)=-1$. Then there exists a sequence $\left\{w_{n}\right\}$ of flows such that $w_{n} \in F_{q}\left(A, X_{n}^{*}\right)$ and $H_{q}\left(w_{n}-w\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $w_{n}(y) \rightarrow w(y)$ as $n \rightarrow \infty$ for each $y \in Y, I\left(w_{n} ; A\right) \rightarrow I(w ; A)=-1$ as $n \rightarrow \infty$. We have

$$
d_{q}^{*}\left(A, X_{n}^{*}\right) \leqq H_{q}\left(w_{n} / I\left(w_{n} ; A\right)\right)=H_{q}\left(w_{n}\right) / /\left.I\left(w_{n} ; A\right)\right|^{q}
$$

for large n, so that $\lim _{n \rightarrow \infty} d_{q}^{*}\left(A, X_{n}^{*}\right) \leqq H_{q}(w)$. Therefore $\lim _{n \rightarrow \infty} d_{q}^{*}\left(A, X_{n}^{*}\right) \leqq d_{q}^{*}(A$, $\alpha)$. To prove the converse inequality, we may assume that $\lim _{n \rightarrow \infty} d_{q}^{*}\left(A, X_{n}^{*}\right)<\infty$. For each n, there exists an optimal solution \bar{w}_{n} of problem (3.1), i.e., $\bar{w}_{n} \in F_{q}\left(A, X_{n}^{*}\right)$ such that $I\left(w_{n} ; A\right)=-1$ and $d_{q}^{*}\left(A, X_{n}^{*}\right)=H_{q}\left(\bar{w}_{n}\right)$. By a standard argument and Lemma 1.4, we can verify that $H_{q}\left(\bar{w}_{n}-\bar{w}_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Since $L_{q}(Y ; r)$ is a Banach space, there exists $\bar{w} \in L_{q}(Y ; r)$ such that $H_{q}\left(\bar{w}_{n}-\bar{w}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\bar{w} \in F_{q}(A, \alpha)$. Since $\bar{w}_{n}(y) \rightarrow \bar{w}(y)$ as $n \rightarrow \infty$ for each $y \in Y$, we have $I(\bar{w} ; A)=-1$. Hence $\lim _{n \rightarrow \infty} d_{q}^{*}\left(A, X_{n}^{*}\right)=\lim _{n \rightarrow \infty} H_{q}\left(\bar{w}_{n}\right)=H_{q}(\bar{w}) \geqq d_{q}^{*}(A, \alpha)$. This completes the proof.

In connection with problem (3.1), we considered the following problem in [4]:

$$
\begin{equation*}
\text { Find } d_{p}\left(A, X_{n}^{*}\right)=\inf \left\{D_{p}(u) ; u=1 \text { on } A, u=0 \text { on } X_{n}^{*}\right\} . \tag{3.3}
\end{equation*}
$$

By [4; Theorems 2.1 and 5.1] we have

$$
d_{p}\left(A, X_{n}^{*}\right)=\lambda_{p}\left(P_{A, X_{n}^{*}}\right)^{-1}
$$

and the reciprocal relation

$$
\left[d_{p}\left(A, X_{n}^{*}\right)\right]^{1 / p}\left[d_{q}^{*}\left(A, X_{n}^{*}\right)\right]^{1 / q}=1 \quad \text { if } \quad 1 / p+1 / q=1
$$

On account of Theorems 2.2, 2.4 and 3.1, we obtain the following reciprocal relation:

Theorem 3.2. If $d_{p}(A, \alpha)>0$ and $1 / p+1 / q=1$, then

$$
\left[d_{p}(A, \alpha)\right]^{1 / p}\left[d_{q}^{*}(A, \alpha)\right]^{1 / q}=1
$$

§4. Extremal width of \boldsymbol{N} relative to \boldsymbol{A} and α

Let B_{1} and B_{2} be mutually disjoint nonempty subsets of X. Denote by $B_{1} \ominus B_{2}$ the set of all $y \in Y$ which connects B_{1} and B_{2}, i.e., $e(y) \cap B_{1} \neq \phi$ and $e(y) \cap B_{2} \neq \phi$. Let $Q_{B_{1}, B_{2}}$ be the set of all cuts between B_{1} and B_{2}, namely $Q \in Q_{B_{1}, B_{2}}$ if there exist mutually disjoint subsets $Q\left(B_{1}\right)$ and $Q\left(B_{2}\right)$ such that $Q\left(B_{i}\right) \supset B_{i}(i=1,2), X$ $=Q\left(B_{1}\right) \cup Q\left(B_{2}\right)$ and $Q=Q\left(B_{1}\right) \ominus Q\left(B_{2}\right)$.

In general, we say that a nonempty subset Q of Y is a cut of N if there exists a subset X^{\prime} of X such that $Q=X^{\prime} \ominus\left(X-X^{\prime}\right)$. The pair of X^{\prime} and $X-X^{\prime}$ is uniquely determined by Q.

