Error bounds for asymptotic expansions of the maximums of the multivariate *t*- and *F*-variables with common denominator

Yasunori FUJIKOSHI (Received July 20, 1988)

1. Introduction

Let $X = (X_1, ..., X_p)$ be a scale mixture of a *p*-dimensional random vector $Z = (Z_1, ..., Z_p)$ with scale factor $\sigma > 0$, i.e.,

$$(1.1) X = \sigma Z,$$

where Z and σ are independent. Let F_p and Q_p denote the distribution functions of X and Z, respectively. Then

(1.2)
$$F_{p}(\mathbf{x}) = P(X_{1} \le x_{1}, ..., X_{p} \le x_{p})$$
$$= E_{\sigma}[Q_{p}(\sigma^{-1}\mathbf{x})],$$

where $\mathbf{x} = (x_1, ..., x_p)$. The distribution function of $Max\{X_j\}$ is given by $F_p(x, ..., x)$. We are concerned with asymptotic expansions of the distribution functions of $Max\{X_j\}$ and their error bounds in the two important special cases:

(i) Z_1, \ldots, Z_p i.i.d. ~ $N(0, 1), \sigma = (\chi_n^2/n)^{1/2},$

(ii)
$$Z_1, \ldots, Z_n$$
 i.i.d. $\sim G(\lambda), \qquad \sigma = \chi_n^2/n,$

where $G(\lambda)$ denotes the gamma distribution with the probability density function $g(x; \lambda) = x^{\lambda-1}e^{-x}/\Gamma(\lambda)$, if x > 0, and = 0, if $x \le 0$. The random vector X in the case (i) is a multivariate *t*-variable with common denominator. The random vector X in the case (ii) is essentially equivalent to a multivariate *F*-variable with common denominator. These distributions are used in simultaneous inferences about the means of normal populations. It may be noted that asymptotic expansions of the distributions of Max $\{X_j\}$ in the cases (i) and (ii) have been studied by Hartley [6], Nair [7], Dunnett and Sobel [2], Chambers [1], etc. The purpose of this paper is to give a unified derivation of the asymptotic expansions as well as their error bounds.

In Section 2 we give two types of asymptotic approximations for the distribution function of X and their error bounds. The one is newly given, but the other has been given in Fujikoshi and Shimizu [5]. In Section 3 we

consider the distribution of $Max\{X_j\}$ in the case when Z_1, \ldots, Z_p are independent and identically distributed. The results obtained are based on further reductions of the general results in Section 2. In Section 4 we obtain asymptotic expansions of the distributions of $Max\{X_j\}$ and their error bounds in the two cases (i) and (ii).

2. The distribution of X

We assume that the support of Z is either $\Omega = \mathbb{R}^p$ or \mathbb{R}^p_+ , and Q_p is k times continuously differentialbe on Ω . We consider the following two types of approximations for the function $Q_p(\sigma^{-1}\mathbf{x})$ in (1.2):

(2.1)
$$A_{p,\delta,k}(x, \sigma) = \sum_{j=0}^{k-1} \frac{1}{j!} a_{p,\delta,j}(x) (\sigma^{2\delta} - 1)^{j},$$

(2.2)
$$B_{p,\delta,k}(\boldsymbol{x}, \sigma) = \sum_{j=0}^{k-1} \frac{1}{j!} b_{p,\delta,j}(\boldsymbol{x}) (\sigma^{\delta} - 1)^{j},$$

where $\delta = -1$ or 1, and

(2.3)
$$a_{p,\delta,j}(\mathbf{x}) = (d^j/ds^j)Q_p(s^{-\delta/2}\mathbf{x})\Big|_{s=1},$$

(2.4)
$$b_{p,\delta,j}(\mathbf{x}) = (d^j/ds^j)Q_p(s^{-\delta}\mathbf{x})|_{s=1}.$$

The approximation $A_{p,\delta,k}(\mathbf{x}, \sigma)$ is newly introduced, but $B_{p,\delta,k}(\mathbf{x}, \sigma)$ has been given in Fujikoshi and Shimizu [5]. In Section 4 we shall see that $A_{p,\delta,k}(\mathbf{x}, \sigma)$ in the case of p = 1 is the same as the previous one due to Fujikoshi [3] and Fujikoshi and Shimizu [5]. Under the appropriate conditions on the moments of σ we propose the following two types of approximations for the distribution function of X:

