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Ascending or descending chain conditions on various classes of sub-
algebras of Lie algebras have been investigated by numerous authors. A
survey of results up to 1974 may be found in chapters 8, 9, and 11 of Amayo
and Stewart [2]. Subsequent work includes Aldosray [1], Ikeda [6], Kubo
[8], Kubo and Honda [9], Togo [13,14], and Stewart [12]. Here we
introduce a new chain condition: Min-c, the minimal (equivalently maximal)
condition on centralizer ideals. It is perhaps curious that this chain condition
has hitherto been neglected, because an analogous condition—the minimal
condition for annihilator ideals—is prominent in the theory of associative rings.
See e.g. Faith [3], Herstein [5], Goldie [4]. However, a crucial ingredient,
prime ideals, was not supplied for Lie algebras until the work of Kawamoto
[7], later extended by Aldosray [1].

Here we develop a theory of Lie algebras with Min-c that is analogous to,
but differs in several respects from, the associative theory. The main results are
as follows. In §2 we show that abelian-by-finite Lie algebras satisfy Min-c; that
like the associative case, Min-c is not closed under extensions or quotients; and
that unlike the associative case Min-c is not closed under taking ideals. In §3
we show that any hypercentral ideal of a Lie algebra with Min-c must be
soluble (though not necessarily nilpotent). In §4 we study prime ideals of
semisimple Lie algebras with Min-c. We show that for such algebras, maximal
centralizer ideals are the same as minimal prime ideals. The main result of this
section is that in a semisimple Lie algebra with Min-c, every centralizer ideal is
the intersection of a finite number of maximal centralizer ideals, that is, minimal
prime ideals. We conclude by stating some open problems.

1. Preliminaries

Throughout the paper, Lie algebras are of finite or infinite dimension over
a field of arbitrary characteristic, unless stated otherwise. We use the notation
and terminology of Amayo and Stewart [2]. For convenience we summarise
the required notation here. If H is a subalgebra of L we write H < L; if
it is an ideal we write //<ι L. Angular brackets < > denote the subalgebra
generated by their contents. If X, Y a L then Xγ is the smallest subspace



398 Falih A. M. ALDOSRAY and Ian STEWART

containing X that is 7-invariant. If α is an ordinal then Lα, L(α), Cα(L) respec-
tively denote the α-th term of the lower central series, derived series, and upper
central series of L. We require the following classes of Lie algebras:

d abelian (L2 = 0)
Jf nilpotent (Ln = 0 for finite n)
Estf soluble (L(n) = 0 for finite n)
stfά soluble of derived length a (L(d) = 0)
^ hypercentral (Cα(L) = L for some α)
Lc/Γ locally nilpotent
Min-<ι minimal condition for ideals
Max-<α maximal condition for ideals.

L is ideally finite if it is generated by finite-dimensional ideals. If 3C is a class
of Lie algebras then L e E$" if there exists a finite series

0 = LO o L! o <ι LM = L

whose quotients Lm/Lt e X. If /o L 6 #" then / e L^ and L// e Q&. We say
that #" is E-closed if #" = E^ and similarly for I and Q. If / c L then the
centralizer CL(I) = {x e L|[7, x] = 0}. It is an ideal if / is. The soluble radical
σ(L) is the sum of the soluble ideals of L. If σ(L) = 0, or equivalently if L has

no nonzero abelian ideals, we say L is semisimple. An ideal P of L is prime if
whenever A and 5 are ideals with [A, B] c P then either A <^ P or £ c P.
The radical Rad / of an ideal / is the intersection of all prime ideals containing
/. See Kawamoto [7].

We now introduce some new terminology. Say that / is a centralizer ideal
of L if there exists an ideal J of L such that / = CL(J). Say that L satisfies
the minimal condition on centralizer ideals (Min-c) if every descending chain
/! ID /2 => of centralizer ideals terminates finitely. Similarly L satisfies the
maximal condition on centralizer ideals (Max-c) if every ascending chain /x c=
/2 c of centralizer ideals terminates finitely. We use the same notation for
the corresponding classes: note that (Lemma 2.1 (a)) Min-c and Max-c turn out
to be the same.

If / <ι L then / is a complement ideal if there exists a nonzero ideal J of L
such that / n J = 0 and, if Xo L, K ^ /, then K n J Φ 0. Say that L satisfies
the maximal condition on complement ideals if every increasing chain of com-
plement ideals terminates finitely; and that L has no infinite direct sum of
nonzero ideals if every direct sum of nonzero ideals contains a finite number of
terms.

