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Introduction

This paper is concerned with the Cauchy problem for an abstract quasi-

linear evolution equation of the form

du(t)/dt + A(t, u(t))u(t) =f{U u(t)), 0<t<T,

(CP)

in a pair of Banach spaces I D K Here A(t, w) is a linear operator in X

depending on t and w varies on an open subset W oΐ Y. In [6] T. Kato

established an existence theorem for (CP) in the pair of reflexive Banach spaces

X 3 Y To construct C^solutions of (CP) in the space X it is assumed in [6]

that the operators A(t, w) are the negative generators of (C0)-semigroups {exp

[ - sA(t, w)]}s^o o n x s u c h that | |exp[ - sA(t, w)] | | x < eβs for s > 0, 0 < t < T,

we Wand some constant β. In the subsequent papers [3] and [7] (see also [8]

and the references therein) he extended the results in [6] to the case in which

||exp[ - sA(t9 w)] \\x < Meβs for 5 > 0, 0 < t < T> weW and some constants

β > 0 and M > 1.

To emphasize the two cases mentioned above we use the class of negative

generators of (C0)-semigroups. Given M > 1 and β > 0, G(X, M, β) denotes

the set of all negative generators A of (C0)-semigroups {e~tA} on X satisfying

\\e~tA \\x < Meβt for t > 0. In [6] the family {A(t, w)} is contained in G(ΛΓ, 1, β)

and in [3] and [7] it is contained in G(X, M, β). However in these papers

except [7] the Banach spaces X and Yare assumed to be reflexive. In [7] the

reflexivity condition is not assumed for X and Y, but only weak solutions of

(CP) are constructed.

In [11] we eliminated the reflexivity assumption for X and Y and showed

an existence theorem of C1-solutions of (<CP) in general Banach spaces under

appropriate assumptions which were also employed in [6]. In particular,

Theorems 4.5 and 5.2 in [11] shows that the conclusions of [8; Theorem A]

remains valid without assuming the reflexivity of X and Y

This paper is a continuation of the previous paper [11], and the purpose
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here is to extend the results given in [11] to the case in which the family

{A(t, w)} is contained in G(X, M, β) for some M > 1 and β > 0. We will

obtain C1-solutions of (CP) in general Banach spaces under weaker assumptions

than those of [11]. The proof of our Main Theorem is based on the theory of

linear evolution equations advanced in [2], [4], [5] and [9] and a method of

successive approximations is applied to construct ^-solutions to (CP). Our

approach is similar to but different from that of [6]. In [6] the convergence of

the successive approximations is shown only in the X-noτm9 and then it is

shown via the reflexivity of Y that the limit of the approximations remains in Y

and is the unique solution of (CP). In this paper we prove the convergence in

the stronger norm, the Y-norm, as well as in the X-norm, and by this result we

show directly (without assuming the reflexivity) that the limit is the solution of

{CP). This is the reason why we can obtain C 1 -solutions of (CP) in general

Banach spaces.

In [11] we employed the method of the difference approximations. This

approach gives a more direct proof without going through linear theory, and

also gives an extension of [1] to the case of general Banach spaces. However

the proof given in [11] seems to be somewhat complicated, since the

assumption of [11; ^42)] on the ί-dependence of A(t, w) is weaker than the

corresponding one in [1]. Our argument in this paper is parallel to [11]

though it is rather simple, and so this paper would point out the essentials of

the previous work [11]. It is not difficult to extend our results here in the

direction as mentioned in [8], but the proof will be more complicated.

Finally, we mention that a simple proof for the convergence of the

difference approximations in the Y-norm is given in the forthcoming paper [12].

§1. Preliminary results on linear evolution equations

In this paper, we consider two real Banach spaces X and Y We denote
the norms of X and Y by \\ \\x and || | |y, respectively. The symbol B(Y, X)
denotes the set of all bounded linear operators from Y to X. The operator
norm of AeB(Y, X) is denoted by MHy,*. For brevity in notation we write
r e s p e c t i v e l y B(X) f o r B(X, X ) , B(Y) f o r B(Y, Y ) , \\A\\X f o r \\A\\XtX a n d \\A\\Y f o r
||i4||y(y if there is no ambiguity. The domain of an operator A is denoted by
D(A). Throughout this paper we impose the following condition on the pair
(X, Y) of Banach spaces:

(X) Y is densely and continuously embedded in X. There is an
isomorphism S of Y onto X.

