Three Riemannian metrics on the moduli space of $\mathbf{1}$-instantons over $\boldsymbol{C P}^{\mathbf{2}}$

Katsuhiro Kobayashi
(Received May 20, 1988)

1. Introduction

The natural metric on 5 -sphere of radius 1 induces the Fubini-Study metric $g_{\text {FS }}$ on the complex projective plane $C P^{2}$. The moduli space \mathscr{M} of 1 -instantons over ($C P^{2}, g_{\mathrm{FS}}$) is homeomorphic to the cone on $C P^{2}$ (Buchdahl [B] and Furuta [F]). The generic part \mathscr{M}^{*} of the moduli space carries three natural Riemannian metrics $g_{\mathrm{J}}(\mathrm{J}=\mathrm{I}, \mathrm{II}$ and I-II). We refer to Matumoto [M] for the definition of the Riemannian symmetric tensors. In this paper we will give explicit formulas of the metrics and study their basic geometric properties.

Buchdahl and Furuta defined an $S U(3)$-equivariant diffeomorphism F : $C P^{2} \times(0,1) \cong \mathscr{M}^{*}=\mathscr{M}$-\{cone point \}. We use a local coordinate system $\mathbf{C}^{2} \times(0,1) \rightarrow C P^{2} \times(0,1)$ defined by $\left(W_{1}, W_{2}, \lambda\right) \rightarrow\left(\left[1, W_{1}, W_{2}\right], \lambda\right)$ with $W_{1}=$ $X_{1}+i X_{2}$ and $W_{2}=X_{3}+i X_{4}$. Note that $F\left(\mathbf{C}^{2} \times(0,1)\right)$ is open and dense in \mathscr{M}^{*}. The metric tensors split with respect to this coordinate system as

$$
F^{*} g_{\mathrm{J}}=\varphi_{\mathbf{J}}(\lambda) d \lambda^{2}+\psi_{\mathbf{J}}(\lambda) g_{\mathrm{FS}} \quad(\mathbf{J}=\mathrm{I}, \mathrm{II} \text { and } \mathrm{I}-\mathrm{II}) .
$$

More explicitly, we can write $\varphi_{\mathrm{J}}(\lambda)$ and $\psi_{\mathrm{J}}(\lambda)$ by using a new paramater $Z=1-\lambda^{2}$ as follows:

$$
\begin{gathered}
\varphi_{\mathrm{I}}(\lambda)=8 \pi^{2}\left(Z^{2} \log Z+3 Z \log Z-3 Z^{2}+2 Z+1\right) / Z(1-Z)^{3} \\
\psi_{\mathrm{I}}(\lambda)=4 \pi^{2}\left(-6 Z^{2} \log Z+Z^{3}+6 Z^{2}-9 Z+2\right) /(Z+2)(1-Z)^{2} \\
\varphi_{\mathrm{II}}(\lambda)=16 \pi^{2}\left(Z^{2}-2 Z+6\right) / 15 Z^{2}, \quad \psi_{\mathrm{II}}(\lambda)=8 \pi^{2}\left(-3 Z^{2}-4 Z+12\right)(1-Z) / 15 Z \\
\varphi_{\mathrm{I}-\mathrm{II}}(\lambda)=\varphi_{\mathrm{II}}(\lambda), \quad \psi_{\mathrm{I}-\mathrm{II}}(\lambda)=24 \pi^{2}\left(Z^{4}-Z^{3}+2 Z^{2}+8\right)(1-Z) / 5 Z(Z+2)^{2}
\end{gathered}
$$

In fact, $\varphi_{\mathrm{J}}(\lambda)$ and $\psi_{\mathrm{J}}(\lambda)$ are positive for $0<\lambda<1$ and g_{J} defines actually the positive definite Riemannian metrics for not only $\mathrm{J}=\mathrm{I}$ but also $\mathrm{J}=\mathrm{II}$ and I-II.

From the above formulas or their asymptotic ones given in §4, we get the following proposition, where $K_{\mathrm{J}}(u, v)(\mathrm{J}=\mathrm{I}$, II and I-II) denote the sectional curvatures of $F^{*} g_{\mathrm{J}}$.