2. Closure properties

In this section we establish some elementary properties of the class Min-c,
showing in particular that it is not closed under the operations Q, E, or i. It is
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easy to show that if /<ι L then / a CLCL(I) and CLCLCL(I) = CL(I). Hence CL

defines an order reversing bijection, or Galois duality, between the set

tf = {C<ι L\C = CL(I) for some /<ι L}

and itself. We begin by establishing some properties analogous to those
known to hold for rings with the minimal condition on annihilator ideals.

LEMMA 2.1. Let L be a Lie algebra. Then
(a) L e Min-c if and only if L e Max-c.

(b) L e Min-c if and only if every ideal I of L contains a finitely generated
ideal J of L such that CL(I) = CL(J\

PROOF, (a) follows from Galois duality, and (b) can be proved exactly as
in Faith [3].

LEMMA 2.2. Let L be a Lie algebra. Then L has no infinite direct sum of
non-zero ideals if and only if L satisfies the maximal condition on complement

ideals.

PROOF. Let 7t c= /2 c= be a strictly ascending chain of complement

ideals in L. Then there exist non-zero ideals Jm such that Im n Jm = 0 and
Im+ι n Jm / 0. Let Km = Im+ί n Jm. Then Jn ID Km (n> m), and the sum
K1 + •- + Km is direct. Hence L contains an infinite direct sum of non-zero

ideals.
Conversely, suppose there exists an infinite direct sum of non-zero ideals

/i Θ /2 Φ ' ' ' Let Λi = Im θ /m+i θ ' * . Then J2 has a complement ideal
K2 => /i Since K2nJ2 = 0, we have (K2 θ /2) π J3 = 0, hence J3 has a com-
plement ideal K3^>K2φI2. Continuing in this way we obtain an infinite
ascending chain of complement ideals Km.

LEMMA 2.3. Let L be a semisimple Lie algebra, and I ^ L. Then I is a
centralizer ideal in L if and only if I is a complement ideal in L.

PROOF. Suppose that / ^ L is a centralizer ideal. Then CL(I) φ 0 and
/ n CL(I) = 0 since L is semisimple. Moreover if X<ι L, K n CL(/) = 0, then
[X, CL(/)] c K n CL(I) = 0 so K c CL(CL(I)) = I. Therefore / is a complement
ideal in L. Now suppose that / is a complement ideal in L. There exists a
non-zero 7<ι L such that / n J = 0. Therefore / <= CL(J). If CL(J) ^ / then
CL(J) n J / 0 since / is a complement ideal; but this is impossible since L is
semisimple. Therefore / = CL(J) and / is a centralizer ideal.



400 Falih A. M. ALDOSRAY and Ian STEWART

COROLLARY 2.4. Let L be semίsimple. Then L e Max-c if and only if L
satisfies the maximal condition on complement ideals.

COROLLARY 2.5. // L is a semisimple ideally finite Lie algebra over a field
of characteristic zero, then L has Min-c if and only if L is finite-dimensional.

It is easy to show that Min-c is closed under taking finite direct sums.
However it is known, Herstein [5], that for associative rings the minimal
condition for annihilators is not preserved under quotients or extensions. Not
surprisingly, the same is true for Min-c in Lie algebras:

EXAMPLE 2.6. Min-c is neither E-closed nor Q-closed.

(a) E-closure. Let F be a field, let P = F[xί9 x2,...] be a polynomial
algebra in an infinite number of indeterminates xh let / be the associative
ideal of P generated by all xf, and let A = P/I. Considered as an abelian
Lie algebra, A has derivations δi:f\-^xif (f e A). The <5f commute. Let
H = (δji > 1> and form the split extension L = A + H. Then L is metabelian.
Every abelian algebra lies in Min-c, so A and L/A e Min-c. However, L φ
Min-c. For let Ij = ^x1x2 ... x/>L, which is the associative ideal of A generated
by x^x2 ... Xj. Then CL(Ij) = A + <31,..., ̂  >. Then L φ Max-c = Min-c.
Hence Min-c is not E-closed.

(b) Q-closure. Let P be as above and define εί:/
h-)'*i/ (/e^) The εf

commute. Let K = (e^i > 1>. Consider P as an abelian Lie algebra with the
εf as derivations and form M = P + K. Then P, K are abelian. We claim
that M e Min-c since the only centralizer ideals in M are 0, P, M. To see this,
let C = CM(I) be a centralizer ideal. It is easy to see that if C φ 0 then
C n P φ 0, whence C n P = P since P has no divisors of zero. Then either
C = P or C = M. This establishes the claim.

Let / be as in (a). Then / -o M and M/I ^ L as in (a). Thus M e Min-c
but M/I φ Min-c. Hence Min-c is not Q-closed.