Under assumption (X), there is c0 > 0 such that

(1.1) \\y\\x<co\\y\\γ for all yeY.
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In this section we summarize basic results on the Cauchy problem for the

time-dependent linear evolution equation

(L) du(t)/dt + A(t)u(t) =/(ί), 0 < t < T, M(0) = u0

in X obtained in [2], [4], [5] and [9], where T> 0, uoeX and

fel}(0, T; X). Our objective here is to seek the solution u of (L) satisfying

(1.2) ueC([0, Γ]; Y)(]C1 ([0, T]; Jf).

Let T> 0 and let {^(ί); 0 < ί < T} be a family of negative generators of

(C0)-semigroups {exp[ - sA(ί)]}s^0

 o n x- T r i e family {Λ(t); 0 < £ < T} is said

to be stable if there exist constants M and β such that

(1.3) llΓL =iexPC ~ SAΦ Wx ^

for every finite family ŝ  > 0, l<j<k, 0 <t1 <t2 < --- < tk< T and

/c > 1. In (1.3) the operator product on the left is assumed to be time-ordered;

namely, exp[ — SjA{t^~\ is on the left of exp[ — s^ί,-)] if tj > t0 The pair

(M, β) is called the stability index for {A(t); 0<t<T}. The set of all stable

families {A(t); 0 < t < T} (T> 0) in X with the stability index (M, β) is denoted

by 5(X, My β). At the beginning of this paper we have introduced a class

G(X, M, β) of negative generators of (C0)-semigrouρs. It should be noted that

each A(t) belongs to the class G(X, M, β), if {A(t); 0 < ί < Γ}eS(ΛΓ, M, β).

For the operators {̂ 4(ί); 0 < t < T) in (L) we assume (i), (iί) and (ίif) below:

(ί) There exist constants M and β such that

{A(t);0<t< T}eS(X,M,β).

(ii) There is a strongly measurable operator valued function B() on [0, T]

to B(X) such that

SA(t)S'x = A(t) + B(t) for te [0, Γ]

and that

Γ^W HA- ̂  ^ / ^ some λ > °

(m) Ycz D(A(ί)) /or eαc/z ίe[0, T] α«J A(t) is strongly continuous in
B{XX) on [0, Γ].

Detailed explanations concerning conditions (i), (»') and (Hi) are seen in [4].

A major part of the study of (L) consists in constructing an evolution

operator {U(t, s)} c= B(X) associated with {A(t)} which may be formulated

below.

THEOREM 1.1. Under assumptions (X)9 (i)9 (iί) and (in), there exists a unique

family {U(t, s)} a B(X) defined on the triangle
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A = {(t,s);O<s<t< T}9

with the following properties:

(a) U(t, s) is strongly continuous in B(X) on A and

II U(t9 s) \\x < Meβ(t~s) for (t9 s)eA.

(b) U(t9 s)U(s, r) = U(t, r) and U(s, s) = 1 for (ί, s)eΔ and (s9 r)eA.

(c) U{t, s)(Y) a Y9 U(t, s) is strongly continuous in B(Y) on A and

II U(t, s)\\γ < M / ( f ~ s ) for (t, S)GA,

where M = M WSWy^WS'1 \\XfY and β = λM + β.

(d) dU(t9 s)/dt = - A(t)U(t, s) and dU(t9 s)/ds = U(t9 s)A(s), both of which

exist in the strong sense in B(Y, X) and are strongly continuous in

B(Y, X) on A.

The family {U(t, s)} obtained by Theorem 1.1 is called the evolution

operator generated by {A(t)}. Theorem 1.1 was previously proved in [9] under

a stronger assumption that B( ) is strongly continuous. However, the family

{U(t, s)} satisfying (a) and (b) of Theorem 1.1 can be obtained in the same way

as in [9]. We here verify only the third assertion (c) referring to Dorroh

[2]. The last assertion (d) is obtained from (c) via a standard argument.