Let A be a finite nonempty subset of $X, \alpha \in \operatorname{ibc}(N)$ and $\left\{N_{n}^{*}\right\}$ ($N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle$) be a determining sequence of α such that $A \cap X_{1}^{*}=\phi$. Then $Q_{A, X_{n}^{*}} \subset Q_{A, X_{n+1}^{*}}$. Let us put

$$
\begin{equation*}
Q_{A, \alpha}=\cup_{n=1}^{\infty} Q_{A, X_{n}^{*}} \tag{4.1}
\end{equation*}
$$

and call an element of $Q_{A, \alpha}$ a cut between A and α. Note that the definition of $Q_{A, \alpha}$ does not depend on the choice of the determining sequence of α.

For a set Λ of cuts, let us define the extremal width $\mu_{q}(\Lambda)$ of Λ of order q by

$$
\begin{equation*}
\mu_{q}(\Lambda)^{-1}=\inf \left\{H_{q}(W) ; W \in E_{q}^{*}(\Lambda)\right\}, \tag{4.2}
\end{equation*}
$$

where $E_{q}^{*}(\Lambda)$ is the set of all $W \in L^{+}(Y)$ such that $H_{q}(W)<\infty$ and $\sum_{Q} W(y) \geqq 1$ for all $Q \in \Lambda$. Here we put $\sum_{Q} W(y)=\sum_{y \in Q} W(y)$. The following properties of the extremal width can be proved analogously to the case of the extremal length (cf. [2]):

Lemma 4.1. Let Λ_{1} and Λ_{2} be sets of cuts. If $\Lambda_{1} \subset \Lambda_{2}$, then $\mu_{q}\left(\Lambda_{1}\right) \geqq \mu_{q}\left(\Lambda_{2}\right)$.
Lemma 4.2. Let $\left\{\Lambda_{n} ; n=1,2, \cdots\right\}$ be a family of cuts in N. Then $\sum_{n=1}^{\infty} \mu_{q}\left(\Lambda_{n}\right)^{-1}$ $\geqq \mu_{q}\left(\cup_{n=1}^{\infty} \Lambda_{n}\right)^{-1}$.

We say that a property holds for q-almost every cut of Λ if it does for the members of Λ except for those belonging to a subfamily with infinite extremal width of order q.

Similarly to Lemma 1.3, we can prove
Lemma 4.3. Let Λ be a set of cuts and assume that $W_{n} \in L^{+}(Y)$ and $H_{q}\left(W_{n}\right) \rightarrow 0$
as $n \rightarrow \infty$. Then there exists a subsequence $\{n\}$ such that for q-almost every $Q \in \Lambda$, $\lim _{n \rightarrow \infty} \sum_{Q} W_{n}(y)=0$.

We call $E W_{p}\left(A, X_{n}^{*}\right)=\mu_{q}\left(Q_{A, X_{n}^{*}}\right)$ (resp. $\left.E W_{p}(A, \alpha)=\mu_{q}\left(Q_{A, \alpha}\right)\right)$ the extremal width of N of order p relative to A and X_{n}^{*} (resp. A and α.), where $1 / p+1 / q=1$. We have

Theorem 4.1. $\lim _{n \rightarrow \infty} \mu_{q}\left(Q_{A}, x_{n}^{*}\right)=\mu_{q}\left(Q_{A, \alpha}\right)$, i.e.,

$$
\lim _{n \rightarrow \infty} E W_{p}\left(A, X_{n}^{*}\right)=E W_{p}(A, \alpha) .
$$

