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1. Introduction

Let X =(X,,..., X,) be a scale mixture of a p-dimensional random vector
Z=(Z,,..., Z,) with scale factor ¢ >0, ie,

(1.1) X=o02Z,

where Z and o are independent. Let F, and Q, denote the distribution
functions of X and Z, respectively. Then

(1.2) Fyx) = P(X, < x;,..., X, <X,)
=E,[Q,(c7'x)],

where x =(x,,..., x,). The distribution function of Max{X;} is given by
F(x,..., x). We are concerned with asymptotic expansions of the distribution
functions of Max{X;} and their error bounds in the two important special
cases:

(i) Zi..., Z, iid. ~NQO, 1), o= (x3/n)'?,
G)  Zy..., Z,iid ~G(), o= yn,

where G(4) denotes the gamma distribution with the probability density
function g(x; A) = x*"'e */I'(4), if x>0, and =0, if x<0. The random
vector X in the case (i) is a multivariate t-variable with common
denominator. The random vector X in the case (ii) is essentially equivalent to
a multivariate F-variable with common denominator. These distributions are
used in simultaneous inferences about the means of normal populations. It
may be noted that asymptotic expansions of the distributions of Max{X} in
the cases (i) and (ii) have been studied by Hartley [6], Nair [7], Dunnett and
Sobel [2], Chambers [1], etc. The purpose of this paper is to give a unified
derivation of the asymptotic expansions as well as their error bounds.

In Section 2 we give two types of asymptotic approximations for the
distribution function of X and their error bounds. The one is newly given, but
the other has been given in Fujikoshi and Shimizu [5]. In Section 3 we
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consider the distribution of Max{X;} in the case when Z,,..., Z, are
independent and identically distributed. The results obtained are based on
further reductions of the general results in Section 2. In Section 4 we obtain
asymptotic expansions of the distributions of Max{X,} and their error bounds
in the two cases (i) and (ii).

2. The distribution of X

We assume that the support of Z is either 2 = R? or R%, and Q,, is k times
continuously differentialbe on Q. We consider the following two types of
approximations for the function Q,(¢~'x) in (1.2):

-1 .
2.1) Ay silx, 0) =320 j—!a,,,.s,,-(x)(ffz‘s -1y,
1 .
2.2) B, sux, 0) = f;é]—, bp,a,j(-"f)(a's — 1),
where 6 = — 1 or 1, and
(2.3) ap,a,j(x) = (dj/de)Qp(s_anx) s=1s
(24) by.s.;(%) = (d/ds))Q (s~ °x) | 5= 1.

The approximation A, ;(x, ) is newly introduced, but B, ;,(x, o) has been
given in Fujikoshi and Shimizu [5]. In Section 4 we shall see that 4, ;,(x, o)
in the case of p =1 is the same as the previous one due to Fujikoshi [3] and
Fujikoshi and Shimizu [5]. Under the appropriate conditions on the moments
of o we propose the following two types of approximations for the distribution
function of X:

(2.5) Apsux) = E [A4, 5%, 0)]

= 0,fa) + Tizt rapa WE((@ — 1,
(2.6) B, s.(x) = E,[B, si(x, 0)]

= 0, (x) + T} jl!b,,,(,,,.(x)E{(ats — 1)

It will be seen that the approximations A4, ;,(x) and B, ;(x) are useful for the
cases (i) and (ii), respectively. In the following we list all the assumptions used

in this paper.
1: Q, is k times continuously differentiable on Q2 = R? or R%,

Al(d):  apsx = sups|a,sux)| < o0,
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A2: E(0?*) < o0, E(6™%*) < o0,

A3(8):  apsu(€) = sup(l + | x[|*)la,s.(x)| < oo,
A4: E(0**%) < 0, E(6™%) < 0,

B1(8): b, 54 = sups|b, s.(x)| < o0,

B2: E(6*) < o0, E(67%) < oo,

B3(0): by, 54(8) = supe(l + [ x| )|b, s4(x)| < o0,
B4: E(6***) < 00, E(c7%) < o0.

LEMMA 2.1. Suppose that Q,(x) satisfies Assumption 1.
(i) Under Assumption A1(9) it holds that

- 1 -
27) sup.|Qy(671x) — A, 5u(x, 0) < 7y su(0% Vo2 — 1)

1 _ -
< kja,,,,,,k{wz —1*+]672 —1]%.

(ii) Under Assumption B1(0) it holds that
_ 1 - -
(28) suPIQ,(07'x) = Bposlds ) < 1bpanlo v 071 — 1

1 - -
Sk—'bp,,,,k{w — ¥+ o7t — 114

Proor. (ii) has been proved by Fujikoshi and Shimizu [5]. We shall
show (i). Letting s =02’ and considering Taylor’s expansion of Q,(s™%2x)
around s = 1, we have

(29) Qp(a_ lx) = Ap,a,k(x9 0') + Ap,&,k(xa G'),

where

1 d*
Bnasl® 0) = (o™ = DG50u(s™")

s=1+60(c2 -1)
and 0 <0 <1. We can write

1
(2.10) Ap s, 0) = a5 x(O{1 + (0™ — 1)} 7> — 1,

where ¢ = {1 + 0(c?* — 1)} “%2x. Noting that 0 < 6< 1, we have
11+ 662 — 1) *|02 — 1] < (6% v 62 — 1)

<le?—1*+]c"2—1]*
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which proves (i).