We first introduce the solution {W(t, s)} a B(X) of the Volterra-type

integral equation

(1.4) W(t, s) = U(t9 s) - W(t, σ)B(σ)U(σ9 s)dσ.

The integral in (1.4) is taken with respect to the strong topology of B(X). The

solution W(t9 s) of (1.4) is unique and is given by

(1.5) W(t, s) = y^°=0( — l)n'Kn(t, 5).

Here {Kn(t9 s)} c B{X) is defined by

K0(t9 s) = U(t, s) and

Kn(t,s)= \tU(t,σ)B(σ)Kn_1(σ,s)dσ (= ('Kn-i(t9τ)B(τ)U(τ9 s)c

for n > 1. Each Kn: A -• B(X) is strongly continuous and satisfies

\\Kn(t,s)\\x<M
n\

for (ί, s)eA. This implies that the series in (1.5) converges uniformly on A with

respect to B(X)-norm and that
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(1.6) II W(t, s)\\x < Mexp[(AM + β)(t - s)]

for (ί, s)eΔ. By (1.4) and (1.5) we have

(1.7) W(t, s) = U(t, s) - Γ l/(ί, σ)B(σ) W(σ, s)dσ.

Let us consider another integral equation

(1.8) Z(ί, s) = S-'Uit, s) - Z(t9 σ)B(σ)U(σ, s)dσ.

(1.8) has a unique solution Z = S~λW. On the other hand it is shown (for

instance see [2]) that Z = US'1 also satisfies (1.8). Therefore, we have

(1.9) U(t, s)S~1 = S~1W{U s) a n d || U(t, s)\\γ <

by (1.6). Now the relations (1.9) imply the assertion (c) of Theorem 1.1. These

are proved in [2] and [9]. See also [4], [5] and [11; Section 3].

With the evolution operator {U(t, s)}, the solution u of (L) is formally

given by

(1.10) u(ή = U{U 0)u0 + Γ U(t, s)f(s)ds, 0 < t < T.
Jo

The function u on [0, T] defined by (1.10) is called a mild solution of (L). For

the mild solution u to be differentiate, we need further assumptions on u0

and /.

THEOREM 1.2. Suppose that conditions (X), (i), (ίi) and (in) are satisfied, and

that uoGYandfsLl(0, T; 7)nC([0, T] ; X). Then the mild solution u of(L) is

a unique solution of (L) satisfying (1.2).

Theorem 1.2 follows immediately from Theorem 1.1 and (1.10). Before

closing this section, we state here the following lemma which will be used in

Section 3.

LEMMA 1.3. Let uoeY and /eL^O, T; 7)nC([0, T]; X). Then the
solution u of (L) satisfies

Su(t) = U(t, 0)Suo + I U(t, s){Sf(s) - B(s)Su(s)}ds.
Jo

PROOF. By (1.9) and (1.10), we have

(1.11) u(t) = U(t, 0)w0 + Γ U(t, s)f(s)ds
Jo

^ 0)Suo + [w(U s)Sf(s)dλ.
jo J
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By (1.7) and (1.11), we have

W(t, 0)Suo

= U(t9 0)Suo - \U(t, σ)B(σ)W(σ, 0)Suo dσ
Jo

= l/(ί, 0)Su0 - U(t, σ)B(σ){Su(σ) - W(σ, s)Sf(s)ds}dσ
Jo Jo

fV(ί,
Jo

and

s)Sf(s)ds

t,s)Sf(s)ds- I I \U(t,
Jo Us

= U(t,s)Sf(s)ds- dσ\ U(t, σ)B(σ)W(σ, s)Sf(s)ds.
Jo Jo Jo

Consequently we obtain

Su(t) = W(t9 0)Suo + Γ W(t, s)Sf(s)ds
Jo

P
= U(t9 0)Suo + ί/(ί, s){S/(s) - B(s)Su(s)}ds. O E D

Jo V •

§2. Basic hypotheses and main result

In this section we set up basic hypotheses on the operators appearing in

the Cauchy problem (CP) along with some comments. We consider two real

Banach spaces X and Y satisfying condition (X) described in Section 1. For

the operators A(t, w) in (CP) we assume the three conditions (Al), (A2) and (̂ 43)

below.