Proof. Since $Q_{A, X_{n}^{*}} \subset Q_{A, X_{n+1}^{*}} \subset Q_{A, \alpha}$, we have by Lemma $4.1 \mu_{q}\left(\mathrm{Q}_{A, X_{n}^{*}}\right)$ $\geqq \mu_{q}\left(\mathbf{Q}_{A, X_{n+1}^{*}}\right) \geqq \mu_{q}\left(\mathbf{Q}_{A, \alpha}\right)$, so that $\lim _{n \rightarrow \infty} \mu_{q}\left(Q_{A, X_{n}^{*}}\right)=s \geqq \mu_{q}\left(Q_{A, \alpha}\right)$. To prove the converse inequality, we may assume that $\mu_{q}\left(Q_{A, \alpha}\right)<\infty$ and $s>0$. By [4; Theorem 4.1] (note that the definition of $E_{q}^{*}(\Lambda)$ in [4] is different from the present one), we have $d_{q}^{*}\left(A, X_{n}^{*}\right)=\mu_{q}\left(Q_{A, X_{n}^{*}}\right)^{-1}$ for each n. There exists $w_{n} \in F_{q}\left(A, X_{n}^{*}\right)$ such that $I\left(w_{n}\right.$; $A)=-1$ and $H_{q}\left(w_{n}\right)=d_{q}^{*}\left(A, X_{n}^{*}\right)$. By the proof of Theorem 3.1, there exists $\bar{w} \in F_{q}(A$, $\alpha)$ such that $I(\bar{w} ; A)=-1,1 / s=d_{q}^{*}(A, \alpha)=H_{q}(\bar{w})$ and $H_{q}\left(w_{n}-\bar{w}\right) \rightarrow 0$ as $n \rightarrow \infty$. For each n, choose $w_{n}^{\prime} \in F\left(A, X_{n}^{*}\right) \cap L_{0}(Y)$ such that $H_{q}\left(w_{n}-w_{n}^{\prime}\right)<1 / n$. Then $H_{q}\left(\bar{w}-w_{n}^{\prime}\right)$ $\rightarrow 0$ as $n \rightarrow \infty$. Since $I\left(w_{n}^{\prime} ; A\right) \rightarrow I(\bar{w} ; A)=-1$ as $n \rightarrow \infty$, we may assume that $I\left(w_{n}^{\prime}\right.$; $A) \neq 0$. Put $\bar{w}_{n}=-w_{n}^{\prime} / I\left(w_{n}^{\prime} ; A\right)$. Then $\bar{w}_{n} \in F\left(A, X_{n}^{*}\right) \cap L_{0}(Y)$ and $I\left(\bar{w}_{n} ; A\right)=-1$. Let $Q \in Q_{A, \alpha}$. Then there exists n_{0} such that $Q \in Q_{A, X_{n}^{*}}$ for all $n \geqq n_{0}$. Define $u \in L(X)$ by u $=1$ on $Q(A)$ and $u=0$ on $Q\left(X_{n_{0}}^{*}\right)$. For every $n \geqq n_{0}$, we have

$$
\begin{aligned}
-1=I\left(\bar{w}_{n} ; A\right) & =\sum_{x \in A} \sum_{y \in Y} K(x, y) \bar{w}_{n}(y) \\
& =\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) \bar{w}_{n}(y) \\
& =\sum_{y \in Y} \bar{w}_{n}(y) \sum_{x \in X} K(x, y) u(x),
\end{aligned}
$$

so that

$$
1 \leqq \sum_{y \in Y}\left|\bar{w}_{n}(y)\right|\left|\sum_{x \in X} K(x, y) u(x)\right|=\sum_{Q}\left|\bar{w}_{n}(y)\right| .
$$

Let us put $W_{n}(y)=\left\|\bar{w}(y)|-| \bar{w}_{n}(y)\right\|$ for every $y \in Y$. Then $H_{q}\left(W_{n}\right) \leqq H_{q}\left(\bar{w}-\bar{w}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 4.3, there exist a subset Λ of $Q_{A, \alpha}$ and a subsequence $\left\{W_{n_{k}}\right\}$ of $\left\{W_{n}\right\}$ such that $\mu_{q}\left(Q_{A, \alpha}-\Lambda\right)=\infty$ and $\lim _{k \rightarrow \infty} \sum_{Q} W_{n_{k}}(y)=0$ for all $Q \in \Lambda$. We have

$$
1-\sum_{Q}|\bar{w}(y)| \leqq \sum_{Q}\left[\left|\bar{w}_{n_{k}}(y)\right|-|\bar{w}(y)|\right] \leqq \sum_{Q} W_{n_{k}}(y),
$$

so that $1 \leqq \sum_{Q}|\bar{w}(y)|$ for all $Q \in \Lambda$. Thus $|\bar{w}| \in E_{q}^{*}(\Lambda)$ and $\mu_{q}(\Lambda)^{-1} \leqq H_{q}(\bar{w})=d_{q}^{*}(A, \alpha)$ $=1 / s$. By Lemma 4.2, we have $\mu_{q}(\Lambda)=\mu_{q}\left(Q_{A, \alpha}\right)$, and hence $\mu_{q}\left(Q_{A, \alpha}\right)^{-1} \leqq 1 / s$. This completes the proof.

The relation $\left[\lambda_{p}\left(P_{A, X_{n}^{*}}\right)\right]^{1 / p}\left[\mu_{q}\left(Q_{A, X_{n}^{*}}\right)\right]^{1 / q}=1$ being known by [4; Theorem 5.2], we have

Corollary 4.1. $\left[E L_{p}(A, \alpha)\right]^{1 / p}\left[E W_{p}(A, \alpha)\right]^{1 / q}=1$.

References

[1] E. Hewitt and K. Stromberg, Real and abstract analysis, GTM 25, Springer-Verlag, New York-Heidelberg-Berlin, 1965.
[2] T. Kayano and M. Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), 401-406.
[3] A. Marden and B. Rodin, Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237-269.
[4] T. Nakamura and M. Yamasaki, Generalized extremal length of an infinite network, Hiroshima Math. J. 6 (1976), 95-111.
[5] M. Yamasaki, Boundary limit of discrete Dirichlet functions, Hiroshima Math. J. 16 (1986), 353-360.

Department of Mathematics, Hiroshima Institute of Technology and
Department of Mathematics,
Faculty of Science,
Shimane University