(2.5)
$$A_{p,\delta,k}(\mathbf{x}) = E_{\sigma}[A_{p,\delta,k}(\mathbf{x}, \sigma)]$$
$$= Q_{p}(\mathbf{x}) + \sum_{j=1}^{k-1} \frac{1}{j!} a_{p,\delta,j}(\mathbf{x}) E\{(\sigma^{2\delta} - 1)^{j}\},$$

(2.6)
$$B_{p,\delta,k}(\mathbf{x}) = E_{\sigma}[B_{p,\delta,k}(\mathbf{x}, \sigma)]$$
$$= Q_{p}(\mathbf{x}) + \sum_{j=1}^{k-1} \frac{1}{j!} b_{p,\delta,j}(\mathbf{x}) E\{(\sigma^{\delta} - 1)^{j}\}.$$

It will be seen that the approximations $A_{p,\delta,k}(x)$ and $B_{p,\delta,k}(x)$ are useful for the cases (i) and (ii), respectively. In the following we list all the assumptions used in this paper.

1:
$$Q_p$$
 is k times continuously differentiable on $\Omega = \mathbb{R}^p$ or \mathbb{R}^p_+ ,
A1(δ): $\bar{a}_{p,\delta,k} = \sup_x |a_{p,\delta,k}(x)| < \infty$,

A2:
$$E(\sigma^{2k}) < \infty$$
, $E(\sigma^{-2k}) < \infty$,
A3(δ): $\bar{a}_{p,\delta,k}(\ell) = \sup_{x}(1 + ||\mathbf{x}||^{\ell})|a_{p,\delta,k}(\mathbf{x})| < \infty$,
A4: $E(\sigma^{2k+\ell}) < \infty$, $E(\sigma^{-2k}) < \infty$,
B1(δ): $\bar{b}_{p,\delta,k} = \sup_{x}|b_{p,\delta,k}(\mathbf{x})| < \infty$,
B2: $E(\sigma^{k}) < \infty$, $E(\sigma^{-k}) < \infty$,
B3(δ): $\bar{b}_{p,\delta,k}(\ell) = \sup_{x}(1 + ||\mathbf{x}||^{\ell})|b_{p,\delta,k}(\mathbf{x})| < \infty$,
B4: $E(\sigma^{k+\ell}) < \infty$, $E(\sigma^{-k}) < \infty$.

LEMMA 2.1. Suppose that $Q_p(\mathbf{x})$ satisfies Assumption 1. (i) Under Assumption A1(δ) it holds that

(2.7)
$$\sup_{\mathbf{x}} |Q_{p}(\sigma^{-1}\mathbf{x}) - A_{p,\delta,k}(\mathbf{x}, \sigma)| \leq \frac{1}{k!} \bar{a}_{p,\delta,k}(\sigma^{2} \vee \sigma^{-2} - 1)^{k}$$

 $\leq \frac{1}{k!} \bar{a}_{p,\delta,k} \{ |\sigma^{2} - 1|^{k} + |\sigma^{-2} - 1|^{k} \}.$

(ii) Under Assumption $B1(\delta)$ it holds that

(2.8)
$$\sup_{x} |Q_{p}(\sigma^{-1}x) - B_{p,\delta,k}(x, \sigma)| \leq \frac{1}{k!} \bar{b}_{p,\delta,k}(\sigma \vee \sigma^{-1} - 1)^{k}$$

 $\leq \frac{1}{k!} \bar{b}_{p,\delta,k} \{ |\sigma - 1|^{k} + |\sigma^{-1} - 1|^{k} \}.$

PROOF. (ii) has been proved by Fujikoshi and Shimizu [5]. We shall show (i). Letting $s = \sigma^{2\delta}$ and considering Taylor's expansion of $Q_p(s^{-\delta/2}x)$ around s = 1, we have