(Al) There exist an open subset Wof Yand To > 0 satisfying the following

properties: A(t, w)-is a linear operator in X defined for each ί e [0 , To]

and w e W. For each p > 0 there are M > 1 and β > 0 such that

{A(t, v(ή); 0 < t < T0}GS(X, M, β)

for all V{-)EDP.

Here Dp is defined by

Dp = { ι ;eC([0, T o ] ; W); \\v(t) - v(s)\\x < p\t - s\ for 0 < s < t < To}.
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By (41), each operator A(t, w) is the negative generator of a (C0)-semigroup
{exp[ — sA(t, w)]}SSr0 on X. In what follows, we always consider if as a
metric space with respect to the metric d defined by

d(w, z) = || w — z || y for w, zeW.

We will find the solutions u of (CP) satisfying

(2.1) «eC([0, T]; WOnC^IO, T]; X)

for some Te(0, T o ] which may depend on the initial value uoeW of (CP).

In [3] and [7] it is assumed that for each t e [0, T o ] and weW there is a

norm | | | | ( ί t W ) of X which is equivalent to HH^ with the following properties:

(ΛΓ1) llxH* < ^ | | x | | ( t p W ) and | |x | | ( l f W ) < λx\\x\\x

for ί e [ 0 , Γ 0 ] , wGVFfl«ί/ xeΛΓ.

(ΛΓ2) | |x | | ( f i W ) < | |x | | ( I i,, expDι(| | w - z\\x + \t - s |)]

/or ί, se[0, Γo], w, ze W and xeX.

Here Ax > 1 and μ > 0 are constants independent of ί, s, w, z and x. With
these equivalent norms the following condition is assumed in [3] and [7]:

{AY) There is β > 0 such thai

A(t, w)eG(Xiuwϊ, 1,β) for te[0, To] α ^ w e W !

where AΓ(ίw) denotes the Banach space X with the norm | | | | ( t > v v ) . We will show

that these conditions imply

PROPOSITION 2.1. Let W be an open subset of Y and let To > 0. Suppose

that (Nl), (N2) and (AY) are satisfied. Then for every p > 0 and veDp9 we have

{A(t, υ(t)) , 0 < t < T0}eS(X, ^ e x p [ μ ( p + 1)Γ O ] , β).

PROOF. Let p > 0, v e Dp and x e X. Then for every finite family

Sj > 0, 1 <j < k and 0 < tx < t2 < ••• < tk < T o, k > 1,

we have

b y (ATI), w h e r e w e w r i t e || | |, for \\'\\(tjMtj)), l<j<k. B y (AY) a n d (ΛΓ2), w e

h a v e

ί e x p C - SjA(tp ι;(
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μ(\\v(tk) - f(ί*-i)llχ + It* - ί*

x I K Γ D - ί e χ P C - sJA(h »(*/))]}* II*-1
< {expΓjSs* + μ(p + ί)(tk - t»_!)]}

x II { Π =ί exp[ - SjA(tj, »(tj))]}xlU-i,

where f7)=ί exp[ ] = 1 if k = 1. Therefore, we have

< λx{exp[μ(p + l)(ίk - ί J j J ίexpCίSi + - + sjβ}}- \\x\\,

| x | | x . Q.E.D.

The second assumption (A2) below is stronger than the assumption

employed in [7]. In fact, the assumption imposed in [7] ensures the existence

of weak solutions. However, the condition (A2) is essential for obtaining C1-

solutions.

(A2) For each weW, there is a strongly measurable operator valued

function B(-, w) on [0, To] into B(X) such that

SA(t, w)S~x = A(t, w) + B(t, w) for ίe[0, To] and weW.

There are positive numbers λB and μB such that

(2.2) | |B(t, w ) | | x < λB and \\B(t9 w) - B(t, z)\\x < μB\\ w - z | | y

for ίe[0, Γo] and w, ze W.

