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1. Introduction

Our main aim in this paper is to study the behavior at infinity of Beppo
Levi functions ueBLm(Lp

loc(Rn)) such that

(1) ΣIAI =

where m is a positive integer, 1 < p < oo, Dλ = (d/dx)λ and ω is a positive
monotone function on the interval [0, oo); for the definition and properties of
Beppo Levi functions, see Deny-Lions [1]. For this purpose we need an
integral representation of u as a generalization of [7; Theorem 1], where the
case ω(r) = 1 was discussed.

We recall the following integral representation of φeCQ(R") (see Wallin [8;
p.71]):

(2) φ(X) = Σμi=» «A \DλkJίx-y)Dλφ(y)dy9

where {aλ} are constants independent of φ, km denotes the Riesz kernel of order
2m, which is defined by

if 2m < n or if 2m > n and n is odd,

log |x| if 2m ̂  n and n is even.

If φ does not have compact support, then the integrals of (2) may fail to be
absolutely convergent at any x. This requires us to modify the kernel functions
Dλkm, in such a way that all the integrals, which will appear in the
representations, are absolutely convergent at almost every x. To do so, we
introduce the following kernel functions Xm,A,β (cf. Hayman-Kennedy [2],
Mizuta [6]):

Dλkm(x-y)-\

ΓOur aim is to find an integer £ such that the functions Km λ t(x, y)Dλu(y)dy are
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absolutely convergent at almost every x and the equality

mtλtt(x9 y)Dλu(y)dy + P(x)

holds for almost every x e Rn, where P is a polynomial which is polyharmonic of
order m in Rn (see Theorems 1 and Γ).

By using the above integral representation, we can give extensions of the
results in the papers [5], [6] and [7] about the existence of radial limits.

2. Preliminary lemmas

Let km be the Riesz kernel of order 2m, which is defined as above. Then,
for a multiindex λ with length |λ|, we see that Dλkm(x) is of the form

(Σ W*(M) + (ΣCv* v)M 2 m~"~ 2 | Λ |, where bμ(\μ\ = 2m - n - \λ\), c v ( \ v \ = \λ\)
are constants and

( log r in case m g; n and n is even,
h(r) =

I 1 otherwise;

in case 2m — n < \λ\9 ^bμx
μ is understood to be zero.

We first state some elementary facts concerning the properties of

Km,λ,e (cf [6; Lemmas 1 and 4], [7; Lemma 1]).

LEMMA 1. (i) The function Kmfλte('y) is polyharmonic of order m in Rn — {y},
that is, ΔmKm^ί(', y) = 0 on Rn - {y}.

(ii) // 2m - |λ| - n - £ ̂  0, then

Km,λ,e(rx9 ry) = r2m-*-WKm.λtt(x, y) for r > 0,

whenever \y\ ̂  maxlr'1, 1}.

LEMMA 2. // ^ ^ m a x { — 1, 2m — n— \λ\}9 then there exists a positive
constant M such that

whenever \y\ ̂  2\x\ and \y\ ̂  1.

REMARK. If £ ̂  -1 or ye 5(0, 1), then

\Kmtλ,<(x, y)\ = \Dλkm(x-y)\ ^ M\x - ^----

for any x, where B(x, r) denotes the open ball with center at x and radius r > 0,

and M is a positive constant independent of x and y.

LEMMA 3. If # ^ max{0, 2m — n— \λ\}9 then there exists a positive constant
M such that
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whenever 1 ̂  \y\ < 2\x\ and \x-y\ ^ \x\/2

and

whenever 1 ̂  \y\ < 2\x\ and \x — y\ < \x\/2.

PROOF. For a function K(x, y\ we write K(e)(x9 y) = K(x, y) - £,μ|S ,(xμ/μ!)
, y). We know that (Dλkm)(x-y) is of the form

->^
+ K3(x9 y).

Since X^f)(x, y) = 0, Km,Λ,β(x, y) = M°(*, )0 + ̂ °(̂  y ) f o τ \ y \ ^ 1, from which
we can derive the desired result.

For simplicity, we set Ω(x) = ω(|x|) for a positive monotone function ω on
the interval [0, oo). Further, fixing m and p, we let £ω be the smallest integer i
satisfying

ί γp'(m - nip - β - \

1

if it exists, where 1/p + I/// = 1; and for £ ^ max{^ω, w-n}, let

α oo \ l / p '

ω ~pf(m — n/p— ί — !)/-,)(ς\~Pf/Pς~ l//o \o LU\jj o ίiι3 I

/

REMARK. If ω is a positive monotone function on the interval [0, oo) for
which there exists A > 0 such that

(ωl) A~1ω(r) ^ ω(2r) ^ Aω(r) for r > 0,

then £ω exists and ^ω ̂  m — n/p + α/p, where α = Iog2 A. In case ω(r) = r~δ for
r > 1, we note that £ω ^ m — n/p -f (5/p < ^ω + 1.