Proposition. (a) As $\lambda \rightarrow 1$ (near the collar) all the sectional curvatures converge to the negative constant $-5 / 32 \pi^{2}$ for $\left(\mathscr{M}^{*}, g_{\mathrm{II}}\right)$ and $\left(\mathscr{M}^{*}, g_{\mathrm{I}-\mathrm{II}}\right)$. On $\left(\mathscr{M}^{*}, g_{\mathrm{I}}\right)$, we can induce a C^{∞} metric on $\partial \overline{\mathscr{M}}$ so that $\left(\partial \overline{\mathcal{M}}, g_{\mathrm{I}}\right)$ is isometric to
(CP ${ }^{2}, 4 \pi^{2} g_{\mathrm{FS}}$) and $K_{\mathrm{I}}(\partial / \partial \lambda, X)$ converges to $3 / 8 \pi^{2}$ as $\lambda \rightarrow 1$.
(b) As $\lambda \rightarrow 0$ (near the cone point),

$$
K_{\mathrm{I}}(\partial / \partial \lambda, X) \sim-3 / 8 \pi^{2}, \quad K_{\mathrm{I}}(X, Y) \sim\left(3 / 4 \pi^{2} \lambda^{2}\right)\left(K_{\mathrm{FS}}(X, Y)-1\right)-3 / 8 \pi^{2} ;
$$

$$
K_{\mathrm{II}}(\partial / \partial \lambda, X) \sim-21 / 16 \pi^{2}, \quad K_{\mathrm{II}}(X, Y) \sim\left(21 / 16 \pi^{2} \lambda^{2}\right)\left(K_{\mathrm{FS}}(X, Y)-1\right)+3 / 16 \pi^{2} \lambda^{2}
$$

$$
K_{\mathrm{I}-\mathrm{II}}(\partial / \partial \lambda, X) \sim-9 / 32 \pi^{2}, \quad K_{\mathrm{l}-\mathrm{II}}(X, Y) \sim\left(3 / 16 \pi^{2} \lambda^{2}\right)\left(K_{\mathrm{FS}}(X, Y)-1\right)-9 / 32 \pi^{2}
$$

where $X, Y \in T C P^{2}$ and K_{FS} denotes the sectional curvature of $\left(C P^{2}, g_{\mathrm{FS}}\right)$. Note that $1 \leqq K_{\mathrm{FS}}(X, Y) \leqq 4$.
(c) The volume and diameter of $\left(\mathscr{M}^{*}, g_{\mathrm{I}}\right)$ are finite and those of $\left(\mathscr{M}^{*}, g_{\mathrm{I}-\mathrm{II}}\right)$ and $\left(\mathscr{M}^{*}, g_{\mathrm{II}}\right)$ are infinite.

The computation of g_{II} is due to Hideo Doi and originally to Mikio Furuta. The author would like to thank them for permitting him to contain their results in this paper.

2. Diffeomorphism $\boldsymbol{F}: \boldsymbol{C} \boldsymbol{P}^{\mathbf{2}} \times(0,1) \cong \mathscr{M}^{*}$ due to Buchdahl and Furuta

A 1-parameter family of 1 -instantons $\nabla_{\lambda}(\lambda \in[0,1))$ is defined as follows. We define a quaternion line bundle E with $c_{2}=-1$ by $E=\left\{([X], \xi X) ; X \in \mathbf{C}^{3}\right.$, $\left.[X] \in C P^{2}, \quad \xi \in \mathbf{H}\right\}$. We identify the Lie algebra of $S U(2)$ with $\operatorname{Im} \mathbf{H}$ of imaginary quaternions as in [M]. We fix a local frame field $u: \mathbf{C}^{2}\left(\subset C P^{2}\right) \rightarrow$ $\left.E\right|_{\mathbf{C}^{2}}$ defined by $u\left(\left[1, W_{1}, W_{2}\right]\right)=\left(1+r^{2}\right)^{-1 / 2}\left(1, W_{1}, W_{2}\right)$. Then, ∇_{λ} is defined on C^{2} by

$$
\begin{align*}
& \nabla_{\lambda} u=u A_{\lambda}, \tag{2.1}\\
& A_{\lambda}=\left(1+r^{2}-\lambda^{2}\right)^{-1} \operatorname{Im}\left\{\left(\overline{W_{1}} d W_{1}+\overline{W_{2}} d W_{2}\right)+\boldsymbol{j} \lambda\left(-W_{2} d W_{1}+W_{1} d W_{2}\right)\right\},
\end{align*}
$$

where A_{λ} is a local $\operatorname{Im} \mathbf{H}$-valued 1-form. Note that this local connection extends to a connection ∇_{λ} over E and ∇_{0} is a reducible connection. A_{λ} will be called a local connection form of ∇_{λ} with respect to u.