By (Al) and (A2), the semigroup {exp[ — sA(t, w)]} leaves Yinvariant and

the restriction of {exp[ — sA(t, w)]} to Y (which will also be denoted by the

same symbol) forms a (C0)-semigroup on Y. The infinitesimal generator of this

restriction on Yis the part of A(t, w) in Yin the sense of [4; p.242], which will

also be denoted by the same symbol A(t, w). Furthermore, for p > 0 and

veDp we have

{A(t, »(t)); 0 < t < T0}eS(Y, Af | | S | | r > x US"1 llx.r, β + MλB),

where (M, /?) is the stability index for {A(t, v(t))} in X determined by (Λl). See

[4]
Assume for the moment that (Nl), (JV2), {AV) and (A2) are satisfied. Put

lyld.») = II Sy ||(,,w) for ye Y, we W and te [0, Γ o ],

and let Y(tιW) be the Banach space Yequipped with the norm \ \(ttW). Then it is

easy to see that

w, and |y|((,w) < λγ\\y \\r
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for ί e [ 0 , Γ o ] , weW and yeY,

(N2') \y\ittW) < \y\{s,z) cxplμ(\\ w - z\\x + \t - s\)]

for ί, S G [ 0 , Γ O ] , W, ze W α/w/ ye Y, and

(AT) A(t, w)eG(^w), 1, βy) for te [0, To] and we W,

where Ay = ̂  max{||5||y i J r, US" 1 \\XtY} and βγ = β + λBλx. Instead of (Λl)

and (42), it is assumed in [7] that the equivalent norms || | |( f iW) and | | ( t § w ) exist

for each ίe[0, Γo] and we W, and that conditions (Nl), (iVl')! (N2), (N2'), (^l r)

and (i42') hold for some Ax, Ay, μ, j9 and βy. Under these assumptions together

with (A3), (2.5) and (2.6) below, the existence of weak solutions of (CP) is proved

in [7]. Our condition (A2) is stronger than the corresponding ones in [7] in

the sense described above, however, we obtain sharper results concerning C 1-

solutions than those of [7] as mentioned in the Introduction.

The third assumption on A(t, w) is concerned with the (ί, w)-dependence of

A(t, w).

(A3) For each ίe [0, To] and weW, D(A(t, w)) => Y (and hence

A(t, w)eB(Y, X) by the closed graph theorem). For each weW,

A(-,w) is strongly continuous in B(Y9 X) on [0, T o ] . There is a

positive number μA such that

(2.3) \\A(t, w) - A(t, z)\\YtX < μA\\w-z\\x for ί e [ 0 , Γ o ] and w, ze W.

From (A3), it follows that for any bounded subset B of Wthere is c(B) > 0

satisfying

(2.4) \\A(t, w)||yiX < c(B) for ίe[0, To] and weB.

We next make an assumption on the operators /(ί, w).

(/) For each t e [0, To] and weW, f(t, w) is defined and belongs to Y. For

each weW, /(•, w) is continuous in X on [0, Γo] and is strongly

measurable in Y. There are positive numbers λf, μf and μf such that

(2.5) \\f(U w)\\γ<λp

(2.6) ||/(ί, w) ~f(t, z)\\x < μf || w - z \\x and

\\f(t,w)-f(t,z)\\γ<μf\\w-z\\γ

for ί e [0 , To] and w, ze W.

Now our main result in this paper is stated as follows:

MAIN THEOREM. Suppose that conditions (X), (A\) through (A3) and (/) are

satisfied. Then for each initial value uoeW, there is a Te (0, To] such that (CP)

has a unique solution u satisfying (2.1).
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To prove the Main Theorem, we prepare some notations and

lemmas. For any initial value uoe Woϊ (CP), we choose r0 > 0 and φoeWso

that

uoeB{φo, ro)cz W,

where B(φ0, r0) = {weY; \\w — φo\\γ < r0}, and then we put

Po = coλf + c(B(φθ9 ro))(\\ φ0 | | y + r0).

Here, c0, λf and c(B(φ0, r0)) are the constants as mentioned in (1.1), (2.5) and

(2.4), respectively. Let (Λf, β) be the stability index given by (̂ 41)

for p = p0. We choose r > 0 and φe W so that

\\uo-φ\\γ<r/(Me^\\S\\YiX'\\S-1\\XtY) ( < r) and

(2.7)

£(0, r)( EE {we 7; ||w - 0 | | y < r}) cz β(0 o , r0).