Throughout this paper, let ω be a positive monotone function on [0, oo)
satisfying condition (ωl).

LEMMA 4. If £ ^ max{ —1, £ω, m — n} and f is a nonnegatίve measurable

function on Rn satisfying f(y)pΩ(y)dy < oo, then
J κn

f IK..Λ.i(*, y)l/ίyWy ^M\x\' + iQ,(χ)F(x)
J Rn-B(0,2\x\)
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whenever \λ\ = m and xeRn — B(Q, 2), where M is a positive constant independent
of x, Ωe(x) = ω e ( \ x \ ) and

F(x) = ( \ f(y)pΩ(y)dy\/P.
\ Jκn-.B(0,2|x|) /

PROOF. By Lemma 2 we have

ί \κ».*.,(χ, y}\f(y)dy
J Rn-B(0,2\x\)

^M\x\ί+1\ \y\m~n~e~1f(y)dy.
J Rn-B(0,2\x\)

By Holder's inequality, we see that the right hand side is dominated by

MJxl^ 1 /
Rn-B(0,2\x\)

ίM2\x\e+1ωe(\x\)F(X)

with positive constants M^ and M2. Thus the lemma is proved.

LEMMA 2'. If 2m — n- \λ\ > e ^ -1, then

whenever \y\ ̂  2|x| α«J |y| ^ 1, where M is a positive constant independent o f x
and y.

LEMMA 3'. If 2m-n- \λ\ > £ ̂  -1, then

\Km.λ.t(x> y)\ ^ M|x | 2 m - M - | A | /z(4 |x |) whenever 1 ̂  \y\ ̂  2\x\9

where M is a positive constant independent of x and y.

Let £'ω be the smallest integer £ satisfying

Γ°° p'(m-nlp- i -

We note that e'ω = £ω or ^ω+ 1. If e'ω^£<m-n9 then we set

αoo

sp'(m-nlp- 1

(compare it with that defined for £ ^ max{^ω, m — n} ).

REMARK. If ω(r) = r-<5 on the interval (1, oo), then £ω = £'ω and, for
^ £ < m — n, we have
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where M is a positive constant independent of r > 2.

LEMMA 4'. If \λ\ = w, max{ — 1, £ω] ^ £ <m — n and f is a nonnegatίve

measurable function on Rn satisfying f(y)pΩ(y)dy < oo, then
jRn

\κm.*.i(χ> y)\f(y)dy ^ M\X\ e + 1Ωe(x)F(x)
Rn-B(0,2\x\)

for every xeRn — B(Q, 2), where M is a positive constant independent of x, Ω e(x)
= ωt(\x\) and F is as in Lemma 4.

3. //-estimates with weight

In this section we give //-estimates with weight of Dμ Kmtλtί(x9y)f(y)dy9

\μ\ = m, for functions / satisfying \f(y) \ pΩ(y)dy < oo.

We begin with showing the following technical lemma.

LEMMA 5. Let f be a nonnegative measurable function on Rn such that

If(y)pΩ(y)dy < oo. Let £ be an integer such that £ ^ max{ —1, £ω, m — n} or

max{ —1, eω] g t < m — n. For R > 1, we write

and

Ut.Rf(x)= ί Kmtλtt(x9 y)f(y)dy.
J B(0,2R)

Then UjeBLm(Lp

loc(Rn)) and UίtRf tends to UJ in BLm(Uloc(Rn)) as R^co.

PROOF. If we set Ve,Rf(x) = Kmtλtt(x9 y)f(y)dy9 then Lemmas 4
J Rn-B(Q,2R)

and 4' imply that VttRf(x) is absolutely convergent for every xeB(Q,
R). Further, since (d/dxγκm^t(x9 y) = Kmtλ+μ^ _,μ,(x, y\ we see, in view of
Lemmas 2 and 2' (cf. the proof of Lemma 4), that Vt ,R f is infinitely

differentiate and (d/dxγvttR(x) = \ Km > λ + A ί,β _,μ|(x, y)f(y)dy on 5(0, R).
J Rn-B(0,2R)

On the other hand, by Lemma 3.3 in [4], we find that Ue,RfeBLm(Lp

loc(Rn)),
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because U e , R f ( x ) = Dλkm(x-y)f(y)dy + a polynomial. Consequently,
J B(0,2R)

UJ^BLm(Lpιoc(Rw)). By Lemmas 2 and 2' again, we see that (d/dxYV^R(x) are
all convergent to 0 locally uniformly as jR-»oo on Rn, so that UίtRf(x)-*Utf(x)
in BLnKL^R")) as R-+CV. Thus Lemma 5 is proved.

REMARK. We can also prove that \Kmtλtt(x9 y)\f(y)dyeLp

loc(R"), since

f \Dλkm(x-y)\f(y)dyeLp

loc(R") and f \Km,λtί(x9 y)\f(y)dy is
Jβ(0,2K) JRn-B(0,2R)

bounded in £(0, R).