Let \mathscr{A} be the space of self-dual connections on E. We define $S U(3)$-action on \mathscr{A} by $g \cdot V=\gamma_{g^{-1}}^{*}\left(g^{-1}\right)^{*} \nabla$, where $\gamma_{g^{-1}}: E \rightarrow\left(g^{-1}\right)^{*} E$ is a $S U(3)$-bundle equivalence and $\left(g^{-1}\right)^{*} \nabla$ is the pull back of ∇ by g^{-1}. This means in local connection forms that

$$
\begin{equation*}
g \cdot \nabla u=u A^{\prime}, \quad A^{\prime}=c^{-1} d c+c^{-1}\left(g^{-1}\right)^{*} A c \tag{2.2}
\end{equation*}
$$

where c is determined by $g^{-1}(u(w))=u\left(g^{-1} w\right) c$ and $\left(g^{-1}\right)^{*} A$ is the pull back of A by g^{-1}.

We define a smooth map $\tilde{F}: S U(3) \times(0,1) \rightarrow \mathscr{A}$ by $\tilde{F}(g, \lambda)=g \cdot \nabla_{\lambda}$. Note that the $S U(3)$-action on \mathscr{A} has $U(2)$ as isotoropy subgroup at ∇_{λ} and the
image of \tilde{F} is transverse to the action of the gauge transformation group \mathscr{G}. Moreover we have

Theorem (Buchdahl [B], Furuta [F]). The map \tilde{F} induces an $S U(3)-$ equivariant diffeomorphism $F: S U(3) / U(2) \times(0,1) \cong \mathscr{M}^{*}$.

3. Computation of the metrics

The metrics $\left(\mathscr{M}^{*}, g_{\mathrm{J}}\right)(\mathrm{J}=\mathrm{I}, \mathrm{II}$ and $\mathrm{I}-\mathrm{II})$ are $S U(3)$-invariant and F is $S U(3)$-equivariant. So, $F^{*} g_{\mathrm{J}}$ splits into $F^{*} g_{\mathrm{J}}=\varphi_{\mathrm{J}}(\lambda) d \lambda^{2}+\psi_{\mathrm{J}}(\lambda) g_{\mathrm{FS}}$, because g_{FS} is a unique $S U(3)$-invariant metric on $C P^{2}$ up to constant multiple. Define $g_{t}^{-1} \in S U(3)$ and $v \in T_{(0, \lambda)} C P^{2}$ by

$$
g_{t}^{-1}=\left[\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } v=\left.\frac{\partial}{\partial t} g_{t}^{-1}[1,0,0]\right|_{0}
$$

so that $g_{\mathrm{FS}}(v, v)=1$. Then, by the definition of the metrics

$$
\begin{align*}
& \varphi_{\mathrm{J}}(\lambda)=F^{*} g_{\mathrm{J}}(\partial / \partial \lambda, \partial / \partial \lambda)=g_{\mathrm{J}}\left(\rho_{*} \partial_{\lambda} \nabla_{\lambda}, \rho_{*} \partial_{\lambda} \nabla_{\lambda}\right) \quad \text { and } \tag{3.1}\\
& \psi_{\mathrm{J}}(\lambda)=F^{*} g_{\mathrm{J}}(v, v)=g_{\mathrm{J}}\left(\rho^{*} V, \rho_{*} V\right), \quad V=\left.\frac{\partial}{\partial t}\left(g_{t}^{-1}\right) \cdot \nabla_{\lambda}\right|_{0}, \tag{3.2}
\end{align*}
$$

because $F_{*}(\partial / \partial \lambda)=\rho_{*} \partial_{\lambda} \nabla_{\lambda}$ and $F_{*} v=\rho_{*} V$. Hereafter, we fix a local coordinate system $\mathbf{C}^{2} \rightarrow C P^{2}$ defined by $\left(W_{1}, W_{2}\right) \rightarrow\left[1, W_{1}, W_{2}\right]$ and treat an element of $\Omega^{p}(\operatorname{ad} E)$ as a local $\operatorname{Im} \mathbf{H}$-valued p-form. By derivating A_{λ} by λ and denoting $Q_{\lambda}=1+r^{2}-\lambda^{2}, \beta=\bar{W}_{1} d W_{1}+\bar{W}_{2} d W_{2}$ and $\gamma=-W_{2} d W_{1}+W_{1} d W_{2}$, we have

$$
\partial_{\lambda} \nabla_{\lambda}=2 \lambda Q_{\lambda}^{-2} \operatorname{Im} \beta+\left(2 \lambda^{2} Q_{\lambda}^{-2}+Q_{\lambda}^{-1}\right) j \gamma .
$$