This example also shows that a maximal centralizer ideal of a Lie algebra
in Min-c need not be prime, because P is a maximal centralizer ideal in M but
M/P is abelian. We will see below that for semisimple algebras, maximal
centralizers are prime.

However, the following result is true:

THEOREM 2.7. Let L be a Lie algebra, A<3 L. If A is abelian and L/A e
Min-o n Max-o, then L E Min-c.

PROOF. Let I± ID 72 ID be a descending chain of centralizer ideals in
Then (/! -f A)/A =3 (72 + A)/A => is a descending chain of ideals of L/A e
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Min-<] . Therefore there exists m e N such that /„ -f A = Im + A for all n>m.

Also (QX/i) -f A)/ A ci (CL(I2) + A)/Λ c ••• is an ascending chain of ideals in
L/ A E Max-<ι, so there exists m' e M such that (CL(Im.) + A)/ A = (CL(In) + Λ)/Λ.
for all n>m'. Replacing m and m' by max(w,m') we may assume m = m'.

Then CA(CL(Im) + A) = CA(CL(In) + A) and Q(CL(/J) = CA(CL(IΛ)) for all n >
m, implying that ,4 n Im = A n /„ for all n>m. As in Amayo and Stewart [2]
Theorem 1.7.3, p. 26 we have /„ = Im for all n > m, so L e Min-c.

COROLLARY 2.8. The class stϊF is contained in Min-c.

EXAMPLE 2.9. Let / be an ideal of L and let C = CL(K) be a centralizer

ideal of L, X being an ideal of L. Then clearly C n / = C7(X). However,
C n / need not be a centralizer ideal of /. For example, let L = A + # be as
in Example 2.6 (a), and let K = (XI)

L + <^>. Then X = CL(X), but K n X =
<X!>L is not a centralizer ideal in A since A is abelian.

In rings, the minimal condition for annihilators is closed under taking
ideals, Her stein [5]. The reason for this is that the annihilator of a subset is
an ideal. This is not the case for centralizers in Lie algebras:

EXAMPLE 2.10. Min-c is not i-closed, even when L e j^3 and the ideal is of

codimension 1.
Let P = F[ί], a polynomial algebra in one indeterminate ί. Let K be the

Lie algebra of differential operators

(/ e P, i = 0, 1, 2, . . .) where D° is the identity. Then [Df, />*] = 0, [Df, ε] =

ϊΌ1'"1 (i > 1), [D°, ε] = 0. Form L = P + K. Clearly L e d*.
(i) L 6 Min-c. To prove this let / <α L and suppose that / 4- fc e / where

/ e P, fc e K. Then / = [/ + fe, D°] e /. If / Φ 0 and the degree of / is i then
[y; Dl] = α belongs to /, and α 7^ 0, α E F. Thus 1 e /, whence P <= / by re-

peated application of ε. On the other hand, if all / are 0 then / c= X, whence
easily 7 = 0. Thus every ideal / is either 0 or contains P. If / => P then

CL(I) c CL(P) = P, whence CL(I) = P or CL(/) = 0. If / = 0 then CL(I) = L.
Thus L has only three centralizer ideals, so L e Min-c.

(ii) Let H = </)'!/ > 0> <ι X, and let M = P + #<ι L. Then codim M =
1. We claim that M φ Min-c. Let /,- = F{1, ί, ..., tj}^ M. Then CM(Ij) =
P + F{DJ+1, D7+2, ...} and these ideals form a strictly decreasing chain.
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However, the structure of ideals of algebras in Min-c is subject to a chain
condition weaker than Min-c, which shows that the failure of i-closure of Min-c

is due to "bad nilpotent sections". More precisely, we shall prove:

THEOREM 2.11. Let 7<ιLe Min-c. Let Kl<^K2<^'- be an ascending

chain of centralizer ideals in I. Then there exists m such that K? a Km for

all I

PROOF. K?<zL by Schenkman [11]. Therefore CL(Kf)*a L. Therefore

CE(K^ c CL(Kf). Let A = CL(C/(K,)L) => CLCL(K?) => Kf. The chain {KJ
increases, so {C/(Xf)} decreases, so {CI(Ki)

L} decreases, so {Dj increases;
also D, is a centralizer ideal in L. Therefore there exists m such that Dm =

Om+ί = -'. That is, K? c Dm for all i > m (and hence for all i). Now K? c /,

so

Kf c C/(C/(Xm)L) c= QCΛKJ = Xm

since Xm is a centralizer ideal of /.

