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1. Introduction

Our main aim in this paper is to study the behavior at infinity of Beppo
Levi functions ue BL, (L% (R") such that

(1) Zm=mf|D’lu(X)I‘"w(IXI)dx < 0,

where m is a positive integer, 1 < p < oo, D* = (/0x)* and w is a positive
monotone function on the interval [0, oo); for the definition and properties of
Beppo Levi functions, see Deny-Lions [1]. For this purpose we need an
integral representation of u as a generalization of [7; Theorem 1], where the
case w(r) =1 was discussed.

We recall the following integral representation of e CJ(R") (see Wallin [8;

p.71]):

2 O(x) = Y)3=m a; Jlem(x — y)D*p(y)dy,

where {a,} are constants independent of ¢, k,, denotes the Riesz kernel of order
2m, which is defined by

|x|2m " if 2m <n or if 2m > n and n is odd,
knm(x) =
—|x|?>™"" log |x| if 2m = n and n is even.

If ¢ does not have compact support, then the integrals of (2) may fail to be
absolutely convergent at any x. This requires us to modify the kernel functions
D*k,, in such a way that all the integrals, which will appear in the
representations, are absolutely convergent at almost every x. To do so, we
introduce the following kernel functions K, ;, (cf. Hayman-Kennedy [2],
Mizuta [6]):

Dkep(x — y) = Ty /D k) (—y) i [y 21,

Km,}.,l(x’ y) = D}.km(x_y) lf lyl < 1

Our aim is to find an integer ¢ such that the functionsJ‘Km, 1.0(x, Y)D*u(y)dy are
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absolutely convergent at almost every x and the equality

UxX) =3 11=m JKm,l,l(x7 y)D*u(y)dy + P(x)

holds for almost every x e R", where P is a polynomial which is polyharmonic of
order m in R" (see Theorems 1 and 1').

By using the above integral representation, we can give extensions of the
results in the papers [5], [6] and [7] about the existence of radial limits.

2. Preliminary lemmas

Let k,, be the Riesz kernel of order 2m, which is defined as above. Then,
for a multiindex A with length |1, we see that D%k,(x) is of the form
b xMh(|x]) + (X eyx”) [ x|2™ 7"~ 214, where b, (|u| = 2m —n — |A]), ¢,(|v| = |4])
are constants and

log r in case m = n and n is even,
h(r) =
1 otherwise;

in case 2m —n < |4|, Y b,x* is understood to be zero.
We first state some elementary facts concerning the properties of
K1, (cf. [6; Lemmas 1 and 4], [7; Lemma 1]).

LemMA 1. (i) The function K,, ; ,(-y) is polyharmonic of order m in R"—{y},
that is, A"K,, ; ,(*, ¥ =0 on R" — {y}.
(i) If 2m — |A] —n— ¢ £ 0, then

Ko orx, ry) =r?m = 1AK - (x, y)  for r>0,
whenever |y| = max {r™?!, 1}.

LEMMA 2. If ¢ 2max{—1, 2m—n—|A|}, then there exists a positive
constant M such that

| K, 2,006 YIS M|x|¢*Hp2monmiH=et
whenever |y| = 2|x| and |y| = 1.
ReMark. If ¢ £ —1 or yeB(0, 1), then
| Ko, (%5 Y)| = [D*hep(x—y)| < M|x — y|?" ="~ [|h(1x—y])| +1]

for any x, where B(x, r) denotes the open ball with center at x and radius r > 0,
and M is a positive constant independent of x and y.

LemMA 3. If ¢ =2 max {0, 2m—n—|A|}, then there exists a positive constant
M such that
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| Ko, (% )1 = Mx|*|y[?" ="~ th(d]x|/|y])
whenever 1 < |y| <2|x| and |x—y| = |x|/2
and
[ K, o (% YIS MxPmmn =Bl x— y|2m=n=Blh(| x| /| x — y))]
whenever 1 < |y| < 2|x| and |x—y| < |x]|/2.

PrOOF. For a function K(x, y), we write K‘“X(x, y) = K(x, y) — )5 (x*/12!)
[(0/0x)*K](0, y). We know that (D*k,)(x—y) is of the form

(T = 2m—nta1 bulx =) H(1x—y1/1y))
+ (S = 2 b= 2P) BAYD) + (D= 13y €l — ) Ix— y 2= 214
= K,(x, y) + Ky(x ) + Ks(x, y).

Since K¥(x, y) =0, K, ; ,(x, ) = K{¥(x, y) + K (x, y) for |y| = 1, from which
we can derive the desired result.

For simplicity, we set Q(x) = w(]x]|) for a positive monotone function w on
the interval [0, o0). Further, fixing m and p, we let ¢, be the smallest integer ¢
satisfying

[ee]
J PP/ m=np= 8= Doy(r) = PPr = 1dr < 00,
1

if it exists, where 1/p 4+ 1/p’ = 1; and for ¢ = max {¢,, m—n}, let

r

® 1/p
we(") = <J sp'm—n/p—¢ - l)a)(s)_‘"/"s_ 1ds> .
REMARK. If w is a positive monotone function on the interval [0, oo) for
which there exists 4 > 0 such that
(1) A 'o(r) £ w(2r) £ Aw(r) for r > 0,

then ¢, exists and ¢, < m—n/p + a/p, where o = log, 4. 1In case w(r) = r~° for
r > 1, we note that £, <m—n/p+ /p < ¢, + 1.