THEOREM 2.1. Suppose that X = oZ is a scale mixture of Z satisfying
Assumption 1. :

(i) Under Assumptions Al(c) and A2 it holds that

1 _ _
(2.11) Sup|F (x) — A, ,1(x)] < i(Tal,,(,,,‘E{(a2 Vo2 — 1)}
2 2 k -2 _qk
sHap’,,kE{la — 1+ |o72% — 1]

(i) Under Assumptions B1(8) and B2 it holds that

1
(2.12) supy| Fo(x) — B, , (%) < Ebp,,,kE{(a v o~ — 1)}

1~ -
< Ebm,kE{la — 1+ o7 =14}
ProOOF. The results (i) and (ii) follow immediately from (1.2) and Lemma
2.1. The second result (ii) was obtained by Fujikoshi and Shimizu [5].

Next we derive nonuniform error bounds in approximating F,(x) by
A, ,i(x) or B, , (x), which are improvements on the uniform bounds in the tail
part of the distribution of X. The following lemma, which is an extension of
Fujikoshi [4] to the multivariate case, is fundamental in our nonuniform error
bounds.

LEMMA 2.2. Suppose that Q,(x) satisfies Assumption 1.
(1) Under Assumption A3(o) it holds that

(2.13) 1+ 1x191Q,(0™ %) — Ay 54(x, o)

< —d,5u(8)(0* vV 1)(6* vo 2~ 1)

< =y 0){oflo® — 1| + 072 — 1|4}

(i) Under Assumption B3(o) it holds that
(2.14) (1 + [x]9)1Qyc ™ x) — By sulx, o)l
1
< Ebp’a,k(é)(o” vi)(ovael—1)

1 -
< k—'bp,a,k(é){o”la — 1+ o7t =14}
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Proor. Using (2.9) and (2.10), we have
(2.15) I+ x [ )A,,0ulx, 0)]
= {1411+ 6% — DI |e] )

1
X 17142 @l@* — D1 + 6 — 1)] 7

The first factor of the right-hand side in (2.15) is bounded by

1+a'|t] fo>1,
{ <L+ 191 v
14 2], if0<o<l,

This result and Lemma 2.1(i) imply (i). Similarly we can prove (ii).
Lemma 2.2 implies the following Theorem 2.2.

THEOREM 2.2. Suppose that X = 6Z is a scale mixture of Z satisfying

Assumption 1.
(1) Under Assumptions A3(c) and A4 it holds that

1
(2.16) |Fpx) = Aps ()| <1 (1+ [l x]l )" 1ap,5(0)

x E{c'|o* — 1|*+ |o72 — 1]*}.
(i) Under Assumptions B3(6) and B4 it holds tha

1
k!
x E{g'lc — 1|*+ |o~* — 1]*}.

2.17) [Fp(x) = By s )| < - (1 + 1 x]1) by 54(8)

The results (2.16) and (2.17) in the special case of p = 1 were obtained by
Fujikoshi [4].

3. The distribution of Max{X,, .-, X}
The distribution function of Max {X;} can be expressed as
(3.1) PMax{X;} <x)=PX, <x,---, X, <x)
= F,(x,--, x).

Therefore we can get two types of approximations for P(Max{X;} < x) and
their error bounds from Theorems 2.1 and 2.2 by putting x; = =X,
—x. Let al},(x), APLu(x), bih.(x) and BYL,(x) denote a,,u(x), Apsux),
b, s.(x) and B, 5 ,(x) in the case of x; = --- = x, = x, respectively. Then we can
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write two types of approximations for P(Max{X;} < x) as follows:

(32 ABY) = 31 011, afIE((0* — 1Y),

(3.3) BPl(x) = Y424 h “’](x)E{(a — 1)y}

The quantities appearing in the error bounds are expressed as
agl = suplalfl(x)l, bYl = sup|b¥i(x)l,

(34) = sup{1 + (/p|x)*}1a¥l(),
bEL(9) = sup{1 + (/plx)*}BELOI.

Q"‘

Now we consider the case when Z,,---, Z, are independent and identically
distributed. Let Q denote the distribution function of Z,. Then

(3.5) a)(x) = (@/ds){Q(s~220)}7 -,
(3.6) bYL(x) = (@/ds){Qs~2%)}?], -
These quantities can be expressed in terms of

(3.7) a5, %) = (d/d)Q(s ™) -,
(3.8) by, %) = (d/d9)Q(s %) 5= 1,

respectively. We denote the correspondence from (Q, {a;(x)}) to a¥l(x) by Y;
ie.,

(3.9) affl(x) = Y;(Q, {a;(x)}).
Then we can write
(3.10) bYA(x) = Y(Q, {bsi(x)}).