We define classes Fin-ω and Fin-cω as follows. A Lie algebra L e Fin-ω if

for every proper ideal K of L, every increasing chain {Kj of ideals of L with

K? c= K stops. A Lie algebra L e Fin-cω if for every proper centralizer ideal K

of L, every increasing chain of centralizer ideals {Kj of L with Kf a K stops.

Then Fin-ω <= Fin-cω. For example, if L e Min-c and every ideal J of L is

perfect, that is, J = J2, then L e Fin-ω.

COROLLARY 2.12. Let / < α L e Min-c, and suppose that / e Fin-cω. TTien
/ e Min-c.

3. Local nilpotence

If L is locally nilpotent and satisfies Min-<ι then L must be soluble, by

Amayo and Stewart [2] Lemma 8.1.2, p. 163. We have not been able to decide
whether this result extends to Min-c. However, hypercentral algebras with

Min-c must be soluble. Indeed we have a stronger result:

THEOREM 3.1. If L E Min-c then every hypercentral ideal of L is soluble.

PROOF. Let Z<ι L be hypercentral. We claim that there is an ideal V of
L that is maximal with respect to V c Z, Z + CL(V)/CL(V) e Estf. To show V

exists, let

V = (ϋ^ L\ U c Z, Z + CL(U)/CL(U) e
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Then 0 e V so iΓ Φ φ. Let

By Min-c, * has a minimal element CL(U). If Xei^ and U ^X then CL(U) =
CL(X). Thus K = (J {Jf e TT |X =3 17} is a maximal element of ιT. In fact we
can show that V is the unique maximal element, but that is not required for the
present proof.

Suppose for a contradiction that VΦZ. Let W/V = ζ^(Z/V) so that
W > V. Then W^ L and [Z, W] c K We have Z(m) c CL(K) for some m.
Then

[Z(m+1), W~\ c [Z(m), [Z(m), W]] c [Z(m), F] = 0.

Thus Z(m+1) c CL(»0 and Z + CL(W)/CL(W) e EJ/, a contradiction.
Therefore K = Z, so Z + CL(Z)/CL(Z) e EJ ,̂ whence Z/d(Z) e EΛ/, and Z e

EXAMPLE 3.2. Hypercentral algebras with Min-c need not be nilpotent.
Let A = <α f | ϊ 6 f^J> be abelian and define a derivation σ: αi\-^αi.l (i > 1),

α0 1-> 0. Let L = A 4- <σ>. Then L e & n Min-<ι c J^ n Min-c, by Amayo
and Stewart [2] p. 119, but LφJf.

4. Prime ideals

LEMMA 4.1. If L is semisimple and M is a maximal (proper) centralizer

ideal of L, then M is a prime ideal.

PROOF. Let A, B<α L, M c A, Me B, and [4, β] c M. Suppose for a
contradiction that A, B + M. Let C = CL(M), which by Galois duality is a
minimal centralizer ideal. In particular C φ 0. Then CL(>4) c: C so either
CL(A) = 0 or CL(A) = C. Suppose CL(A) = C. Then A c CL(C) = M, a con-
tradiction. Hence CL(Λ) = 0. Similarly CL(β) = 0.

If A n C = 0 then [/I, C] = 0 so C c= CL(>1), which is not possible. Hence
A n C φ 0. Now [β, ̂  n C] c M n C = 0 by semisimplicity, so CL(B) =>
A n C 7^ 0, a contradiction.

Even when L e Min-c is semisimple, not every prime ideal is a maximal
centralizer. For an example let L = End(K)/5 where V is an infinite-dimensional
vector space, End(K) is its algebra of endomorphisms, and 5 is the set of scalar

multiples of the identity. Then by Amayo and Stewart [2] Theorem 8.4.1,
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p. 172, L has a unique well-ordered chain of ideals, all of whose factors are
simple. Each of these ideals, other than L itself and T + S/S, must be prime.
But the only centralizer ideals of L are 0 and L.

There is nevertheless a partial converse to Lemma 4.1:

LEMMA 4.2. Let L be semisimple with Min-c and let P be a prime ideal
which is a centralizer ideal. Then P is a maximal centralizer.

PROOF. Let P = CL(I). Suppose CL(J) > P, J φ 0. Then [CL(J), J] = 0
so either CL(J) c P or J c P. Thus by assumption J a P. But if J c P then
[J, P] = 0 so J c d(P) = 0 by semisimplicity.

To pursue the matter to a more satisfactory conclusion, say that a prime
ideal of L is a minimal prime ideal if it does not properly contain any prime
ideal. Then we have:

COROLLARY 4.3. // L is semisimple with Min-c, then every prime centralizer
ideal is a minimal prime ideal.