Throughout this paper, let w be a positive monotone function on [0, o0)
satisfying condition (wl).

LemMa 4. If ¢ 2 max{—1, ¢, m—n} and f is a nonnegative measurable

Sfunction on R" satisfying j f)PR2(y)dy < o, then
R'I

J IK o 2,006 WISy < M|x]*1Q,(x)F(x)
R"—B(O,lel)
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whenever |A| = m and x e R"— B(0, 2), where M is a positive constant independent
of x, Q,(x) = w,(|x|) and

1/p
F(x) = <f f (y)”Q(y)dy> .
R™—-B(0,2|x])

ProorF. By Lemma 2 we have

f [ Ko, 2,0(%, WIf()dy
R™ - B(0,2|x})

< Mlxl’“f [y[™="= =1 f(y)dy.

R"=B(0,2|x|)

By Holder’s inequality, we see that the right hand side is dominated by

1p
MXm‘“(j (Iyl"“"'“'1Q(y)_””)”'dy> F(x)
R"—B(0,2|x|)
< My|x| Tl (Ix))F (%)
with positive constants M; and M,. Thus the lemma is proved.
LEMMA 2. If 2m—n—|A| > ¢ = —1, then
| Kon,2, (%, Y| S M|x|* 1 p|2mmn =M= =12 y))

whenever |y| = 2|x| and |y| = 1, where M is a positive constant independent of x
and y.

LemMma 3. If 2m—n—|A| > ¢ = —1, then
| Km,a,0(6 V)| < M|x|>" """ h(4]x])  whenever 1 < |y| < 2Ix],
where M is a positive constant independent of x and y.
Let ¢., be the smallest integer ¢ satisfying

o0
J P == = Dh(r) oo(r) P Pr~ tdr < 0.
1

We note that ¢, =¢, or ¢,+1. If £, < ¢ <m—n, then we set

© 1/p’
w,(r) = <J sp/m=nip=1 '“h(s)"'w(s)"”'“’s’%s)

r

(compare it with that defined for ¢ = max{¢,, m—n}).

REMARK. If w(r) =r~? on the interval (1, o), then ¢, = ¢, and, for ¢,
< ¢ <m—n, we have

@,(r) £ Mym P = 1% o0
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where M is a positive constant independent of r > 2.

LeEMMA 4. If |Al=m, max{—1, ¢,} < ¢ <m—n and f is a nonnegative
measurable function on R" satisfying f f)PR(y)dy < oo, then
RPI

f | K2, (%, MIfG)y < Mx|**12,(x)F(x)
R"~B(0,2lx)

Sor every xe R"— B(0, 2), where M is a positive constant independent of x, Q ,(x)
= w,(|x|) and F is as in Lemma 4.

3. LP-estimates with weight
In this section we give LP-estimates with weight of D* f Kopa, e 0) f(0)dy,
|ul = m, for functions f satisfying jl f(¥)1P2(y)dy < 0.

We begin with showing the following technical lemma.

LEMMA 5. Let f be a nonnegative measurable function on R" such that
Jf(y)"[)(y)dy < 0. Let ¢ be an integer such that ¢ = max{—1, ¢,, m—n} or
max{—1, ¢,} S ¢ <m—n. For R> 1, we write

U f(x) = me,A,e(x’ NSy

and

U f(x) = J Kz, Y)f(y)dy.

B(0,2R)

Then U, fe BL,(L%,.(R") and U, g f tends to U, f in BL (L%, (R") as R—co.

Proor. If we set V, g f(x) = J‘ Ko i o(x, ¥)f(y)dy, then Lemmas 4
R"—B(0,2R)
and 4 imply that V, zf(x) is absolutely convergent for every xeB(0,

R). Further, since (0/0xY'Kp ;. (X, ¥) = Kpi+ue—1u(X> ¥), Wwe see, in view of
Lemmas 2 and 2’ (cf. the proof of Lemma 4), that V, f is infinitely

differentiable and (6/0x)"V, gr(x) = j Ko a4 -10(% ¥)f(y)dy on B(0, R).
R"—B(0,2R)

On the other hand, by Lemma 3.3 in [4], we find that U, i fe BL,(L},.(R"),
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because U, g f(x) = f D*k,(x—y)f(»)dy + a polynomial. Consequently,
B(0,2R)

U, feBL,(L%,(R"). By Lemmas 2 and 2’ again, we see that (0/0x)*V, g(x) are
all convergent to 0 locally uniformly as R—o0 on R”, so that U, g f(x)—- U, f(x)
in BL,(L%.(R") as R—»o. Thus Lemma 5 is proved.

REMARK. We can also prove that J | K. 2..(x, MIf(y)dye L%, (R"), since

J | D*k(x—y)| f(y)dyeL;,(R")  and J | Koz, e 6 )y s
B(0,2R) R"™—B(0,2R)
bounded in B(0, R).