Let $A_{(t)}$ be the local connection form of $\left(g_{t}^{-1}\right) \cdot \nabla_{\lambda}$ with respect to u. By (2.2), $A_{(t)}=c_{t}^{-1} d c_{t}+c_{t}^{-1}\left(g_{t}^{-1}\right)^{*} A_{\lambda} c_{t}$, where $c_{t}=\left(\cos t-W_{1} \sin t\right) /\left|\cos t-W_{1} \sin t\right|$. By derivating $A_{(t)}$ by t, we have

$$
V=-2 \lambda^{2} Q_{\lambda}^{-2} X_{1} \operatorname{Im}(\beta+j \lambda \gamma)+\lambda Q_{\lambda}^{-1} \operatorname{Im}\left(\lambda d W_{1}+j d W_{2}\right) .
$$

Denoting $d^{4}=d X_{1} \wedge d X_{2} \wedge d X_{3} \wedge d X_{4}$ and $Q=1+r^{2}$, we note also that

$$
\begin{align*}
& d W_{i} \wedge * d \overline{W_{i}}=2\left(1+\left|W_{i}\right|^{2}\right) Q^{-2} d^{4}(i=1,2), \quad d W_{i} \wedge * d W_{j}=0(i, j=1,2), \tag{3.3}\\
& d W_{i} \wedge * d \overline{W_{j}}=2 W_{i} \bar{W}_{j} Q^{-2} d^{4}(i \neq j) \quad \text { and } \quad d * d W_{j}=0
\end{align*}
$$

We will prove the formulas on $\varphi_{\mathrm{J}}(\lambda)$ and $\psi_{\mathrm{J}}(\lambda)$ in the introduction by the following (1)-(6).
(1) $\psi_{\mathrm{I}}(\lambda)=\left\langle V^{h}, V^{h}\right\rangle$: Recall $\delta_{\nabla_{\lambda}} V=-* d_{\nabla_{\lambda}} * V=-*\left\{d * V+\left[A_{\lambda}, * V\right]\right\}$. Using (3.3) we get $d * V=\boldsymbol{j}\left\{2 \lambda W_{2} Q_{\lambda}^{-2} Q^{-1}\left(\lambda^{2} Q^{-1}-1\right)\right\} d^{4}$, $\left[A_{\lambda}, * V\right]=$ $\lambda Q_{\lambda}^{-2}\left\{4 \lambda\left(\operatorname{Im} W_{1}\right) Q^{-2}+2 j W_{2}\left(\lambda^{2} Q^{-2}+Q^{-1}\right)\right\} d^{4}$ and therefore

$$
\begin{equation*}
\delta_{\nabla_{\lambda}} V=-*\left\{4 \lambda^{2} Q_{\lambda}^{-2} Q^{-2}\left(\operatorname{Im} W_{1}+j \lambda W_{2}\right) d^{4}\right\} \tag{3.4}
\end{equation*}
$$

To describe the orthogonal projection, we need the following key observation:
(3.5) Lemma. Let $X=\left(\lambda^{2}-3\right)^{-1} Q_{\lambda}^{-1} \operatorname{Im}\left\{\lambda^{2}\left(\lambda^{2}+1\right) W_{1}+2 j \lambda^{3} W_{2}\right\} \in$ $\Omega^{0}(\operatorname{ad} E)$. Then, $\delta_{\nabla_{\lambda}} d_{\nabla_{\lambda}} X=-*\left\{4 \lambda^{2} Q_{\lambda}^{-2} Q^{-2}\left(\operatorname{Im} W_{1}+j \lambda W_{2}\right) d^{4}\right\}$.

This lemma is verified by a direct calculation based on the definition of $d_{\nabla_{\lambda}}$ and $\delta_{\nabla_{\lambda}}$.

From (3.4) and (3.5) we see that V^{h} is given by $V^{h}=V-d_{D_{\lambda}} X$. Now $\left\langle V^{h}, V^{h}\right\rangle=\left\langle V-d_{\nabla_{\lambda}} X, V^{h}\right\rangle=\left\langle V, V^{h}\right\rangle=\left\langle V, V-d_{V_{\lambda}} X\right\rangle=\langle V, V\rangle-$ $\left\langle V, d_{\nabla_{\lambda}} X\right\rangle$. To compute $\left\langle V, d_{\nabla_{\lambda}} X\right\rangle$ we first calculate the integrand and get $\operatorname{Re}\left(X \wedge * d_{V_{\lambda}} X\right)=-8\left(\lambda^{2}-3\right)^{-1} Q_{\lambda}^{-3} Q^{-2}\left\{\lambda^{4}\left(\lambda^{2}+1\right) X_{2}^{2}+2 \lambda^{6}\left|W_{2}\right|^{2}\right\} d^{4}$ by using (3.3). Let $A(a, b, i)$ denote $\int_{\mathbf{C}^{2}} r^{2 i} Q_{\lambda}^{-a} Q^{-b} d^{4}$. Then, we have