PROOF. Let P be a prime centralizer ideal of L. By Lemma 4.2 P is a
maximal centralizer. Suppose that P z> Q for a prime ideal Q. We show that
Q is also a centralizer ideal. If Q Φ CLCL(Q\ then there exists x e CLCL(Q)\Q.
Then [XL, CL(β)] = 0, but XL φ Q and CL(Q) ΦQby semisimplicity. This con-
tradicts Q being prime. Thus Q = CLCL(Q) is a centralizer. By Lemma 4.2 Q
is a maximal centralizer. Therefore P = β, so P is a minimal prime ideal.

We prove the converse below in Lemma 4.5. First we prove:

LEMMA 4.4. // L is semisimple with Min-c and /<α L, then CL(I) n Rad / =
0. In particular if I is a centralizer ideal of L then I = Rad /.

PROOF. Let R = Rad /, and suppose that X = R n CL(I) / 0. Then
CL(X) < L, and / c CL(X). Choose 0 / Y c X such that 7<ι L and CL(Y) is
maximal with respect to CL(Y) => CL(X). We claim that CL(Y) is a maximal
centralizer. If not, there exists a larger maximal centralizer CL(Z), which
is prime. But now CL(7nZ) => CL(Z) > CL(7). The only possibility is that
y n Z = 0. But then Z c CL(7) c CL(Z) contradicting the semisimplicity of
L. Then 7 c JT = R n CL(/) c R c CL(7) and 7 is abelian, also contradicting
the semisimplicity of L.

The second statement now follows immediately.
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LEMMA 4.5. If L is semisimple with Min-c, then
(a) L has only a finite number of maximal centralizer ideals M l5 . . . , Mn.
(b) Λf ! n n Mn = 0.
(c) A prime ideal of L is minimal prime if and only if it is a maximal

centralizer ideal.

PROOF, (a) Let {Ma}ΛeA be distinct maximal centralizer ideals, A being
an index set. As in Herstein [5] Lemma 4.7, the sum ΣCL(Mα) is direct. By
Lemmas 2.2 and 2.3, A is finite.

(b) Taking A = {1, ..., n}9 let J = f^iM,- and suppose for a contradic-
tion that J + 0. By assumption CL(J) is contained in some maximal centralizer
ideal M of L. By definition J <= M. Therefore CL(J) => CL(M), so CL(M) c M.
Therefore CL(M)2 = 0, so CL(M) = 0 by semisimplicity. This is a contradiction,
so J = 0.

(c) Let P be a minimal prime ideal of L. Since (°| Mf = 0 we have
[M1? ..., MM] c P, whence Mf c P for some i. But M£ is prime by Lemma
4.1, and P is minimal prime, so P = Mf which is a centralizer ideal. The
converse follows from Corollary 4.3.

We now prove our main result, an analogue of a theorem of Goldie [4]:

THEOREM 4.6. // L is semisimple with Min-c, then every centralizer ideal in
L is the intersection of a finite number of maximal centralizer ideals, that is,
minimal prime ideals.

PROOF. Let

where the Pf are the minimal prime ideals containing /. By Lemma 4. 5 (a) only
finitely many Pt occur so we may take k finite. Let

so that K c: /. Since L is semisimple, / n CL(I) = 0. Therefore Pl n
(K n CL(/)) = 0 and [Pl9Kr\ CL(/)] = 0, so X n CL(I) c CL(PX ). But K n CL(/) ̂
0, otherwise K c /, hence CL(Pi) ̂  0. Similarly we can show that CL(Pf) 7^ 0
for all i. Now suppose that Pf => M where M is a minimal prime ideal of
L. If Pf ^ M, then there exists x € Pf\M. Therefore [x, CL(Pf)] = 0. Hence
O, QXP;)] c M and x £ M, so CL(Pf) c M, which implies CL(Pt) c Pf. This
contradicts the semisimplicity of L. Therefore Pf = M, and Pf is a minimal
prime ideal of L. By Lemma 4.5 each Pt is a centralizer ideal in L and by
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Lemma 4.2 each Pt is a maximal centralizer. As already noted, by Lemma
4.5 (a) only a finite number of Pt occur.

In closing we mention four open questions.

QUESTION 1. If L e L./Γ n Min-c, is L soluble?

QUESTION 2. If L 6 Min-c, is L/d(L) e Min-c?

QUESTION 3. If L/I e Min-c for all proper ideals / of L, is L e Min-c?

QUESTION 4. If L is semisimple with a finite number of maximal central-
izer ideals, is L e Min-c? If not, is L e Min-c if further the intersection of the
maximal centralizers is 0?
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