In the rest of this paper we fix

(2.8) uoe W, p0 > 0, (M, β) and β(0, r)

as defined above. Let E be the set of all v satisfying

(2.9) veC([0, Γ] ; Y), v(t)eB(φ, r) for all ίe[0, T] and

(2.10) ||ι;(ί) - v(s)\\x < po\t - s\ for 0 < s < t < T.

Here TG(0, T O ] will be determined after Lemma 3.5. With this Twe define the

triangle Δ appearing in Theorem 1.1. It should be noted that E is considered

as a suset of Dpo. For brevity in notation we write

Av(t) = A(t, *(*)), Bv(t) = B(t9 v(ή) and fv(t) =/(ί, ι (ί))

for each veE and ίG[0, 71.

LEMMA 2.2. The families {Av(ή; 0<t<T9veE} and {fv\ veE} satisfy

the following:

(a) {Av(ή 0 < t < T}eS(X, M, β) for all veE.

(b) SA^ήS-1 = Av(t) + Bv(t), and \\Bv(t)\\x < λB for all ίe[0, T] and veE.

Bv() is strongly measurable on [0, T] into B{X) for each veE.

(c) Ycz D(Av(t))for each ίe[0, T] and veE, and Av( ) is strongly continuous

on [0, Γ] into B(Y9 X).

(d) feL* (0, T; y)ίlC([0, T]; X) αnJ \\fv(t)\\γ < λf for all ίe[0, T]

Here (Λf, β) is the stability index in (2.8). Lemma 2.2 follows immediately

from (Al), (A2), (A3) and (/). By Lemma 2.2, we can apply Theorem 1.1 to the

family {Av(ή}.
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COROLLARY 2.3. Let (X)9 (Al)9 (A2)9 (A3) and (/) hold. Then for each

veE there exists a unique evolution operator

{Uv(t9s)9(t9s)eA}<=B(X)nB(Y)

generated in the sense of Theorem 1.1 by {Av(ή; 0 < t < T). In particular, we

have

|| Uv(t, s)\\x < Meβit~s) and \\ Uv(t9 s)\\γ < Me^~s)

for (t9s)eA and veE, where M = Λf||S||yfjr US"1 \\XtΎ and β = β + MλB.

It should be noted that (M, β) and (M, β) are independent of (ί, s) e A and

veE. By Corollary 2.3, we have:

LEMMA 2.4. For each v9weE, ye Y and (ί, s)eA9 we have

\\Uv(t9s)y-U™(t9s)y\\x

(2.11)

^~s) \\y \\γ Γ ||ι;(σ) - w(σ) ||, dσ.

PROOF. By Corollary 2.3, we have

Ό\t9 s)y - Uw(t9 s)y = Γ l / (ί, σ)[Aw(σ) - Av(aK Uw(σ9 s)y dσ9

which is obtained by differentiating UΌ(t, σ)Uw(σ9 s)y in σ and then integrating

the resultant derivative over σe[s9f\. On the other hand, by (2.3) and

Corollary 2.3, we have

|| Uv(t9 σ ) [ Λ » - A*(σ)l U»(σ9 s)y\\x

< μAMMe^-^\\y\\γ'\\v(σ) - w(σ)\\x.

Therefore, we have (2.11). Q.E.D.

In the rest of this section, we give an outline of the proof of the Main

Theorem. Firstly, we construct approximate solutions {un} of (CP). These

are defined inductively by u° = u0 (the initial value of {CP)) and

un(t) = UU-X(U 0)u0 + I UΛ.±(t9 s)f(s9 un-Hs)) ds9 0<t<T9 n > 1,
Jo

where {Un(t9 s)} is the evolution operator generated by {A(t9 un(t))} for each

n > 0. We can choose Te(0, To] so that {un} c E. We then show that the

limit
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exists in C([0, T\; X). It should be noted that if X and Y are both reflexive,
then

(2.12) u(t)eB(φ, r) for each fe[0, T],

and u satisfies (CP) since B(φ, r) is closed in X. See [6]. However, in general,
B(φ, r) is not closed in X and so one cannot conclude (2.12) at once. Therefore
we need more detailed argument.