PROPOSITION 1. Let £ ^.m and ω be a positive nonincr easing function on
the interval [0, oo) satisfying (ωl) and the following conditions:

( i ) There exists a number α such that ot> n + # — m and

(ω2) J s-Λp'+nω(s)-p'lps-lds ^ Mίr-*p'+nω(r)-pΊp far any r > 1.

(ii) There exists a number β such that β<n + £ — m+l and

f*5

(ω3) s-βp'+nω(sΓpΊps~1ds^M2r-βp' + nω(rΓpΊp for any r > 0.

Here M± and M2 are positive constants independent of r. If\λ\ = \μ\ = m, then

! f(y)pΩ(y)dy( D*fκmtλtί(X9 y)f(y)dy * Ω(x)dx ^ M !

for any nonnegative measurable function f on Rn, where M is a positive constant
independent of f.

REMARK. If (ii) is fulfilled, then, since —βp' + n> p'(m - n/p - £ — l\ we
see that £^£'ω(^4ω).

PROOF OF PROPOSITION 1. By Lemma 5 we may assume that / vanishes
outside a compact set in Rn. Then it follows from [4; Lemma 5.1] that
(d/dx)μUJ(x) is of the form

' Rn-B(0,l)

with a constant a. Here \ Dμ + λkm(x — y)f(y)dy is understood to be

limr|0 Dμ + λkm(x — y)f(y)dy, which exists almost everywhere on Rn and,
J Rn-B(x,r)
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since fεLp(Rn), it belongs to LP(R") because of [4; Lemma 3.3]. For xeRn and
|μ| = m, we set

(̂0,2|x|)

« ω - f
l ( > Ji

v!)-V \
Ji

_m (v!)- V \ oΛ+"+vU - y)f(y)dy
B(0,2W)-B(0,1)

and

ι<2(x) = \ D^λkm(x-y)f(y)dy
J Rn-B(0,2\x\)

v!ΓV ί 0Λ+μ+vU - y)f(y)dy
J Rn-B(0,2\x\)-B(0,l)

= f κm,*+μ,t-m(χ,y)f(y)dy.
jRn-B(0,2\x\)

If xeB(0, 2j+1) - J5(0, 2-0, then

|Ml(x)| ^ M/l f ^ + λUx - y)f(y)dy

+

'"1
with a positive constant Mx independent of x, where A(x) = β(0, 2J"1)(J
2j+2)-B(Q, 2|x|)]. First we have by Lemma 3.3 in [4]

!
J

Ull(χ)pΩ(x)dx ^ ΣJ

f
Jβ

f(y)pΩ(y)dy

with positive constants M2 and M3 independent o f / Next, since |x — y\

^ |x|/2 for yεA(x), uί2(x) ^ M4 |x| ~n\ f(y)dy with a positive constant
Jϋ(0f4|x|)

M4 independent of x. Since ί2(x) ̂  A Ω(y) whenever yeB(Q, 4|x|), letting 0
< ^ < n//?', we have
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\P/P'
ίu12(x) Ώ(x)dX g M2 f |x| -""( f \yΓirfdy

J J \JB(OA\x\) '

x ( ί \y\d'f(yγdy\Ω(x)dX

\Jβ(0,4|x|) /

g M5 ί(|xΓap-π( ί \y\»f(yrΩ(y)dy\lx
J \ \Jβ(0,4.|x|) /

= M5 f \y\ipf(yγΩ(y)( ί |x| ^"-"
J \jRn-B(0,\y\/4)

with positive constants M5 and M6. Similarly, using (ω2), we see that

Γ Γ / Γ V/p/

w13(x)pβ(x)ί/x^ |x | ( ί~mM \yΓ*p'Ω(y)-pΊpdy\
J J \ J B(0,2|x|)-B(0,l) /

x ( |j;| (α-π- ί+ m)p/(y)pβ(^)ί/3; )β(x)rfx
\Jβ(0,2|x|) /

^ M7 ( I x Γ ΛP + nplpl + (e~ m)p( I y |(α ~ " ~ β + m)pf(y)pΩ(y)dy jdx
J \Jβ(0,2|x|) /

= M7 \\y\(a~n~ e +m}pf(y)pΩ(y)( \x\ -*P+»
J VJ Rn-B(0,\y\/2)

^ M8 \f(y)pΩ(y)dy

with positive constants M7 and M8.
On the other hand, by Lemma 2 we obtain

|n2(x)| ^M9 ί |x | ί - m + 1

J|?n-β(0,2|x|)

+ M9 f lyΓ
Jβ(0,l)-B(0,2|x|)

= M9[«21(x) + «22(x)]

with a positive constant M9. It follows from condition (ω3) that

\p/p'
y\-βp'Ω(yΓpΊpd,

' Rn-B(0,2\x\)