$$
\left\langle V, d_{\nabla_{\lambda}} X\right\rangle=2 \int_{C P^{2}} \operatorname{Re}\left(X \wedge * d_{\nabla_{\lambda}} X\right)=-\left(\lambda^{2}-3\right)^{-1}\left(10 \lambda^{6}+2 \lambda^{4}\right) A(3,2,1) .
$$

Similarly,

$$
\begin{aligned}
\langle V, V\rangle & =-\int_{C P^{2}} \operatorname{Re}(V \wedge * V) \\
& =6 \lambda^{4}\left(\lambda^{2}-1\right) A(4,1,1)+\left(\lambda^{4}+2 \lambda^{2}\right)\{A(2,2,1)+2 A(2,2,0)\}
\end{aligned}
$$

Thus, using another expression $A(a, b, i)=\lambda^{2-2(a+b)} \int_{1-\lambda^{2}}^{1}\left(y-\left(1-\lambda^{2}\right)\right)^{i+1} \times$ $(1-y)^{a+b-3-i} y^{-a} d y$, we obtain $\psi_{\mathrm{I}}(\lambda)$ in the introduction.
(2) $\varphi_{1}(\lambda)=\left\langle\left(\partial_{\lambda} \nabla_{\lambda}\right)^{h},\left(\partial_{\lambda} \nabla_{\lambda}\right)^{h}\right\rangle$: By the definition of δ_{∇} we have $\delta_{\nabla_{\lambda}}\left(\partial_{\lambda} \nabla_{\lambda}\right)=$ $-*\left\{d * \partial_{\lambda} A_{\lambda}+\left[A_{\lambda}, * \partial_{\lambda} A_{\lambda}\right]\right\}$. By a direct computation using (3.3) we have $d * \partial_{\lambda} A_{\lambda}=0$ and $\left[A_{\lambda}, * \partial_{\lambda} A_{\lambda}\right]=0$. So, we have $\delta_{\nabla_{\lambda}}\left(\partial_{\lambda} \nabla_{\lambda}\right)=0$. In particular, $\left(\partial_{\lambda} \nabla_{\lambda}\right)^{h}=\partial_{\lambda} \nabla_{\lambda}$. Then, $\varphi_{\mathrm{I}}(\lambda)$ is calculated by a similar method as in (1).
(3) (H. Doi) $\varphi_{\text {II }}(\lambda)$: Let $F(\nabla)$ be a curvature form of a connection ∇, and let us denote $F\left(\nabla_{\lambda}\right)$ by F_{λ}. Since $d_{\nabla_{\lambda}} \partial_{\lambda} \nabla_{\lambda}=\partial_{\lambda} F_{\lambda}$, we have $\varphi_{\text {II }}(\lambda)=\left\langle\left(\partial_{\lambda} F_{\lambda}\right)^{h}\right.$, $\left.\left(\partial_{\lambda} F_{\lambda}\right)^{h}\right\rangle$ by (3.1) and the definition of the metric of type II. By a direct computation we have

$$
\begin{aligned}
F_{\lambda} & =\left(1-\lambda^{2}\right) Q_{\lambda}^{-2}\left\{K+2 j \lambda d W_{1} \wedge d W_{2}\right\} \quad \text { and } \\
\partial_{\lambda} F_{\lambda} & =2 \lambda\left(1-\lambda^{2}-r^{2}\right) Q_{\lambda}^{-3} K+2\left\{4 \lambda^{2}\left(1-\lambda^{2}\right)+\left(1-3 \lambda^{2}\right) Q_{\lambda}\right\} Q_{\lambda}^{-3} \boldsymbol{j} d W_{1} \wedge d W_{2}
\end{aligned}
$$