PROPOSITION 1. Let ¢ = m and w be a positive nonincreasing function on
the interval [0, o) satisfying (wl) and the following conditions:
(i) There exists a number o such that o« > n + ¢ — m and

(@2) fs‘“”'”m(s)‘"""s‘lds S M r " *reg(r) P for any r > 1.
1

(ii) There exists a number B such that f<n+ ¢ —m+ 1 and
(@3) J SsTEP trgy(s) TP IPs T Ids < Myr PPt reo(r) PP for any r > 0.
Here M, and M, are positive constants independent of r. If || = |u| = m, then

J

for any nonnegative measurable function f on R", where M is a positive constant
independent of f.

D"JK,.,,A,,(x, ) f(y)dy pQ(x)dx =M f S)yrQ(y)dy

ReMARK. If (i) is fulfilled, then, since —fp’ + n> p'(m —n/p — ¢ — 1), we
see that £ = ¢, (= ¢,).

ProOOF OF PropPOSITION 1. By Lemma 5 we may assume that f vanishes
outside a compact set in R". Then it follows from [4; Lemma 5.1] that
(0/0x)*U, f(x) is of the form

af(x)+ J D** *ey(x — y)f(y)dy

— Xplise —m(v!)'lxvf D** 4k, (—y)f(v)dy

R"-B(0,1)

with a constant a. Here JD“”k,,,(x— y)f(y)dy is understood to be

lim, wf D***k,(x — y)f(y)dy, which exists almost everywhere on R" and,
R"™— B(x,r)
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since fe LP(R"), it belongs to L?(R") because of [4; Lemma 3.3]. For xeR" and
|u| = m, we set

uy(x) = J D***k,, (x — y)f(y)dy
B(0,2]|x|)

— Y ise-m (v!)"fo D** ke (— y)f(y)dy
B(0,2|x|)-B(0,1)
and

us(x) = f D***ky(x — y)f()dy
R"-B(0,2|x])

— Xivse-m (V!)‘lx“f D** 4k, (— y)f()dy

R™~-B(0,2]x|) - B(0,1)

- I Km,l+u,ﬂ —m(x9 y)f(y)dy
R™ - B(0,2|x])

If xeB(0, 2*1) — B(0, 2%), then

[uy(x)| = M1<

f D** %k, (x — y)f (y)d}"
B(0,24+2)—B(0,2i~ 1)

+ f |D** *k(x — Y)|f(W)dy
A(x)

+ le”""f Iyl’""""”f(y)dy>
B(0,2|x|)—B(0,1)
= M [uy;(x) + uy(x) + uy5(x)]

with a positive constant M, independent of x, where A(x) = B(0, 2/~ ') [B(O,
2/*2) _ B(0, 2|x|)]. First we have by Lemma 3.3 in [4]

p

f“l 1(X)PQ(x)dx £ ¥ o(2)) f

J‘3(0,21' +2)-B(0,277Y)

D***k,(x — y)f(y)dy| dx
=M 22,‘ w(2j)J‘ Sy)rdy
B(0,27+2)—B(0,2/1)
=M 3Jf )P Q(y)dy

with positive constants M, and M, independent of f. Next, since |x — y|
Z |x]/2 for yeA(x), uiy(x) = MAXI"‘J

M, independent of x.
< d < n/p', we have

f(y)dy with a positive constant
B(0,4|x|)

Since Q(x) < A2Q(y) whenever ye B(0, 4|x|), letting 0
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p/p’
J i2(x)QAx)x = Mi’f x| U |y|-6v‘dy>
B(0,4|x])

x < f [y1%f(y )"dy>9(x)dx
B(0,4|x|)

< M; <IXI“”""< J Iyl"”f(y)”Q(y)dy>dx
B(0,4|x]|)

»

= M; Iyl""f(y)”Q(y)(f

R"™—=B(0,]yl/4)

|x|_"‘""dx>dy

»

< Mg | fy)PQ(y)dy

with positive constants M and M, Similarly, using (w2), we see that

p/p’
j Uy 3(x)PQ(x)dx < J | x| ‘m)p<J [y| ="' Q(y) —p’/pdy>
B(0,2|x|)— B(0,1)

x q |y|@—nmetmef (y)”Q(y)dy>9(X)dx
B(0,2|x|)
< M7J(IXI Teptnp/pi+(t ”""’(f |y|@-n—¢ +"'”’f(y)"9(y)dy)dx
B(0,2(x|)

— M7J‘|yl(a—n— ¢ +m)1ff(y)pg(y)<J‘ |x| —ap+np/p’ +(¢ —m)pdx>dy

R™—B(0,|y|/2)
S Mg ff )PR2(y)dy

with positive constants M, and Mg.
On the other hand, by Lemma 2 we obtain

lua(x)| = Mgf x| ¢ Ty T TS (y)dy

R"™—B(0,2|x|)