/ Γ
X

! \u21(x)\pΩ(x)dx ^ f |x |<«-'"W f \yΓβpΏ(yΓpΊpdy\
J J \ J Rn-B(0,2\x\) /

( f \y\V~ - ' +m~ ^f(yγΩ(y)dy\Ω(X)dx
\J Rn-B(0,2\x\) /

r/
5J(jxr,P«+(i-m+1>P

^ M10
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U \
\y\(β~n- ' +m~1)pf(y)pΩ(y)dy \dx

R"-B(0,2\x\) /

ί \
\Jβ

J
with positive constants M10 ~ M12. Letting n/p' <y <n and noting that
u22(x) = 0 for xeRn — 5(0, 1/2) and both Ω(x) and Ω(x)~i are bounded on
D"), 1), we establish

Γ Γ / Γ , \p/p'\u22(x)\pΩ(x)dx^ \y\-ypdy)
J J B(0,1/2)\J Rn-B(0,2\x\) /

\
/ B(0,l/2) \ J Λn-B(0,2|x|)

-(Iw B(0,l)-B(0,2|x|)

Jβ(0,l/2),

( ί |
\Jβ(0,l)-B(0,2|Λ:|)

ί
Jβ

/ (yYΩ(y)dy

with positive constants M13 ̂  M15. Thus Proposition 1 is proved.

PROPOSITION 2. Let £ <m and ω be a positive nonίncreasing function on
[0, oo ) satisfying (ωl) and (ii) in Proposition 1. Then the same conclusion as in
Proposition 1 holds.

The proof can be carried out in the same way as that of Proposition 1. In

fact, in this case, Dμ \Kmλ e(x, y)f(y)dy is of the form

af(x)+ \D» + λkm(x-y)f(y)dy

with a constant a, and ί y)f(y)dy u12(x) + φc)],
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where u11 and u12 are as in the proof of Proposition 1 and ι (x)

= \y\~nf(y)dy. Since u11 and u12 are evaluated in the proof of
J Rn-B(0,2\x\)

Proposition 1, we have only to treat the function v. By noting that β in (ω3) is
smaller than n, we establish

ί v(X)"Ω(X)dX ^ !( ί I
J J \ J Rn-B(0,2\x\)

* (L«j
!g M! ίT|xΓ<"+W [ \y^-n)"f(yrQ(y)dy\dX

J \ \jRn-B(0,2\x\) /

^ M2 b|(^~n)pj

with positive constants M1? M2 and M3.

REMARK. Let ω(r) = r~^ for r > 1, where (5^0. I f — l ^ ^ < m — n/p
+ δ/p < £ + 1, then ω satisfies conditions (ωl), (i) and (ii). If £ = m — n/p
+ <5/p ^ — 1, then ω satisfies (ωl) and (ii), but not (i).

In view of the proof of Proposition 1, we can establish the following
variant of Proposition 1.

PROPOSITION 3. Let ω be a positive nonincreasing function on the interval
[0, oo) satisfying condition (ωl) together with (ii) in Proposition 1. If ω* is a
positive nonincreasing function on [0, oo) such that

a \-p/p'
sp'(m -n/p-t )ω(5) - P'/PS -ιds\ for r > 2,

then

m,Λ,«(χ, y)f(y)dy

for \μ\ = m, where Ω*(x) = ω*(|x|) and M is a positive constant independent off.

REMARK. If ω satisfies condition (ωl), then we can find a positive constant
M! such that ω*(r) ̂  M^(r) for r ̂  r0 > 1. If £ ̂  ̂ ω, then ω*(r)
^ M2rP(m-n/P-e-i) for r > i wjth a positive constant M2.

PROPOSITION Γ. Let £ ^m and ω be a positive nondecreasίng function on
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the interval [0, oo) satisfying (ωl), (i), (ii) in Proposition 1 and

f00

(ω4) r'np+nω(r)r~1dr < oo.
f00

r'np+nω(r)r~1dr

?/ι

tλil(x, 3θ/UO*> P0(x)dx ^ M f
J J

for any nonnegatίυe measurable function f on Rn, where M is a positive constant
independent of f.

I
PROOF. Let / be a nonnegative measurable function on Rn such that

f(y)pΩ(y)dy < oo. As in the proof of Proposition 1, we may assume that /

vanishes outside a compact set in Rn, and write Dμ LKm;u(x, y)f(y)dy = af(x)

+ M!(X) -f M2(x)» where α is a positive constant, xεRn and |μ| = m. As in the
proof of Proposition 1, |.MI(X)| ^ M^MJ^X) + M12(x) + Wι3(x)], and we can
prove that

(u,,(xYQ(x)dx ^ M2( f(yγΩ(y)dy

and

f u13(x)pΩ(x)dx ^ M2 \f(y)pΩ(y)dy

f / Also, |

w^ίx) = |x |~ π

Jβ(0,4|x|)-B(0,l

with a positive constant M2 independent o f/ Also, |w12(x)| ^ M3[wί2(x) +

witn a positive constant M3, where w^ίx) = |x |~ π f(y)dy

and u'ί2(x) = \x\'n\ f(y)dy. We derive from (ω2)
Jβ(0,4|jc|)nB(0,l)

Γ Γ / Γ \
u'12(x)pΩ(x)dx ^ |x| -MP |y I -"''QOO-*''̂

J J \ Jβ(0,4|jc|)-β(0,l) /

β(0,4|Λ:|)

= M4 f \y\"f(yYΩ(y)( f
J \ JΛ n -
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^ M5f(yYΩ(y)dy.