Letting Y; = Y;(Q, {q:}), it is seen that
Yo =07,
Y, = pQ” " 'q,
(B.11) Y, =plp — Q" *q3 + pQ” " 'q,,
=p(p — D(p — 2)@” 343 + 3p(p — Q" *q,4, + PO~ 'q;
Y, =p(p — D(p — 2)(p — 37 3¢} + 6p(p — V(p — 20" *aiq,
+ p(p — 1)QP~%{3¢5 + 44,95} + PQ" " 'q,4
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We note that
(3.12) afl < afl = (1, {a,;}),
(3.13) byl < Byl = Y(1, {b,}),

where a;; = supla,,,,-(x)lan_d 5,,,,. = sup|b; ;(x)|. Similar bounds are also
obtained for al}(¢) and b¥)(¢).

4. The two special cases

4.1. The case (i). Let X; =Z/(x?/n)"? j=1,..., p, where Z,,..., Z, iid.
~ N(@, 1) and (Z,,..., Z,) and o are independent. Let &(X) and ¢(X) denote
the distribution and the probability density functions of the standard normal
variable. We use (3.1) as an approximation for P(Max{X;} < x). We have
seen that a{f}(x)’s are determined by

4.1 afl(x) = Y(D(x), {as(x)}),
where a; ;(x) = (dj/dsj)d?(s_"/zx)ls:l. Then, by induction, it is proved that

al,j(x) = - 2_jH2j—1(X)¢(x),
4.2) a_yfx)=(—1y71279x5" 1 4 $iz11-3.. (2i—l)(j_i1>

X x2j—2i—1}¢(x)’
where H(x) is the Hermite polynomial defined by
(d/dx?)¢(x) = (— 1VH (x) ¢ (x).

We note that a; (x)’s are the same as the previous ones due to Fujikoshi [3]
and Fujikoshi and Shimizu [5], which are introduced by the other
methods. For nonnegative integers j and ¢, let

my (€)= E[(xa/m)~ *{(2/m)~* — 1}1],
mg ;= m1,;(0)’ m_, ;= E[{(Xf/") - 1}j]-

The quantities m_, ;’s exist for any j, but the quantities m, {£)’s exist only for n
—2¢—2j>0. For my (¢) and m_, ; of j =1,..., 6, see Fujikoshi [4]. We
can write (3.1) as

@.3)

1
S,

(4.4) AFI(x) = P(x) +

From Theorems 2.1 and 2.2 it holds that
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(i) if n—2k >0 and k is even,
4.5) sup, |[P(Max{X;} < x) — A¥l(x)| < La“’] Hmie+m_1 .}
(i) if n—2¢ —2k>0 and k is even,
(4.6) |PMax{X;} < x) — A¥I(x)| < — {1 + (px?)*} " talPl(28) {my 4 (€) + m_ ).

It may be noted that the order of error terms is O(n~*?) and AYl(x) is an
asymptotic expansion for P(Max{X;} <x) up to O(n~"?) since m; (£)
=0 U*Y?) if j is odd, and = O(n~7/?), if j is even.

42. The case (ii). Let X;=Z,/(xZ/n), j=1,..., p, where Z,,..., Z,, iid.
~ G(4) and (Z,,..., Z,) and o are independent. Let G(x; 1) and g(x; 4) denote
the distribution and the probability density functions of the gamma distribution
G(4). We use (3.2) as an approximation for P(Max{X;} < x). Here the
support of Max{X} is R, and so we consider only for x > 0. It is known
(Fujikoshi [3], Fujikoshi and Shimizu [5]) that

by fx; 4) = (d/ds))G(s™ ' x;
= — xL§2, (x)g(x; l)

4.7)
b_y (x; A) = (d/ds")G(sx; )| =
=(—-1y! XLW1(X)Q(X A,

where L{¥(x) is the Laguerre polynomial defined by
LP(x) = (— 1)Px~*eX(d?/dxP)(xP* *e %)

and
IPx)=xP + 3P, (1 — )i — l)( )x" A,

We can write (3.2) as

(4.8) B¥l(x; A) = G(x; AP + J h ' “’](x Ams
where
4.9 bYY(x; A) = Y{(G(x; 4), {bs;(x; 1)}).

From Theorems 2.1 and 2.2 it holds that
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(i) if n—2k>0 and k is even,

1 -
(4.10) sup, |P(Max(X) < x) — BYl(x; )| < bes‘,’:]‘{ml,k +mo i

(ii) if n—2¢ —2k >0 and k is even,

@.11) |P(Max{X} < x) — BEl(x; )|

1 _
< i+ (/P X)) BTN D {my(0) + m_ . ,(0)},

where b{?}(4; 1) = sup,so{l + (\/; x)*}|bYL(x; A)|. We note that B¥)(x; 1) is an
asymptotic expansion for P(Max{X;} < x) up to O(n~*'?) and the order of the
error terms in (4.11) and (4.12) is O(n~"3).
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