where K is $\left(1+r^{2}\right)^{2}$ times the Kähler form of g_{FS}, more explicitly, $K=$ $\left\{\left(1+\left|W_{2}\right|^{2}\right) d \bar{W}_{1} \wedge d W_{1}+\left(1+\left|W_{1}\right|^{2}\right) d \bar{W}_{2} \wedge d W_{2}-\bar{W}_{1} W_{2} d \bar{W}_{2} \wedge d W_{1}-\right.$ $\left.\overline{W_{2}} W_{1} d \bar{W}_{1} \wedge d W_{2}\right\}$. Since $* \partial_{\lambda} F_{\lambda}=\partial_{\lambda} F_{\lambda}$, we have $\delta_{\nabla_{\lambda}} \delta_{\nabla_{\lambda}} \partial_{\lambda} F_{\lambda}=* d_{\nabla_{\lambda}} d_{\nabla_{\lambda}} \partial_{\lambda} F_{\lambda}=$ $*\left[F_{\lambda}, \partial_{\lambda} F_{\lambda}\right]$ which vanishes because $\left[K, \boldsymbol{j} d W_{1} \wedge d W_{2}\right]=0$. This means that $\left(\partial_{\lambda} F_{\lambda}\right)^{h}=\partial_{\lambda} F_{\lambda}$. Using $A(a, b, i)$, we compute the L^{2}-norm of $\partial_{\lambda} F_{\lambda}$ and we obtain $\varphi_{\text {II }}(\lambda)$.
(4) (H. Doi) $\quad \psi_{\mathrm{II}}(\lambda)=\left\langle(X F)^{h},(X F)^{h}\right\rangle$, where $X F=\left.(\partial / \partial t) F\left(g_{t}^{-1} \nabla_{\lambda}\right)\right|_{0}$: Since $F\left(g_{t}^{-1} \nabla_{\lambda}\right)=\operatorname{Ad}\left(c_{t}^{-1}\right)\left(g_{t}^{-1}\right)^{*} F_{\lambda}$, where $\left(g_{t}^{-1}\right)^{*} F_{\lambda}$ is a pull back of F_{λ} by g_{t}^{-1}. Let $\alpha=-4 Q_{\lambda}^{-3} X_{1} \lambda^{2} K-2 j \lambda Q_{\lambda}^{-3} X_{1}\left(Q_{\lambda}+4 \lambda^{2}\right) d W_{1} \wedge d W_{2}$. Since α is self-dual, $\delta_{\nabla_{\lambda}} \delta_{\nabla_{\lambda}} \alpha=*\left[F_{\lambda}, \alpha\right]$. We note $\left[K, j d W_{1} \wedge d W_{2}\right]=0$ again and get $\left[F_{\lambda}, \alpha\right]=0$. Hence, $\alpha \in \operatorname{Ker} \delta_{\nabla_{\lambda}} \delta_{\nabla_{\lambda}}$. By a direct computation, we obtain

$$
\begin{aligned}
& X F=\left.\frac{\partial}{\partial t} c_{t}^{-1}\right|_{0} F_{\lambda}+\left.F_{\lambda} \frac{\partial}{\partial t} c_{t}\right|_{0}+\left.\frac{\partial}{\partial t}\left(g_{t}^{-1}\right)^{*} F_{\lambda}\right|_{0}=\left.\frac{\partial}{\partial t}\left(g_{t}^{-1}\right)^{*} F_{\lambda}\right|_{0}-\left[F_{\lambda}, \text { Im } W_{1}\right] \quad \text { and } \\
& \left.\frac{\partial}{\partial t}\left(g_{t}^{-1}\right)^{*} F_{\lambda}\right|_{0}=\left(1-\lambda^{2}\right) \alpha+\left(1-\lambda^{2}\right) k\left(-6 Q_{\lambda}^{-2} \lambda X_{2} d W_{1} \wedge d W_{2}\right)
\end{aligned}
$$

Since $d_{\nabla_{\lambda}} d_{\nabla_{\lambda}} i=\left[F_{\lambda}, i\right]=-4\left(1-\lambda^{2}\right) Q_{\lambda}^{-2} \lambda \boldsymbol{k} d W_{1} \wedge d W_{2}$, we can write $X F=$ $\left(1-\lambda^{2}\right) \alpha+d_{\nabla_{\lambda}} d_{\nabla_{\lambda}} \beta$, for some $\beta \in \Omega^{0}(\operatorname{ad} E)$. This implies that $(X F)^{h}=$ $\left(1-\lambda^{2}\right) \alpha$. By computing the L^{2}-norm of $\left(1-\lambda^{2}\right) \alpha$, we obtain $\psi_{\mathrm{II}}(\lambda)$.
(5) $\varphi_{\mathrm{I}-\mathrm{II}}(\lambda)$: Since $\left(\partial_{\lambda} \nabla_{\lambda}\right)^{h}=\partial_{\lambda} \nabla_{\lambda}$, we have $\varphi_{\mathrm{I}-\mathrm{II}}(\lambda)=\varphi_{\mathrm{II}}(\lambda)$.
(6) $\psi_{\mathrm{I}-\mathrm{II}}(\lambda)$: Since $* d_{\nabla_{\lambda}} V^{h}=d_{\nabla_{\lambda}} V^{h}$, we have