Moreover, letting 0 < δ < n/p' and using (ω4), we find

f Γ / f \p

\ u'ί2(xγΏ(x)dx g |χΓπp lyΓδp'<*j>
J Jβ(0,l/4) \Jβ(0,4|x|) /

x ( f l
\Jfi(0,4|x|)

f |xΓ"p( f f(y)dy\PΩ(x)dx
J Rn-B(0,l/4) \Jβ(0,l) '

β(0,l/4) \ β ( 0 , 4 | j c | )

β(0,l)

Rn-B(0,\y\/4.)

+ M 7 f
Jβ(0,l

^ M8 f f(y)"dy ^ M9 (f(yγΩ(y)dy
Jβ(0,l) J

with positive constants M6 ~ M9.
Since the same evaluations as in the proof of Proposition 1 are true for w2,

we complete the proof of Proposition Γ.

PROPOSITION 2'. Let — 1 ̂  £ < m and ω be a positive nondecreasing
function on [0, oo) satisfying (ωl), (ω2) w/ί/z α > 0, (ω4) αwί/ (ii) zn Proposition

1. TTzew ί/z^ 5«me conclusion as in Proposition 1 holds.

PROPOSITION 3'. Le/ ω be a positive nondecreasing function on the
interval [0,oo) satisfying conditions (ωl), (ω2) vwϊ/z α > 0, (ω4) α«J (ii) ina r \-plp'

sp'(m~n/p~e)ω(sΓpΊps~1ds is
i /

nondecreasing on some interval [r0, oo); and set ω*(r) = ω*(r0) for r < r0. Then

?(x)^ ̂  M \f(y)pΩ(y)dy
J

for \μ\ = m, where Ω*(x) = ω*(|x|) α«J M w α positive constant independent off.
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4. Integral representation

Now we establish the integral representation of Beppo Levi functions as
given in the Introduction.

THEOREM 1. Let ω be a positive monotone function on the interval [0, oo)
satisfying condition (ωl), and suppose further £ω^.m — n. If u is a function in
BLm(L?oc(Rn)) satisfying (1), then there exists a polynomial P, which is
polyharmonίc of order m in Rn, such that

Λ .A.,ω(*, y)Dλn(y)dy + P(x) a.e. on Rn.

REMARK. We recall that #ω ̂ m — n/p + a/p with α = log2^4(see the
Remark given before Lemma 4). We shall show below that the degree of P is
at most max jm— 1, ^ω+l}.

PROOF OF THEOREM 1. For e ^ max { -1, £ω}, set Ut(x) = Σ\λ\=m

βλ \Kmtλιt(x9y)Dλtι(y)dy. By Lemma 5 and its Remark, Ut e BLm(Lfoc(R")) and,

moreover,

if' .Λ,,(x, y)Dλu(y)φ(x)\dydx < ao

for any φeCg(R"). By (2), there exists a number cm such that Δm

= cm Σμ| = mαAD2 λ (cf. [4; §4]). Hence we have by Fubini's theorem and the
fact that ^ίKmtλtl(x, y) - Dλkm(x - y)] = 0,

= fΣμι= m

J

= f Σw = »
J

= ί Σuι=» «/(- l)μl ί U* - y)DλΔmφ(x)d^\Dλu(y)dy
J \ J /

= Δmφ(y)u(y)dy.
J

Hence Am(u — Ue) = 0 in the sense of distributions. What remains is to show
that Pe = u — Ue is a polynomial.
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In view of Proposition 3 and the Remark after Proposition 3, we see that if
ω is nonincreasing and satisfies (ωl) and (ii) with £ = £* = max{ —1, £ω}, then
the function P^ satisfies

ί[|DμPβ*(x)|(|x| + l)m~ l l/ l'~ l*'~1] iyx < oo for \μ\ = m.