Secondly, we show the strong convergence in X of {Un(t, s)}:

(2.13) Ό(t, s)x = lim,,^ Un(t, s)x for (ί, s)eΔ and xeX.

After the Main Theorem is proved, we will see that {ΰ(t, s)} defined by (2.13) is
the evolution operator generated by {A(t, u(t))}.

Thirdly, we consider the integral equation

(I)Sύ(t) = ΰ(t9 0)Suo + I £7(ί, s){Sf(s, ύ(s)) - B(s, ΰ(s))Sύ(s)}ds, 0 < t < T.
Jo

In view of Lemma 1.3, we see that the solution of (CP) must be the solution ΰ of
(/) if it exists. In fact, we find the solution ΰ of (/) satisfying

ύeC(LO9T];B(φ9r)),

and then we obtain

lim^^supo^^rllw^i) - u(t)\\γ = 0.

It follows immediately that ΰ = u is the solution of (CP) satisfying (2.1).

§3. Proof of Main Theorem

We begin by defining an operator Ψ from E into C([0, Ή ; Y). We put

[Ψι;](ί) ^ UV{U 0)w0 + Γ Uv(t, s)fv(s) ds
Jo

for 0 < t < T and veE. By Corollary 2.3, Ψ is a mapping from E into
C([0, T]; Y)nC1([0, T]; X), and u = Ψv satisfies the linear evolution equation

(U) du{t)/dt + Av(t)u(t) =f*(t), 0 < t < T, iι(0) = iιo.

LEMMA 3.1. There is Te(0, To] such that ΨveE for veE.

PROOF. Let veE and u = Ψv. Then, Corollary 2.3 and Lemma 1.3
together imply ueC([0, T]; YJnCHCO, Γ]; X) and the relation

Su(t) = Uv(t, 0)Suo
Γ

Jo U
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Therefore, we have

\\u(t) - φ\\r < \\S'ι\\Xiy \\Su(t) - Sφ\\x

< \\S-ί\\x,y-\\Uv(t,0)Suo-Sφ\\x

+ IIS" 1 \\x,y Γ || U"(t, s){Sf"(s) - B°(s)Su(s)} \\x ds,
Jo

and

\\U»(t,0)Suo-Sφ\\x

< || U»(t, 0)S(uo - φ)\\x + || U'(t, 0)(Sφ - y)\\x + || U"(t, 0)y - y\\x

+ \\y-sφ\\x

< M e i > τ \ \ S \ \ Y t X - 1 | u 0 - <^lly + ( M e » τ + l)\\Sφ - y \ \ x + || U'(t, 0)y - y \ \ x

for y e Y. Furthermore,

U'(t, 0)y-y=-\ A"(τ)υ"{τ, 0)y dτ,
Jo

and ||/!"(£) || y>A: < c(B(φ, r)) by (2.9) and (2.4), and so we have

\\S-1\\x,r \\U'(t,0)Suo-Sφ\\x

+ l)\\Sφ - y\\x + c(B(φ, r))TMePT\\y\\γ}.

We write rx for the right hand side of the above inequality. Since

MeβT\\S\\YtX' U S " 1 \\XtY' \\u0 — φ\\γ < r by (2.7) and Y is dense in X, we can

choose y e Y a n d Te(0, Γo] so that r1 < r. Next, by (2.2) and (2.5) we have

r
Jo

\U"(t, s){Sf(s) - B'(s)Su(s)}h ds
)o

< Me»τ Γ ^ I I S H ^ + λB\\S\\rj[(\\u{s) - φ\\γ + || φ\\γ)} ds
Jo

< Me^WSWy^iλf + λB\\φ\\r)T+ λBMel>τ\\S\\yiX Γ | | ι ι ( s ) - ^ | | r ds.
Jo

Thus, letting r2 = r, + M e " Γ | | S | | ^ US" 1 \\XiY(λf + λB\\φ\\r)T, we have

\\u(t) - φ\\γ <r2 + λBMe<>τ\\S\\y,x- \\S~ι \\Xιϊ Γ \\u(s) - φ\\r ds,
Jo

which implies that

||tt(ί) -Φ\\Y< r 2 e x p [ ( l B M e " Γ | | 5 | | F , x IIS" 1 b . r
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Since r1 < r, we can choose a smaller number Te(0, Γo] so that