+ MQI [yI7"f)dy = Mo[u,1(x) + uy,(x)]
B(0,1) - B(0,2|x])

with a positive constant M,. It follows from condition (w3) that

jluu(x)l"{)(x)dx < j|x|(f —m+1)P<J |y|‘”"'9(y)""/”dy>
R™—B(0,2|x|)

x <f [y|Fmn= e m=Dpf (y)"Q(y)dy>Q(X)dx
R"™—B(0,2(x|)

plp’

< M10J<|x| =Bp+np/p’+(¢ —m+1)p
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x < J |y|En=e +’"‘1"’f(y)"Q(y)ti,v)abc
R™—B(0,2|x|)

< Mujlyl"""" e DRf(y)PQ(y)

X <J |x|—ﬂp+np/p’+(t—m+1)pdx>dy
B(0,1y1/2)
=M 12jf )P R(y)dy

with positive constants M,, ~ M,,. Letting n/p’ <y <n and noting that
u,,(x) =0 for xeR" — B(0, 1/2) and both Q(x) and £(x)~! are bounded on
B(0, 1), we establish

p/p’
f [t,(%) [P 2(x)dx < J (f [yl '”"dy>
B(0,1/2) R"—B(0,2|x|)

x <J 1Y ()P dy>9(x)dx
B(0,1)— B(0,2|x])

§M13 |x|—vp+np/p'
B(0,1/2)

x <f |0 mef (y)"dy)dx
B(0,1)— B(0,2|x|)

é M13J\ |y|(y-n)pf(y)p<J~ |x| _“’J”"’/"’dx)dy
B(0,1) B(0,]yl/2)

=M,, frdy = M15Jf )PQ(y)dy

B(0,1)

with positive constants M,;; ~ M,5s. Thus Proposition 1 is proved.

PROPOSITION 2. Let ¢ <m and w be a positive nonincreasing function on
[0, ©) satisfying (wl) and (ii) in Proposition 1. Then the same conclusion as in
Proposition 1 holds.

The proof can be carried out in the same way as that of Proposition 1. In

fact, in this case, D“JK,M, ,(x, Y)f()dy is of the form

af(x)+ JD“”km(x — Ny

with a constant a, and UD"“km(x -) f(y)dy‘ < M[uy(x) + uqo(x) + v(x)],
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where u,; and u,, are as in the proof of Proposition 1 and uv(x)
='J‘ |y|~"f(y)dy. Since u,;, and u,, are evaluated in the proof of
R™—B(0,2|x]|)

Proposition 1, we have only to treat the function v. By noting that f in (w3) is
smaller than n, we establish

f WP QAx)x < j ( [ lyr'""sz(y)"""dyy/p'

J R"-B(0,2|x|)

x ( |y I@7"2 f(y)PAy)dy >Q(x)dx

R"™-B(0,2|x])

=M, (le_””""”"(j Iyl”’_"”‘f(y)"Q(y)dy>dx
R™ - B(0,2|x|)

SM, | Iyl® "‘"’f(y)"!?(y)< J

B(0,]yl/2)

|x| _”‘”'""“"dx)dy

3

= M, | f)PAy)dy

v

with positive constants M;, M, and M.

REMARK. Let w(r)=r"% for r>1, where 6 =20. f—1<¢<m—n/p
+d6/p < ¢ + 1, then w satisfies conditions (wl), (i) and (i1). If ¢ =m —n/p
+ d/p = — 1, then w satisfies (w1) and (i), but not (i).

In view of the proof of Proposition 1, we can establish the following
variant of Proposition 1.

PROPOSITION 3. Let w be a positive nonincreasing function on the interval
[0, o) satisfying condition (wl) together with (ii) in Proposition 1. If w* is a
positive nonincreasing function on [0, o) such that

r p/p’
w¥r)=r""e ‘"/P’p(J §P P Dgy(s) TP IPs T 1ds) for r>2,
1

Jor |u| = m, where Q%(x) = w¥(|x|) and M is a positive constant independent of f.

then

D* f Ky, o, y)f(y)dy‘pﬂt(x)dx <M f FOPQUy

ReEMARK. If w satisfies condition (w1), then we can find a positive constant
M, such that wj(r)SMw(r) for rzro>1. If ¢=¢, then w*(r)
= MrPm=mP= =D for r > 1 with a positive constant M.

PROPOSITION 1'.  Let ¢ = m and w be a positive nondecreasing function on
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the interval [0, o) satisfying (wl), (i), (ii) in Proposition 1 and

(w4) J rTPP () T ldr < 0.

1

If |A| = |ul = m, then

J

for any nonnegative measurable function f on R", where M is a positive constant
independent of f.