By noting that ΔmP^ = 0 on Rn and considering the Fourier transform, we find
that Pt* is a polynomial of degree at most max{m — 1, £*} (cf. [4; Lemma
4.1]). If £ ̂  max { - 1, £ω}9 then

so that Pe is a polynomial of degree at most max{m—1, £}. In case ω is
nonincreasing and satisfies (ωl) only, we see from the definition of £ω that ω(r)
^ Mrp(m~nlp~ f ω" υ for r > 1 and m - n/p - £ω - 1 < 0. If we let ω~(r) =
(r _l_ ιγ*m-nip-ίω-i)9 then u satisfies (1) with ω replaced by ω~. Since ω~

satisfies condition (ii) with £ = £~=max{ — 1, £ω + 1}, from the above
considerations we find that for £ ̂  max{ —1, £ω}9 Pe is a polynomial of degree
at most max {m — 1, £~, £}', this implies that the degree of Pίωis at most max {m
— 1, £ω + 1} and the degree of Pg, £ ̂  £ω + 1, is at most max {m — 1, ^}.

If ω is nondecreasing, then ueBLm(Lp(Rn))'9 i.e., (1) holds with
ω(r) = 1. Hence, by the above discussion, it follows that Pe#, where £* is the
integer such that £* ^ m — n/p < £* + 1, is a polynomial of degree at most m
— 1. By (3), Pe for £ ̂  max{ — 1, £ω} is a polynomial of degree at most
max{m — 1, £}. Thus the proof of Theorem 1 is completed.

The case £ω < m — n can be derived along the same lines as in the proof of
Theorem 1, by using Lemmas 2', 3' and 4' instead of Lemmas 2, 3 and 4.

THEOREM Γ. Let ω be a positive monotone function on the interval [0, oo)
satisfying condition (ωl). If £ω < m — n and u is a function in BLm(Lp

loc(Rn))
satisfying (1), then there exists a polynomial P such that

\Kmtλ9t,ω(x9u(x) = Σμι = m aλ\Kmtλ9t,ω(x9 y)Dλu(y)dy + P(x) a.e. on R".

OUTLINE OF THE PROOF. We shall deal only with the case when ω is

nonincreasing. For £ ̂  max{ - 1, £'ω}, we set 17, (x) = Σμι=m aλ \Kmtλtί(x, y)

Dλu(y)dy and Pe = u — Ue . If £ ̂  m — n, then the proof of Theorem 1 implies
that Pe is a polynomial. If £ < m — n, then from Lemmas 5 it follows that Ue

belongs to BLm(Lp

loc(Rn)), and
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f j y)Dλu(y)φ(x)\dydx < oo

for any φeC£(Rn). Therefore, as in the proof of Theorem 1, we see that Am(u
— U t ) = 0 in the sense of distributions. To show that Pg is a polynomial, we
first note that ω(r) ^ Mrp(m~nlp~ ^~l)h(r)p for r > 2 and m - n/p - £'ω - 1
< 0. Thus u satisfies (1) with ω replaced by ω~(r) = (r + l)p(m~nlp- f~>, where
β~ = max{ —1, £'ω + 1}. Moreover β~ < m and condition (ii) in Proposition 1
is satisfied with β = ^~. Consequently we can apply Proposition 2 to obtain

ί\DμPΓ(x)\pω~(\x\)dx < oo for \μ\ = m.

Thus PΓ is a polynomial, and then for e ^ C ̂  = ,̂~ - Σ I A I = « aλ [*„,.*, f(x,

is a polynomial.

5. Behavior at infinity of Beppo Levi functions

For sets E and G c #", we define Cm>p(£; G) = inf ||/|| J, where the infimum
is thaken over all nonnegative measurable functions / such that/= 0 outside G

and |x — y\m nf(y)dy ^ 1 for every xεE; for the properties of the capacity
JG

CWvp, we refer to the paper of Meyers [3]. We say that a function u is (m, p)-
quasi continuous on Rn if for any ε > 0 and any bounded open set G c Rn,
there exists an open set B c G such that Cmp(B\ G) < ε and u is continuous as a
function on G — B\ for details, we refer the reader to [4].

Let u be an (m, p)-quasi continuous function on Rn satisfying condition (1);
here ω is assumed to satisfy condition (ωl). Then Theorems 1 and 2 imply the
existence of an integer £ and a polynomial Pe of degree at most max{m — 1, £
+ 1} such that

(4) u(x) = Σ,λ|=m aλ [κmtλtt(x, y)Dλu(y)dy + Pt(x) a.e. on Rn.