$$
\psi_{\mathrm{I}-\mathrm{II}}(\lambda)=\left\langle d_{\nabla_{\lambda}} V^{h}, d_{\nabla_{\lambda}} V^{h}\right\rangle=-2 \int_{C P^{2}} \operatorname{Re}\left(d_{\nabla_{\lambda}} V^{h} \wedge d_{\nabla_{\lambda}} V^{h}\right)
$$

The computation of this integral is complicated and we used the formula processing software REDUCE 3.2 to complete it.

4. Asymptotic behavior of the metrics

We will give asymptotic formulas of the metrics near the cone point and the collar. We study their sectional curvatures, too.

As $\lambda \rightarrow 0$ (near the cone point) the metrics are asymptotically

$$
\begin{aligned}
g_{\mathrm{I}} & \sim 2 \pi^{2}\left(27 \lambda^{4}+20 \lambda^{2}+10\right) d \lambda^{2} / 15+2 \pi^{2}\left(5 \lambda^{4}+6 \lambda^{2}\right) g_{\mathrm{FS}} / 9, \\
g_{\mathrm{II}} & \sim 16 \pi^{2}\left(16 \lambda^{4}+10 \lambda^{2}+5\right) d \lambda^{2} / 15+\pi^{2}\left(24 \lambda^{4}+8 \lambda^{2}\right) g_{\mathrm{FS}} / 3 \text { and } \\
g_{\mathrm{I}-\mathrm{II}} & \sim 16 \pi^{2}\left(16 \lambda^{4}+10 \lambda^{2}+5\right) d \lambda^{2} / 15+\pi^{2}\left(56 \lambda^{4}+48 \lambda^{2}\right) g_{\mathrm{FS}} / 9
\end{aligned}
$$

We take a new parameter Y defined by $Y^{2}=1-\lambda^{2}$, that is, $Y=Z^{1 / 2}$. Then, as $Y \rightarrow 0$ (near the collar) the metrics are asymptotically

$$
\begin{aligned}
g_{\mathrm{I}} \sim & 8 \pi^{2}\left(\left(26 Y^{4}+6 Y^{2}\right) \log Y+15 Y^{4}+6 Y^{2}+1\right) d Y^{2} \\
& +2 \pi^{2}\left(-12 Y^{4} \log Y-3 Y^{4}-6 Y^{2}+2\right) g_{\mathrm{FS}} \\
g_{\mathrm{II}} \sim & 16 \pi^{2}\left(5 Y^{4}+4 Y^{2}+6\right) d Y^{2} / 15 Y^{2}+8 \pi^{2}\left(Y^{4}-16 Y^{2}+12\right) g_{\mathrm{FS}} / 15 Y^{2} \quad \text { and } \\
g_{\mathrm{I}-\mathrm{II}} \sim & 16 \pi^{2}\left(5 Y^{4}+4 Y^{2}+6\right) d Y^{2} / 15 Y^{2}+48 \pi^{2}\left(2 Y^{4}-2 Y^{2}+1\right) g_{\mathrm{FS}} / 5 Y^{2} .
\end{aligned}
$$

This implies that g_{1} is C^{1}-asymptotic to the product metric near the collar and extends to the boundary of collar in C^{1} sense.

Applying the well-known lemma below to the (asymptotic) formulas of the metrics, we can easily get Proposition in the introduction.
(4.1) Lemma. $K_{\mathrm{J}}(\partial / \partial \lambda, X)=\varphi_{\mathrm{J}}^{-1} \psi_{\mathrm{J}}^{-1}\left\{-\psi_{\mathrm{J}}^{\prime \prime} / 2+\psi_{\mathrm{J}}^{\prime 2} \psi_{\mathrm{J}}^{-1} / 4+\varphi_{\mathrm{J}}^{\prime} \psi_{\mathrm{J}}^{\prime} \varphi_{\mathrm{J}}^{-1} / 4\right\}$ and $K_{\mathrm{J}}(X, Y)=\psi_{\mathrm{J}}^{-1}\left\{K_{\mathrm{FS}}(X, Y)-\psi_{\mathrm{J}}^{\prime 2} \varphi_{\mathrm{J}}^{-1} \psi_{\mathrm{J}}^{-1} / 4\right\}$, where $X, Y \in T C P^{2}$.