D JKm,l,t(x’ S (y)dy pQ(X)dx =M Jf ()P A(y)dy

PrOOF. Let f be a nonnegative measurable function on R" such that

I f(y)PQ(y)dy < c0. As in the proof of Proposition 1, we may assume that f

vanishes outside a compact set in R", and write D“ij‘ 10X Vf()dy = af(x)

+ u;(x) + u,(x), where a is a positive constant, xe R"” and |u| =m. As in the
proof of Proposition 1, |u;(x)| £ M [u,,(x) + uy,(x) + u;5(x)], and we can
prove that

r~ r

uy (x)PQx)dx = M, | f(y)P2(v)dy

o o/
and

r r
u3(XyQRX)dx = M, | f(y)*A(y)dy

Y [y

with a positive constant M, independent of f. Also, |u,,(x)| < M;[ug,(x) +

uy,(x)] with a positive constant M,, where u},(x) = |x|'"J f)dy
B(0,4|x|)—B(0,1)
and u},(x) = |x|_"J f()dy. We derive from (w2)
B(0,4|x|)nB(0,1)

p/p’
Juiz(x)”ﬂ(x)dx < Jlxl ‘”"(J Iyl "“”'Q(y)“’"”dy>
B(0,4|x|)—B(0,1)
X < j [y f (y)"Q(y)dy>9(x) dx
B(0,4|x|)
< MJ(IJCI'“”‘”(J lyl“"f(y)”Q(y)dy>dx
B(0,4|x|)

=M4J|Y|“’f(Y)’9(y)<J |x|'°"""dx>dy
R"=B(0,131/4)
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< M; ff ()PQ(y)dy.

Moreover, letting 0 < é < n/p’ and using (w4), we find

p/p’
B(0,1/4) B(0,4|x])

X <J Ly f (y)"dy>9(x)dx
B(0,4|x|)
p

¥ f |x|-""( f(y)dy> Q(x)dx

R"-B(0,1/4) B(0,1)
< Msj x| “"""(j Iyl""f(y)”dy>dx

B(0,1/4) B(0,4|x])

N MG( j N -"PQ(x)dx)( f(y)"dy>

R"-B(0,1/4) B(0,1)

< Mef Iyl""f(y)”<J IX|_""_"dx>dy
B(0,1) R™—B(0,|y|/4)

+ M, fyydy

B(0,1)
< Mg f Sf)Pdy = M, f S)r(y)dy
B(0,1)

with positive constants Mg ~ M,.
Since the same evaluations as in the proof of Proposition 1 are true for u,,
we complete the proof of Proposition 1"

PROPOSITION 2. Let—1<¢<m and w be a positive nondecreasing
Sfunction on [0, ) satisfying (w1), (w2) with a > 0, (w4) and (ii) in Proposition
1. Then the same conclusion as in Proposition 1 holds.

ProrosiTioN 3. Let w be a positive nondecreasing function on the

interval [0,00) satisfying conditions (wl), (w2) with o >0, (w4) and (ii) in
r —p/p’

Proposition 1. Suppose w*(r) = r™~¢ ”‘“’"’(J SP/m=nip= Uy(5) TP IPg™ 1ds> is

1
nondecreasing on some interval [rqy, o); and set w¥(r) = w*(ro) for r <ry. Then

J

SJor || = m, where Q%(x) = w¥(|x|) and M is a positive constant independent of f.

D* f Ko, (xs y)f(y)dy

"Q¥(x)dx < M Jf rPQ(y)dy
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4. Integral representation

Now we establish the integral representation of Beppo Levi functions as
given in the Introduction.

THEOREM 1. Let w be a positive monotone function on the interval [0, o0)
satisfying condition (wl), and suppose further ¢, = m—n. If u is a function in
BL,(LE,(R™) satisfying (1), then there exists a polynomial P, which is
polyharmonic of order m in R", such that

u(x) = Yju=m J Ko 00(x y)D*u(y)dy + P(x)  ae. on R"

ReEMARK. We recall that ¢, <m—n/p+ o/p with a =log, A(see the
Remark given before Lemma 4). We shall show below that the degree of P is
at most max {m—1, ¢,+1}.

PrOOF OF THEOREM 1. For ¢=max {—1, ¢,}, set Uy/(x)=Yz=m
aAJKm, 2.0(x,y)D*u(y)dy. By Lemma 5 and its Remark, U, € BL,(Lf,(R") and,

loc'

moreover,

f f | K 2,0(%, »)D*u(y)ep(x)|dydx < oo

for any @eCg(R"). By (2), there exists a number ¢, such that A™
=Cp Y l,=ma,1D“ (cf. [4; §4]). Hence we have by Fubini’s theorem and the
fact that AT[K,, ; (x, ¥) — D*k,(x —y)]1 =0,

JUe(X)A'"q)(X)dx =\ Yial=m aqum,z,e(x, y)A'"w(X)dX>D‘u(y)dy

o

= | Yia=m az< f D*kplx — y)A'"cp(X)dX>D‘u(y)dy

= | Yizi=m al((— 1)"'[ Ko — y)D‘A'”w(x)dX>D‘u(y)dy
= fzu.w a;[c(—1)"D*@(y)1D*u(y)dy
= f A" (y)u(y)dy.

Hence 4™u — U,) = 0 in the sense of distributions. What remains is to show
that P, = u — U, is a polynomial.
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In view of Proposition 3 and the Remark after Proposition 3, we see that if
 is nonincreasing and satisfies (w1) and (ii) with ¢ = ¢* = max {—1, ¢,}, then
the function P,. satisfies

_[UD"P”(X)I(IxI + 1) P dx < o0 for |puf =m.