If we write

- ί λ - ί

Km,λ,,(x, y)Dλu(y)dy = C/λ,R(x)f
j Rn-B(0,2R)

for Λ > 0, then we see that UλtR is (m, p)-quasi continuous on Rn and KA>Λ is
continuous on B(0, R), on account of [4; Lemma 3.3]. Hence Uλ is (m, /?)-quasi
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continuous on R", so that equality (4) holds for any x e R" — EQ9 where E0 is a
set satisfying Cmtp(E0f}B(Q, r); 5(0, 2r)) = 0 for any r > 0. We first study the
behavior at infinity of the functions Uλ. More generally, we deal with the

function U(x) = \Kmλ e(x, y)f(y)dy, where £ is an integer such that £ ^ — 1

and / is a nonnegative measurable function on Rn such that | f(y)pω( \ y \ )dy

< oo. For xeR" - 5(0, 2), write U = v + w, where

φc)= κm,λ,t(χ> y)f(y)dy
JB(0,2\x\)

and

= ί
jR n -

By Lemmas 4 and 4r, we know that

(5) |w(x)|gM|x|l + X(|

with a positive constant M independent of x.
In case £ ̂  max{0, m — n}9 by use of Lemma 3, we find a positive constant

M such that

where

and

v'(x)= \χ-y\m n

* Γ
J B(0,2\x\)-B(0,

Γ
JB<X,|:

χ - y l m "" lx|/|x
,|x|/2)

Then we first note that ι/(x) =O(|x |m~πft( |x |)) as |x| -> oo.
As to υ", by Holder's inequality we obtain

(6) i/'M

for any xeJ?n - 5(0, 2), where β;(x) = ω;(|x|) with

α sp-(m -n/p-t )h(2r/s)
p'ω(s) - pΊps

I
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α \ l / P
f(y)pΩ(y)dy\ .

3(0,2\x\) /

REMARK. Let ω(r) = r~δ for r > 1. If e < m — n/p + δ/p, then ω'e(r)

= Msm~nlp~ e +δlp\ if e = m - n/p + δ/n, then ω'e(r) ^ M2/ι(r)(log r)w for r > 2,
where M1 and M2 are positive constants.

ί

Finally we treat the function iΛ

LEMMA 6. Let f be a nonnegatίve measurable function on Rn such that

f(y)pΩ(y)dy < oo, and let φ(r) be a positive function on the interval (0, oo) for

which there exists M > 0 such that φ(r) 5̂  M φ(s) whenever 0 < r ^ s ^ 2r.
mp ^ rc, ί/*e« there exists a set E a Rn having the following properties:

(i) limlx^^xeRn.E φ(\X\rlω(\x\)1/pV(x) = 0.

(π) Σr

where Ej = E^]Bj and Gj = Bj__1(JBj(JBj+1 with Bj = 5(0, 2j) - 5(0, I^1).

If mp > n, then

ι/"(x) g M'\x\m-nl*<o(\x\ΓllPG(x) ^ M"\x\ eΩ'e(x)G(x)

for any xεR" — 5(0, 2), where M' and M" are positive constants independent of x

and f.

PROOF. The case mp > n can be derived readily from Holder's
inequality. In case mp ^ π, we choose a sequence {α,-} of positive numbers

such that limj^ a,- = oo and £j°=ι<2/ f(y)pΩ(y)dy < oo. For each positive
JG,

integer j, we define

EJ = {xεBj , v'"(x) ^ φ(2j)ω(2jΓ1/paj-1/p}.

If xεBj, then v'"(x) ^ \x - y\m'"f(y)dy. Hence it follows from the
J G

definition of Cm>p that

j !
J G

f(y)pdy ^ A2φ(2rpaj f(y)pΩ(y)dy.

This implies that E = \JJL x EJ satisfies (ii). It is easy to see that (i) is fulfilled

with this set E. Thus the lemma is proved.

In case £=-l^m-n, \Kmtλtt(x9 y)\ = \Dλkm(x - y)\ ̂ M,\x- y\m~n

9

so that
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(7) \v(x)\ ί M2\x\m-" f(y)dy + vm(x) g M3\x\ Ώ'ί(x)G(x) + M2v"(x),
\ Jβ(0,2|x|) /

where M1 ~ M3 are positive constants independent of xeRn — B(0, 2).
In case £ < m — n, by using Lemma 3', we find a positive constant Mx such

that

f(y)dy.
B(0,2\x\)

Hence Holder's inequality gives

(8) \v(x)\^M2\x\°Ω'e(x)G(x),

where M2 is a positive constant independent of x, Ω'(x) = ω't(\x\) with

α \l/p '
ω(sΓp'/psn~1ds\

and G(x) =
'B(0,2|x|)

We now define Ae(r) = re +1ωe(r) + r^ω'^r) for an integer i such that i
^ max{ —1, £ω, m — n} or max{ —1, £'ω} ^ £ < m — n. Then condition (ωl)
implies that Ae(r) ^ Mrm~n/pω(r)~1/p for r > 1, where M is a positive constant
independent of r. If ^ ^ m a x { —1, m — n}, then liminf,.^^ h(r)~1ω'e(r)

ΞΞ at > 0, so that

•)~1 [rβh(r)~\ ^ a^1 < oo.

Further we set bt = limsup,.^^ At(r)~1[rrn~nh(r)']. If £ ̂  m — n, then be < ooa r \1/P'

ωW^7^"'1^) , so
i /

that fcβ is finite, too.