We recall the results of Groisser-Parker [GP2] on the metric of type I which can be applied also to a general metric on $C P^{2}$: There are a number r_{0}, a neighborhood U of the cone point $\left[\nabla_{0}\right]$ in \mathscr{M} and a diffeomorphism F_{0} : $C P^{2} \times\left(0, r_{0}\right) \rightarrow U-\left\{\left[\nabla_{0}\right]\right\}$ so that g_{I} satisfies $F_{0}^{*} g_{\mathrm{I}}=d r^{2}+r^{2}\left(g_{\mathrm{FS}}+O\left(r^{2}\right)\right)$ and the sectional curvature K_{0} of $F_{0}^{*} g_{\mathrm{I}}$ satisfies $K_{0}(\partial / \partial r, X)=O(1)$ and $K_{0}(X, Y)=$ $\left(K_{\mathrm{FS}}(X, Y)-1\right) / r^{2}+O(1)$ for $X, Y \in T C P^{2}$ as $r \rightarrow 0$ in this coordinate system. Near the collar g_{1} is C^{0}-asymptotic to the product metric $4 \pi^{2}\left(2 d t^{2}+g_{\mathrm{FS}}\right)$ for some coordinate system. We find for example that the constants $O(1)$ in the curvature K_{0} are equal to $-3 / 8 \pi^{2}$ in our standard metric case.

Followings are the graphs showing the behavior of the sectional curvatures. Let $X_{0}=\lambda^{2}$. In each case $\mathrm{J}=\mathrm{I}$, II and I-II, let $K_{i j}$ denote $K_{\mathrm{J}}\left(\partial / \partial X_{i}\right.$, $\partial / \partial X_{j}$) and put $\mathrm{c}_{1}=1 / \pi^{2}, \mathrm{c}_{2}=3 / 8 \pi^{2}, \mathrm{c}_{3}=1 / 4 \pi^{2}, \mathrm{c}_{4}=5 / 32 \pi^{2}, \mathrm{c}_{5}=21 / 16 \pi^{2}$ and $\mathrm{c}_{6}=9 / 32 \pi^{2}$. Suppose the metric is given by $g_{\mathrm{J}}=\tilde{\varphi}_{\mathrm{J}}\left(X_{0}\right) d X_{0}^{2}+\psi_{\mathrm{J}}\left(X_{0}\right) g_{\mathrm{FS}}$ and let $e_{0}=\tilde{\varphi}_{\mathrm{J}}^{-1 / 2} \partial / \partial X_{0}$ and $e_{i}=\psi_{\mathrm{J}}^{-1 / 2} \partial / \partial X_{i}(1 \leq i \leq 4)$. Then, K_{J} is calculated by

$$
K_{\mathrm{J}}\left(a_{0} e_{0}+a_{1} e_{1}, b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right)=\left(a_{0}^{2}+b_{0}^{2}\right) K_{01}+a_{1}^{2} b_{2}^{2} K_{12}+a_{1}^{2} b_{3}^{2} K_{13},
$$

where $a_{0}^{2}+a_{1}^{2}=1, \quad b_{0}^{2}+b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=1$ and $a_{0} b_{0}+a_{1} b_{1}=0$. Note that $\lambda^{2}=0$ corresponds to the cone point in these graphs.

Case of g_{1}

Case of $g_{\text {II }}$

Case of $g_{\text {I-II }}$

References

[B] N. P. Buchdahl, Instantons on CP ${ }^{2}$, J. Diff. Geom. 24 (1986), 19-52.
[DMM] H. Doi, Y. Matsumoto and T. Matumoto, An explicit formula of the metric on the moduli space of BPST-instantons over S^{4}, A Fête of Topology, Academic Press (1988), 543-556.
[F] M. Furuta, Self-dual connections on the principal $\operatorname{SU}(2)$-bundle over $C P^{2}$ with $c_{2}=-1$, Master Thesis, Univ. of Tokyo (1985).
[G] D. Groisser, The geometry of the moduli space of CP ${ }^{2}$ instantons, preprint.
[GP1] D. Groisser and T. H. Parker, The Riemannian geometry of the Yang-Mills moduli space, Commun. Math. Phys. 112 (1987), 663-689.
[GP2] D. Groisser and T. H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, preprint.
[M] T. Matumoto, Three Riemannian metrics on the moduli space of BPST-instantons over S^{4}, Hiroshima Math. J. 19 (1989), 221-224.

Department of Mathematics, Faculty of Science, Hiroshima University