(2.9)
$$Q_p(\sigma^{-1}x) = A_{p,\sigma,k}(x, \sigma) + \Delta_{p,\delta,k}(x, \sigma),$$

where

$$\Delta_{p,\delta,k}(\mathbf{x}, \sigma) = \frac{1}{k!} (\sigma^{2\delta} - 1)^k \frac{d^k}{ds^k} Q_p(s^{-\delta/2}\mathbf{x}) \Big|_{s=1+\theta(\sigma^{2\delta}-1)}$$

and $0 \le \theta \le 1$. We can write

(2.10)
$$\Delta_{p,\delta,k}(\mathbf{x}, \ \sigma) = \frac{1}{k!} a_{p,\delta,k}(t) \{1 + \theta(\sigma^{2\delta} - 1)\}^{-k} (\sigma^{2\delta} - 1)^{k},$$

where $t = \{1 + \theta(\sigma^{2\delta} - 1)\}^{-\delta/2} x$. Noting that $0 \le \theta \le 1$, we have

$$\begin{aligned} |1 + \theta(\sigma^{2\delta} - 1)|^{-k} |\sigma^{2\delta} - 1|^k &\leq (\sigma^2 \vee \sigma^{-2} - 1)^k \\ &\leq |\sigma^2 - 1|^k + |\sigma^{-2} - 1|^k \end{aligned}$$

which proves (i).

THEOREM 2.1. Suppose that $X = \sigma Z$ is a scale mixture of Z satisfying Assumption 1.

(i) Under Assumptions $A1(\sigma)$ and A2 it holds that

(2.11)
$$\sup_{x} |F_{p}(x) - A_{p,\sigma,k}(x)| \leq \frac{1}{k!} \bar{a}_{p,\sigma,k} E\{ (\sigma^{2} \vee \sigma^{-2} - 1)^{k} \}$$
$$\leq \frac{2}{k!} \bar{a}_{p,\sigma,k} E\{ |\sigma^{2} - 1|^{k} + |\sigma^{-2} - 1|^{k} \}.$$

(ii) Under Assumptions $B1(\delta)$ and B2 it holds that

(2.12)
$$\sup_{x} |F_{p}(x) - B_{p,\sigma,k}(x)| \leq \frac{1}{k!} \bar{b}_{p,\sigma,k} E\{(\sigma \lor \sigma^{-1} - 1)^{k}\} \\ \leq \frac{1}{k!} \bar{b}_{p,\sigma,k} E\{|\sigma - 1|^{k} + |\sigma^{-1} - 1|^{k}\}$$

PROOF. The results (i) and (ii) follow immediately from (1.2) and Lemma 2.1. The second result (ii) was obtained by Fujikoshi and Shimizu [5].

Next we derive nonuniform error bounds in approximating $F_p(x)$ by $A_{p,\sigma,k}(x)$ or $B_{p,\sigma,k}(x)$, which are improvements on the uniform bounds in the tail part of the distribution of X. The following lemma, which is an extension of Fujikoshi [4] to the multivariate case, is fundamental in our nonuniform error bounds.

LEMMA 2.2. Suppose that $Q_p(\mathbf{x})$ satisfies Assumption 1. (i) Under Assumption A3(σ) it holds that

(2.13)
$$(1 + ||\mathbf{x}||^{\ell})|Q_{p}(\sigma^{-1}\mathbf{x}) - A_{p,\delta,k}(\mathbf{x}, \sigma)|$$
$$\leq \frac{1}{k!}\bar{a}_{p,\delta,k}(\ell)(\sigma^{\ell} \vee 1)(\sigma^{2} \vee \sigma^{-2} - 1)^{k}$$
$$\leq \frac{1}{k!}\bar{a}_{p,\delta,k}(\ell)\{\sigma^{\ell}|\sigma^{2} - 1|^{k} + |\sigma^{-2} - 1|^{k}\}.$$