By noting that 4™P,, = 0 on R" and considering the Fourier transform, we find
that P,. is a polynomial of degree at most max{m — 1, ¢*} (cf. [4; Lemma
4.1]). If £z max{—1, ¢,}, then

©) Py =P = Yiaj=m a;f[Km,a,t(', Y= Koz oo, y)ID*u(y)dy,

so that P, is a polynomial of degree at most max{m—1, ¢}. In case w is
nonincreasing and satisfies (w1) only, we see from the definition of ¢, that w(r)
= MrPm—mP=to~D for r>1 and m—n/p—£,—1<0. If we let o~ (r) =
(r + 1)Pm—"P= o~ then u satisfies (1) with @ replaced by w~. Since v~
satisfies condition (i) with ¢ = ¢~ =max{—1, ¢,+ 1}, from the above
considerations we find that for ¢ = max{—1, ¢,}, P, is a polynomial of degree
at most max {m — 1, £~, ¢}; this implies that the degree of P, is at most max {m
—1, ¢, + 1} and the degree of P,, £ = ¢, + 1, is at most max {m — 1, ¢}.

If o is nondecreasing, then wueBL,(LP(R")); ie., (1) holds with
w(r) = 1. Hence, by the above discussion, it follows that P,s, where ¢* is the
integer such that ¢* <m—n/p < ¢* + 1, is a polynomial of degree at most m
—1. By (3), P, for ¢ 2max{ —1, ¢,} is a polynomial of degree at most
max{m — 1, ¢}. Thus the proof of Theorem 1 is completed.

The case £, < m — n can be derived along the same lines as in the proof of
Theorem 1, by using Lemmas 2’, 3’ and 4’ instead of Lemmas 2, 3 and 4.

THEOREM 1'. Let w be a positive monotone function on the interval [0, o)
satisfying condition (wl). If é,<m —n and u is a function in BL, (L}, (R"))
satisfying (1), then there exists a polynomial P such that

ux) =Y |z=m @ ij,L%(x, y)D*u(y)dy + P(x) a.e. on R

OUTLINE OF THE PROOF. We shall deal only with the case when w is
nonincreasing. For ¢ = max{ — 1, ¢,}, we set Uj(x) =Y ;- a1 JKm,l,e(x, )

D*u(y)dy and P, =u — U,. If ¢ =2 m — n, then the proof of Theorem 1 implies
that P, is a polynomial. If £ < m — n, then from Lemmas 5 it follows that U,
belongs to BL,(L%.(R"), and
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f J | K10, Y)D*u(y)ep(x)|dydx < oo

for any ¢ € CP(R"). Therefore, as in the proof of Theorem 1, we see that 4™(u
— U,) = 0 in the sense of distributions. To show that P, is a polynomial, we
first note that w(r) = MrP™ "P~ %" Up(r)? for r>2 and m—n/p — ¢, — 1
< 0. Thus u satisfies (1) with w replaced by w~(r) = (r + 1)P™ %P~ ¢7) where
¢~ =max{—1, ¢, + 1}. Moreover £~ < m and condition (ii) in Proposition 1
is satisfied with £ = ¢~. Consequently we can apply Proposition 2 to obtain

le“Pp(x)I”af(le)dx < for |ul =m.

Thus P,~ is a polynomial, and then for ¢ = ¢,, P, = P~ — Y 3= a AI[K,,,, ae(%,

Y) — Koz 0~(x, y)1D*u(y)dy is a polynomial.

5. Behavior at infinity of Beppo Levi functions

For sets E and G = R", we define C,, ,(E; G) = inf || f|| 5, where the infimum
is thaken over all nonnegative measurable functions f such that f = 0 outside G

and f |x — y|™ " "f(»)dy = 1 for every xeE; for the properties of the capacity
G

C,..»» we refer to the paper of Meyers [3]. We say that a function u is (m, p)-
quasi continuous on R" if for any ¢ > 0 and any bounded open set G < R",
there exists an open set B = G such that C,, (B;G) < ¢ and u is continuous as a
function on G — B; for details, we refer the reader to [4].

Let u be an (m, p)-quasi continuous function on R” satisfying condition (1);
here w is assumed to satisfy condition (w1). Then Theorems 1 and 2 imply the
existence of an integer ¢ and a polynomial P, of degree at most max{m — 1, ¢
+ 1} such that

@) ue) = Yys-m as f Kpso(x, YD'uy)dy + P,(x)  ae. on R"

If we write

Uy(x) = me,A.a(xa y)D*u(y)dy = j Ko s, o(x, y)D*u(y)dy

B(0,2R)

+J K, 5,0(%, y)D}'u(y)dy = UA,R(x) + V,r(X)
R"—B(0,2R)

for R > 0, then we see that U,y is (m, p)-quasi continuous on R" and V, p is
continuous on B(0, R), on account of [4; Lemma 3.3]. Hence U, is (m, p)-quasi
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continuous on R", so that equality (4) holds for any xe R" — E,, where E, is a
set satisfying C,, (Eo(\B(O, r); B(0, 2r)) = 0 for any r > 0. We first study the
behavior at infinity of the functions U,. More generally, we deal with the

function U(x) = J‘K""l’ (%, »f(y)dy, where ¢ is an integer such that ¢ = — 1

and f is a nonnegative measurable function on R" such that j SOPo(lyl)dy

< o0. For xeR"— B(0, 2), write U = v + w, where

v(x) = j Ko s, o(x, V) f(y)dy
B(0,2|x])

and

w(x) = J Kopa o x, ) f()dy.
R"—B(0,2|x|)