THEOREM 2. Lei ω be a positive monotone function on [0, oo) satisfying
condition (ωl), and £ be given as above. If f is a nonnegative measurable

function on Rn satisfying f(y)pΩ(y)dy < oo, then there exists a set E c R" such
«/

(i) limsup^i^^^^n.^^dxl)-1!^)! < oo;

(ϋ) Σj°= i A* (2j)pω(ϊ)Cm,p(Ej; Gj) < oo,

= l f U f l j +i withBj
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= 5(0, 2j) — B(0, 2-7"1); in case mp > n, E can be taken as the empty set.

PROOF. By (5), (6), (7) and (8), we see that

(9)

Ί.' B(0,l)

for any XER" — B(09 2), where M1 is a positive constant independent of x. In
case mp ̂  n, applying Lemma 6 with φ(r) = Ae(r)ω(r)1/p

9 we see that ι/" fulfills (i)
in Lemma 6 with an appropriate set E satisfying (ii), so that

(10)

J>t

J

+ MJ>t f(y)dy < oo;

in case mp > n, this remains true if we take E as the empty set by the second
half of Lemma 6. Thus the proof of Theorem 2 is completed.

REMARK. If at = oo (this holds when £ = £ω) and be = 0, then
lim|JC |^00 jJC6Kn_£^l ί(|x|)~1M(x) = 0 in the above theorem.

In order to prove this, we write

u(x) = f Km,λίί(x, y)f(y)dy + ! Kmtλtt(x9 y)f(y)dy
J B(0,2K) J Rn-B(0,2R)

= Ue,Rf(x)+Ve,Rf(x)

for R > 1 as before. Then, by our assumptions, liπi | J C |_Q Oy4 l( |x |)~ 1 |L/i t Λ/(x)|
= 0. Next, noting that M1 in (9) is determined to be independent of/, we find
from the arguments in the proof of Theorem 2 that

α \ ι / p
f(yYΩ(y)dy\

Rn-B(Q,2R) /

with the same E as above. This proves the required assertion.

COROLLARY 1. Let ω be a positive monotone function on [0, oo) satisfying

condition (ωl), and £ be as above. If u is an (m, p)-quasi continuous function
belonging to BLm(Lfoc(Rn)) and satisfying condition (1), then there exist a
polynomial P and a set E c= Rn such that

(i) limsup, j e,_0 0 f Λ 6 Λn_£^ l(|χ|)-1 |ιι(χ)-P(χ)| < oo;

(ϋ) Σf= i Λ(2rω(2')Cm,p(£,.; G, ) < oo;

in case mp > n, E can be taken as the empty set.
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PROOF. First we can find a polynomial Pe and a set E0 such that equality
(4) holds for any xεR"-E0 and Cm>p(£0p|5(0, r); £(0, 2r)) = 0 for any r
> 0. Clearly, Cm>p(£0j; G7) = 0, so that E0 satisfies condition (ii). Therefore
the Corollary follows readily from Theorem 2.

LEMMA 7. If ω(r) = r~δ for r > 1, ί/ien £ω^m — n/p + δ/p < £ω + 1 am/

C = 4»; moreover for £ = max {-1, £ω},

At(r) ~ r

m-»lp+δ/p in case m - n/p + δ/p > £ ̂ m - n,

Ae(r) ~ reh(r)(log r)1/p' in case £ = m — n/p + δ/p ^ m — n,

Λ(r) ~ γί ™ case m — n/p + δ/p < £ and m — n ̂  £

and

Ae(r) ~ rm~nh(r) in case £ < m — n,

where φ(r) ~ ψ(r) means that 0 < lim^^ φ(r)/\l/(r) < oo.

With the aid of Lemma 7, Corollary 1 and the Remark after Theorem 2
give the following result.

COROLLARY 2. If u is an (m, p)-quasi continuous function in BLm(L$oc(Rn})
satisfying (1) with ω(r) = r~δ, then there exist a set E and a polynomial P of
degree at most max {m — 1, £}9 where £ = max { — 1, £ω}, such that

lim I v l ~(m~n/P + δ/P)Γn(\ \ P(\-\~\ — Πl im|x|->oo,xetfw-E l x l IU(X) — Γ(X)_\ — U

in case m — n/p + δ/p > £ ̂  m — n,

lim | j e H α θ i J e e Λn_£ |χ|-' W\x\)Γ\log\x\Γί/p'Lu(x) - P(x)] = 0

in case m — n/p + δ/p = £ ̂  m — n,

oo

in case m — n/p + δ/p < £ and m — n ̂  £,

ί\u(x)-P(x)\ < ao

in case £ <m — n

and

Σ; φ(2jγCmίp(Ej , Bj) < oo with φ(r) = Ae(r)ω(r)1/p ( ̂  Mrm~n/p)ι in case mp
> n, E can be taken as the empty set.

REMARK. This corollary gives the radial limit theorem [7; Theorem 3],
where the case ω(r) = 1 is treated.
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