(ii) Under Assumption $B3(\sigma)$ it holds that

(2.14)
$$(1 + ||x||^{\ell})|Q_{p}(\sigma^{-1}x) - B_{p,\delta,k}(x, \sigma)|$$
$$\leq \frac{1}{k!}\bar{b}_{p,\delta,k}(\ell)(\sigma^{\ell} \vee 1)(\sigma \vee \sigma^{-1} - 1)^{k}$$
$$\leq \frac{1}{k!}\bar{b}_{p,\delta,k}(\ell)\{\sigma^{\ell}|\sigma - 1|^{k} + |\sigma^{-1} - 1|^{k}\}.$$

322

PROOF. Using (2.9) and (2.10), we have

(2.15)
$$(1 + ||\mathbf{x}||^{\ell})|\Delta_{p,\sigma,k}(\mathbf{x}, \sigma)| = \{1 + |1 + \theta(\sigma^{2\delta} - 1)|^{\ell\delta/2} ||\mathbf{t}||^{\ell}\} \times \frac{1}{k!} |a_{p,\delta,k}(\mathbf{t})||(\sigma^{2\delta} - 1)|^{k}|1 + \theta(\sigma^{2\delta} - 1)|^{-k}.$$

The first factor of the right-hand side in (2.15) is bounded by

$$\begin{cases} 1 + \sigma^{\ell} \|t\|^{\ell}, & \text{if } \sigma \geq 1, \\ 1 + \|t\|^{\ell}, & \text{if } 0 < \sigma < 1, \end{cases} \leq (1 + \|t\|^{\ell})(1 \vee \sigma^{\ell}).$$

This result and Lemma 2.1(i) imply (i). Similarly we can prove (ii).

Lemma 2.2 implies the following Theorem 2.2.

THEOREM 2.2. Suppose that $X = \sigma Z$ is a scale mixture of Z satisfying Assumption 1.

(i) Under Assumptions $A3(\sigma)$ and A4 it holds that

(2.16)
$$|F_{p}(\mathbf{x}) - A_{p,\delta,k}(\mathbf{x})| \leq \frac{1}{k!} (1 + ||\mathbf{x}||^{\ell})^{-1} \bar{a}_{p,\delta,k}(\ell) \\ \times E\{\sigma^{\ell} | \sigma^{2} - 1 |^{k} + |\sigma^{-2} - 1 |^{k}\}.$$

(ii) Under Assumptions $B3(\sigma)$ and B4 it holds that

(2.17)
$$|F_{p}(\mathbf{x}) - B_{p,\delta,k}(\mathbf{x})| \leq \frac{1}{k!} (1 + ||\mathbf{x}||^{\ell})^{-1} \bar{b}_{p,\delta,k}(\ell) \\ \times E\{\sigma^{\ell} | \sigma - 1 |^{k} + |\sigma^{-1} - 1 |^{k}\}$$

The results (2.16) and (2.17) in the special case of p = 1 were obtained by Fujikoshi [4].

3. The distribution of $Max \{X_1, \dots, X_p\}$

The distribution function of $Max \{X_i\}$ can be expressed as

(3.1)
$$P(\operatorname{Max} \{X_j\} \le x) = P(X_1 \le x, \cdots, X_p \le x)$$
$$= F_p(x, \cdots, x).$$

Therefore we can get two types of approximations for $P(Max\{X_j\} \le x)$ and their error bounds from Theorems 2.1 and 2.2 by putting $x_1 = \cdots = x_p$ = x. Let $a_{p,\delta,k}^{[p]}(x)$, $A_{p,\delta,k}^{[p]}(x)$, $b_{p,\delta,k}^{[p]}(x)$ and $B_{p,\delta,k}^{[p]}(x)$ denote $a_{p,\delta,k}(x)$, $A_{p,\delta,k}(x)$, $b_{p,\delta,k}(x)$ and $B_{p,\delta,k}(x)$ in the case of $x_1 = \cdots = x_p = x$, respectively. Then we can write two types of approximations for $P(Max \{X_j\} \le x)$ as follows:

(3.2)
$$A_{\delta,k}^{[p]}(x) = \sum_{j=0}^{k-1} \frac{1}{j!} a_{\delta,k}^{[p]}(x) E\{(\sigma^{2\delta} - 1)^j\},$$