By Lemmas 4 and 4, we know that
) Iwx)| = M|x|** o, (|x])F(x)

with a positive constant M independent of x.
In case ¢ = max {0, m — n}, by use of Lemma 3, we find a positive constant
M such that

lu(x)| < M{v' (x) + v"(x) + v"(x)},

where

v'(X)=J [x = y["""LIA(Ix — yDI + 111 (y)dy,
B(0,1)

v”(x)-——lx!”J [yI™ =" th(4]|x|/ly)f(»)dy
B(0,2|x)~ B(0,1)

and

v’”(X)=f [x — yI™""h(|x|/1x — y1) f(y)dy.

B(x,|x|/2)

Then we first note that v'(x) =O(|x|™ "h(|x]|)) as |x| — oo.
As to v”, by Holder’s inequality we obtain

6) v'(x) = M|x|*Q2,(x)G(x)

for any xeR" — B(0, 2), where 2(x) = w}(|x]|) with

r 1/p’
'y (r) = < J SPm=nip= Op(2r/sYP w(s) ™ P/Ps ™ lds>

1
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1/p
and G(x) = ( J f(y)”Q(y)dy> .
B(0,2|x|)

REMARK. Let w(r)=r"°% for r>1. If ¢ <m—n/p+ 6/p, then ,(r)
= M ™ "P P if ¢ = m — n/p + 5/n, then ', (r) £ M,h(r)(log r)*/* for r > 2,
where M, and M, are positive constants.

Finally we treat the function v”.
LEMMA 6. Let f be a nonnegative measurable function on R" such that
j f()PQR(y)dy < o, and let ¢(r) be a positive function on the interval (0, oo) for

which there exists M > 0 such that ¢(r) = M @(s) whenever 0 <r <s <2r. If
mp < n, then there exists a set E < R" having the following properties:

(1) lirnlxl—'oo,st"—E (p(|xl)—1w(|x|)l/pvﬂl(x) =0.
(i) Y721 02)Chy(Ej;G)) < oo,

where E; = EN\B; and G; = B;_,{UB;UB;., with B;= B(0, 2/) — B(0, 2/ 7).
If mp > n, then

v"(x) £ M'|x|™""Po(|x[)”PG(x) £ M"|x| ‘2, (x)G(x)

for any xe R" — B(0, 2), where M’ and M" are positive constants independent of x
and f.

Proor. The case mp>n can be derived readily from Holder’s
inequality. In case mp <n, we choose a sequence {a;} of positive numbers
such that lim;,, a; = co and Z}";lajf f()PQ(y)dy < 0. For each positive

(]
integer j, we define

E; = {xeBj; v"(x) = ¢p(2)w(2))~ ”Paj‘ ury,

If xeBj;, then v”’(x)§f [x — y|™ "f(y)dy. Hence it follows from the
Gj

definition of C,, , that
Cno(E)j) = ¢(2j)'”w(2j)ajf fO)ydy < A¢(2)""q; j JOyr(y)dy.
Gj Gj

This implies that E = (Jj2, E; satisfies (ii). It is easy to see that (i) is fulfilled
with this set E. Thus the lemma is proved.

In case £ = —1 g m —n, |Km,2.,¢(x9 ,V)| = ID)'km(X - y)[ é Mllx - ylm—n’
so that
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7 ) =M 2<IXI"‘_”J Sdy + v”(X)) = M, x| 2, (x)G(x) + M ;0" (x),

B(0,2]x|)

where M; ~ M are positive constants independent of xe R" — B(0, 2).
In case £ < m — n, by using Lemma 3', we find a positive constant M, such
that

[v(x)| = My |x]|™""h(] x]) S()dy.

B(0,2]x|)

Hence Holder’s inequality gives
®) [o(x)| = M| x| €2, (x)G(x),
where M, is a positive constant independent of x, Q'(x) = w/,(|x|) with

() =r""" ’h(r)( J"w(s)_p,/psn_ lds)l/p,

1

1/p’
and G(x) = ( j f(y)"Q(y)dy> .
B(0,2|x|)

We now define 4,(r) =r*"'w,(r) + r'w),(r) for an integer ¢ such that ¢
= max{—1, ¢,, m—n} or max{—1, ¢,} £¢ <m—n. Then condition (w1)
implies that A4,(r) = Mr™ "Pa(r)~ /% for r > 1, where M is a positive constant
independent of r. If ¢=max{—1, m—n}, then liminf,_  h(r)™'w,()

® 1/p’
> <f s”""'—"/’"“w(s)""/”s_lds) =a, > 0, so that

1
limsup,_, A,(r)"[r'h(r)] < a;! < co.
Further we set b, = limsup,_ o, 4,(r)" [ "h(r)]. If £ = m —n, then b, < o©
r 1/p’
by the above, and if £ < m — n, then A,(r) = r'"‘"h(r)(f w(t)""“’t""dt) , SO
1

that b, is finite, too.