(3.3)
$$B_{\delta,k}^{[p]}(x) = \sum_{j=0}^{k-1} \frac{1}{j!} b_{\delta,k}^{[p]}(x) E\{(\sigma^{\delta} - 1)^j\}$$

The quantities appearing in the error bounds are expressed as

(3.4)

$$\bar{a}_{\delta,k}^{[p]} = \sup |a_{\delta,k}^{[p]}(x)|, \quad \bar{b}_{\delta,k}^{[p]} = \sup |b_{\delta,k}^{[p]}(x)|,$$

$$\bar{a}_{\delta,k}^{[p]}(\ell) = \sup \{1 + (\sqrt{p}|x|)^{\ell}\} |a_{\delta,k}^{[p]}(x)|,$$

$$\bar{b}_{\delta,k}^{[p]}(\ell) = \sup \{1 + (\sqrt{p}|x|)^{\ell}\} |b_{\delta,k}^{[p]}(x)|.$$

Now we consider the case when Z_1, \dots, Z_p are independent and identically distributed. Let Q denote the distribution function of Z_1 . Then

.

(3.5)
$$a_{\delta,j}^{[p]}(x) = (d^j/ds^j) \{ Q(s^{-\delta/2}x) \}^p \Big|_{s=1},$$

(3.6)
$$b_{\delta,k}^{[p]}(x) = (d^j/ds^j) \{Q(s^{-\delta}x)\}^p \Big|_{s=1}$$

These quantities can be expressed in terms of

(3.7)
$$a_{\delta,j}(x) = (d/ds)Q(s^{-\delta/2}x)|_{s=1},$$

(3.8)
$$b_{\delta,j}(x) = (d/ds)Q(s^{-\delta}x)|_{s=1},$$

respectively. We denote the correspondence from $(Q, \{a_{\delta,i}(x)\})$ to $a_{\delta,k}^{[p]}(x)$ by Y_j , i.e.,

(3.9)
$$a_{\delta,j}^{[p]}(x) = Y_j(Q, \{a_{\delta,i}(x)\}).$$

Then we can write

(3.10)
$$b_{\delta,k}^{[p]}(x) = Y_j(Q, \{b_{\delta,i}(x)\}).$$

Letting $Y_j = Y_j(Q, \{q_i\})$, it is seen that $Y_i = Q_i^p$

$$Y_{0} = Q^{p},$$

$$Y_{1} = pQ^{p-1}q_{1},$$
(3.11)
$$Y_{2} = p(p-1)Q^{p-2}q_{1}^{2} + pQ^{p-1}q_{2},$$

$$Y_{3} = p(p-1)(p-2)Q^{p-3}q_{1}^{3} + 3p(p-1)Q^{p-2}q_{1}q_{2} + pQ^{p-1}q_{3},$$

$$Y_{4} = p(p-1)(p-2)(p-3)Q^{p-3}q_{1}^{4} + 6p(p-1)(p-2)Q^{p-3}q_{1}^{2}q_{2}$$

$$+ p(p-1)Q^{p-2}\{3q_{2}^{2} + 4q_{1}q_{3}\} + pQ^{p-1}q_{4}.$$

We note that

(3.12) $\bar{a}_{\delta,k}^{[p]} \le \tilde{a}_{\delta,k}^{[p]} = Y_k(1, \{\bar{a}_{\delta,i}\}),$

(3.13)
$$\bar{b}_{\delta,k}^{[p]} \leq \bar{b}_{\delta,k}^{[p]} = Y_k(1, \{\bar{b}_{\delta,i}\}),$$

where $\bar{a}_{\delta,i} = \sup |a_{\delta,i}(x)|$ and $\bar{b}_{\delta,i} = \sup |b_{\delta,i}(x)|$. Similar bounds are also obtained for $\bar{a}_{\delta,k}^{[p]}(\ell)$ and $\bar{b}_{\delta,k}^{[p]}(\ell)$.

4. The two special cases

4.1. The case (i). Let $X_j = Z_j/(\chi_n^2/n)^{1/2}$, j = 1, ..., p, where $Z_1, ..., Z_p$ i.i.d. $\sim N(0, 1)$ and $(Z_1, ..., Z_p)$ and σ are independent. Let $\Phi(X)$ and $\phi(X)$ denote the distribution and the probability density functions of the standard normal variable. We use (3.1) as an approximation for $P(Max \{X_j\} \le x)$. We have seen that $a_{\delta,j}^{p}(x)$'s are determined by

(4.1)
$$a_{\delta,j}^{[p]}(x) = Y_j(\Phi(x), \{a_{\delta,i}(x)\}),$$

where $a_{\delta,j}(x) = (d^j/ds^j)\Phi(s^{-\delta/2}x)|_{s=1}$. Then, by induction, it is proved that $a_{1,j}(x) = -2^{-j}H_{2j-1}(x)\phi(x),$ (4.2) $a_{-1,j}(x) = (-1)^{j-1}2^{-j}\{x^{2j-1} + \sum_{i=1}^{j-1} 1 \cdot 3 \cdots (2i-1) {j-1 \choose i} \times x^{2j-2i-1}\}\phi(x),$

where $H_{i}(x)$ is the Hermite polynomial defined by

$$(d^{j}/dx^{j})\phi(x) = (-1)^{j}H_{j}(x)\phi(x).$$

We note that $a_{\delta,j}(x)$'s are the same as the previous ones due to Fujikoshi [3] and Fujikoshi and Shimizu [5], which are introduced by the other methods. For nonnegative integers j and ℓ , let

(4.3)
$$m_{1,j}(\ell) = E[(\chi_n^2/n)^{-\ell} \{ (\chi_n^2/n)^{-1} - 1 \}^j],$$
$$m_{1,j} = m_{1,j}(0), \quad m_{-1,j} = E[\{ (\chi_n^2/n) - 1 \}^j].$$

The quantities $m_{-1,j}$'s exist for any *j*, but the quantities $m_{1,j}(\ell)$'s exist only for $n - 2\ell - 2j > 0$. For $m_{1,j}(\ell)$ and $m_{-1,j}$ of j = 1, ..., 6, see Fujikoshi [4]. We can write (3.1) as

(4.4)
$$A_{\delta,k}^{[p]}(x) = \Phi(x)^p + \sum_{j=1}^{k-1} \frac{1}{j!} a_{\delta,j}^{[p]}(x) m_{\delta,j}.$$

From Theorems 2.1 and 2.2 it holds that

Yasunori FUJIKOSHI

(i) if n - 2k > 0 and k is even,

(4.5)
$$\sup_{x} |P(\max\{X_{j}\} \le x) - A_{\delta,k}^{[p]}(x)| \le \frac{1}{k!} \bar{a}_{\delta,k}^{[p]}\{m_{1,k} + m_{-1,k}\},$$

(ii) if $n - 2\ell - 2k > 0$ and k is even,

$$(4.6) |P(\operatorname{Max}\{X_j\} \le x) - A_{\delta,k}^{[p]}(x)| \le \frac{1}{k!} \{1 + (px^2)^{\ell}\}^{-1} a_{\delta,k}^{[p]}(2\ell) \{m_{1,k}(\ell) + m_{-1,k}\}.$$

It may be noted that the order of error terms is $O(n^{-k/2})$ and $A_{\delta,1}^{[p]}(x)$ is an asymptotic expansion for $P(Max\{X_j\} \le x)$ up to $O(n^{-k/2})$ since $m_{\delta,j}(\ell) = O(n^{-(j+1)/2})$, if j is odd, and $= O(n^{-j/2})$, if j is even.

4.2. The case (ii). Let $X_j = Z_j/(\chi_n^2/n)$, j = 1, ..., p, where $Z_1, ..., Z_p$ i.i.d. $\sim G(\lambda)$ and $(Z_1, ..., Z_p)$ and σ are independent. Let $G(x; \lambda)$ and $g(x; \lambda)$ denote the distribution and the probability density functions of the gamma distribution $G(\lambda)$. We use (3.2) as an approximation for $P(\max\{X_j\} \le x)$. Here the support of $\max\{X_j\}$ is \mathbb{R}_+ and so we consider only for x > 0. It is known (Fujikoshi [3], Fujikoshi and Shimizu [5]) that

$$b_{1,j}(x; \lambda) = (d^j/ds^j)G(s^{-1}x; \lambda)|_{s=1}$$
$$= -xL_{j-1}^{(\lambda)}(x)g(x; \lambda),$$