THEOREM 2. Let w be a positive monotone function on [0, o) satisfying
condition (wl), and ¢ be given as above. If f is a nonnegative measurable

function on R" satisfying j f)PQ2(y)dy < oo, then there exists a set E = R" such
that
(l) limsuplxl—'uo,xeR"—EAl(lxl)—1 |u(x)| < 00,

(i) ;21 4,Q2)02)C,, (E;; G) < oo,

where u(x) = ij,l,,(x, y)f(dy, E; = E(\Bjand G; = B;_, U B;U B, with B;
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= B(0, 2/) — B(0, 2~ '); in case mp > n, E can be taken as the empty set.

Proor. By (5), (6), (7) and (8), we see that
9 lu(x)| = M A,(Ix])[F(x) + G(x)]

+ M,y |x|"""[Ih(Ix])| + 1] Sy + Mv"(x)
B(0,1)
for any xe R" — B(0, 2), where M, is a positive constant independent of x. In
case mp < n, applying Lemma 6 with ¢(r) = A4,(r)w(r)!/?, we see that v” fulfills (i)
in Lemma 6 with an appropriate set E satisfying (ii), so that

(10) limsuplxl—’w,xeR"-—E A4(|X[)_1|M(X)I

< M, limsup, . ,G(x) + Mlb,f f()dy < o0;
B(0,1)
in case mp > n, this remains true if we take E as the empty set by the second
half of Lemma 6. Thus the proof of Theorem 2 is completed.

ReEMARK. If a, = o0 (this holds when ¢=2¢,) and b, =0, then
lim,xl_,w,xeRn_EA,(lxl)'lu(x) =0 in the above theorem.
In order to prove this, we write

u(x) = f Ko, (%, ) f(y)dy + f Ko s, (x, y)f(y)dy
B(0,2R)

R"—-B(0,2R)
= U rf(x) + V, rf(x)
for R>1 as before. Then, by our assumptions, limy,_, 4,(|x])”'|U, rf(x)|

= 0. Next, noting that M, in (9) is determined to be independent of f, we find
from the arguments in the proof of Theorem 2 that

1/p
WM SUp ) - o xern—£ Ao (1)) 7V, of() = M 1< f S (y)"Q(y)dy>

R"-B(0,2R)

with the same E as above. This proves the required assertion.

COROLLARY 1. Let w be a positive monotone function on [0, co) satisfying
condition (wl), and ¢ be as above. If u is an (m, p)-quasi continuous function
belonging to BL,(L{,(R") and satisfying condition (1), then there exist a
polynomial P and a set E — R" such that

(i) Hmsupiq, oxerm—g Ao (1x)) ™ u(x) — P(x)| < oo0;
(i) Y21 A4,QY(2)Cp, (E}; G;) < o0

in case mp > n, E can be taken as the empty set.
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Proor. First we can find a polynomial P, and a set E, such that equality
(4) holds for any xeR"— E, and C, (E,N\B(O, r); B, 2r)) =0 for any r
> 0. Clearly, C,, (Ey;;G;) =0, so that E, satisfies condition (ii). Therefore
the Corollary follows readily from Theorem 2.

LemMMA 7. If w(r)=r"2 for r > 1, then ¢, <m —n/p+ /p < €, + 1 and
¢, = ¢,; moreover for £ =max{—1, ¢,},

A,(r) ~ pm—riptolp in case m —nfp+d/p>€=m—n,
A,(r) ~ rth(r)(log r)'’” in case £ =m—n/p+3/p=m—n,
A,(r)~rt in case m —n/p+8/p< ¢ and m—n< ¢
and
A,(r) ~ r"""h(r) in case £ <m — n,
where @(r) ~ Y(r) means that 0 < lim,_, , @(r)/Y(r) < co.

With the aid of Lemma 7, Corollary 1 and the Remark after Theorem 2
give the following result.

COROLLARY 2. If u is an (m, p)-quasi continuous function in BL (L} (R")
satisfying (1) with o(r) = r~9%, then there exist a set E and a polynomial P of
degree at most max{m — 1, ¢}, where ¢ = max{ — 1, ¢,}, such that

WMy - o0, xern— |X] 7" 7P TP [u(x) — P(x)] = 0
in case m — n/p + é/p > € = m — n,
My, o xern—£ %] 7 [A(Ix])] ™ *(log|x|) ™ V% [u(x) — P(x)] = 0
in case m —n/p + é/p=¢ =m — n,
lim Sup 4~ oo, xern -k 1%~ [u(x) — P(x)| < o0
in case m —n/p+ d/p< € and m —n < ¢,
im SUPyy - o xern £ [1%]™ " h(| x])1 7 [u(x) — P(x)| < o0
in case £ <m —n
and

¥ ®(2)PC,, (E;; B)) < oo with o(r) = A,(r)e(r)*’? (= Mr™~"'?); in case mp
> n, E can be taken as the empty set.

ReMARK. This corollary gives the radial limit theorem [7; Theorem 3],
where the case w(r) =1 is treated.
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