(4.7)

$$b_{-1,j}(x; \lambda) = (d^j/ds^j)G(sx; \lambda)\Big|_{s=1}$$

= $(-1)^{j-1}x \widetilde{L}_{j-1}^{(\lambda)}(x)g(x; \lambda),$

where $L_p^{(\lambda)}(x)$ is the Laguerre polynomial defined by

$$L_p^{(\lambda)}(x) = (-1)^p x^{-\lambda} e^x (d^p/dx^p) (x^{p+\lambda} e^{-x})$$

and

$$\widetilde{L}_{p}^{(\lambda)}(x) = x^{p} + \sum_{i=1}^{p} (1-\lambda) \cdots (i-\lambda) \binom{p}{i} x^{p-\lambda}.$$

We can write (3.2) as

(4.8)
$$B_{\delta,k}^{[p]}(x; \lambda) = G(x; \lambda)^p + \sum_{j=1}^{k-1} \frac{1}{j!} B_{\delta,j}^{[p]}(x; \lambda) m_{\delta,j},$$

where

(4.9)
$$b_{\delta,j}^{[p]}(x; \lambda) = Y_j(G(x; \lambda), \{b_{\delta,i}(x; \lambda)\}).$$

From Theorems 2.1 and 2.2 it holds that

326

(i) if n - 2k > 0 and k is even,

(4.10)
$$\sup_{x} |P(\operatorname{Max}(X_{j}) \leq x) - B^{[p]}_{\delta,k}(x; \lambda)| \leq \frac{1}{k!} \bar{b}^{[p]}_{\delta,k}\{m_{1,k} + m_{-1,k}\},$$

(ii) if $n - 2\ell - 2k > 0$ and k is even,

(4.11)
$$|P(\operatorname{Max} \{X_{j}\} \leq x) - B_{\delta,k}^{[p]}(x; \lambda)|$$
$$\leq \frac{1}{k!} \{1 + (\sqrt{p} \ x)^{\ell}\}^{-1} \bar{b}_{\delta,k}^{[p]}(\ell; \lambda) \{m_{1,k}(\ell) + m_{-1,k}(\ell)\}$$

where $\bar{b}_{\delta,k}^{[p]}(\ell; \lambda) = \sup_{x>0} \{1 + (\sqrt{p} x)^{\ell}\} |b_{\delta,k}^{[p]}(x; \lambda)|$. We note that $B_{\delta,k}^{[p]}(x; \lambda)$ is an asymptotic expansion for $P(\max\{X_j\} \le x)$ up to $O(n^{-k/2})$ and the order of the error terms in (4.11) and (4.12) is $O(n^{-k/2})$.

References

- [1] C. Chambers, Extension of tables of percentage points of the largest variance ratio s_{max}^2/s_0^2 , Biometrika, 54 (1967), 225–227.
- [2] C.W. Dunnett and M. Sobel, A bivariate generalization of Student's t-distribution, with table for certain special cases, Biometrika, 41 (1954), 153–169.
- [3] Y. Fujikoshi, Error bounds for asymptotic expansions of scale mixtures of distributions, Hiroshima Math. J. 17 (1987), 309–324.
- Y. Fujikoshi, Nonuniform error bounds for asymptotic expansions of scale mixtures of distributions, J. Multivariate Anal. 27 (1988), 194-205.
- [5] Y. Fujikoshi and R. Shimizu, Error bounds for asymptotic expansions of scale mixtures of univariate and multivariate distributions, J. Multivariate Anal. 30 (1989), 279-291.
- [6] H. O. Hartley, Studentization, or the elimination of the standard deviation of the parent population from the random sample-distribution of statistics, Biometrika, 33 (1948), 173-180.
- [7] K. R. Nair, The Studentized form of the extreme mean square test in the analysis of variance, Biometrika, 35 (1948), 16-31.

Department of Mathematics, Faculty of Science, Hiroshima University