\\u(ή - φ\\γ < r

for ίe[0, T] and ι;e£. This implies (2.9). Finally, since u = Ψv is the
solution of (Lv) and u(t)GB(φ0, r0) for ίe[0, T], (2.4) implies

\\du/dt\\x < coλf + c(B(φ09 ro))||tt(ί)||y < po

From this we obtain the Lipschitz condition (2.10). Q.E.D.

In what follows, let Γe(0, To] be an arbitrary but fixed positive number
satisfying Ψ(E) a E. We make E into a metric space by the distance function

dx(v, w) = supo<^Γ||t;(ί) - w(t)\\x for v,weW.

It should be noted that E is not always complete.

LEMMA 3.2. Let c1 = μAMMep{ \\ u0 \\ γ + λfT) + μfMeβT. Then we have

(3.1) dx(Ψnv, ΨV) < ^±ΣL dx(υ, w) for v, we Wand n= 1,2, .
n\

PROOF. Let v,weE. By Lemma 2.4 and (2.6), we have

Jo ί>S ί>S X

f
Jo 'S *

ll«ollr ΐ \\υ(s) - w{s)\\x ds
Jo

f ds f||»(σ)-w(σ)||x dσ
Jo Js

+ μ /Me"Γ Γ||t;(s)-W(S)| |χ ίis
Jo

<c1-!'l\v(s)-w(S)\\x ds.
Jo

It follows that

P
II [Ψ" y](ί) — [Ψ" w](t)||χ <: c t {[c t (t — s)]" V(n — 1)!} ||D(S) —

Jo
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for n = 1, 2, . From this (3.1) follows. Q.E.D.

We define a sequence {un} in E as follows:

(3.2) u°(t) = M0 on [0, T] and un = Ψ M " " 1 for n = 1, 2, .

Then we have

COROLLARY 3.3. 77ze sequence {u"(ή} converges in X uniformly on [0, T].

Corollary 3.3 follows directly from Lemma 3.2. It will be proved that the
limit

(3.3) u{t) = \imn^ ^un(f)

gives a unique solution of (CP) satisfying (2.1). In what follows {Un(t9 s)}
denotes the evolution operator generated by {Λ(t, un(t))}.

LEMMA 3.4. There is a family {U(t, s); (ί, s)eA} of operators in B(X) such

that (a) and (b) of Theorem 1.1 hold with U replaced by ϋ, and such that

(3.4) l i m ^ s u p ^ J Un(t, s)x - U(t, s)x\\x = 0 for xeX.

PROOF. For xeX, ye Y and 1 < m < n, we have

\\Um(t,s)x-Un(t9s)x\\x

< || Um(t, s)(x - y)\\x + || Um(t9 s)y - UH(f, s)y\\x + || Un(t, s)(y - x)\\x

\x - y\\x + μAMMT\\y\\γ e?τ dx(um, u"),

by Lemma 2.4 and Corollary 2.3. Since Y is dense in X and dx(um, un)^0 as

m,n^> oo by Corollary 3.3, we have

sup ( ί, s ) eJ Um{t, s)x - Un(t, s)x\\x > 0,

as m, n -• oo. From this it follows that there is a family {U(t9 s)} of operators

in B(X) satisfying (3.4), and that U(t, s) has the properties (α) and (b) since each

Un(t, s) has the corresponding properties. Q.E.D.

We denote by Eγ the set of all functions v in C([0, T ] ; Y) satisfying

v(t)eB(φ,r) for ίe [0 , T ] .

We make Eγ into a metric space through the distance function

dγ(Ό9 w) = s u p o ^ Γ | | ϋ ( ί ) - w(t)\\γ

for v, weEγ. Eγ is a complete metric space. For each veEγ, we put

Γ
Jo

ί, s
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Φ is a mapping from Eγ into C([0, T]; Y). In the following, we will find a
smaller Te(0, T O ] SO that Φ has a fixed point.

LEMMA 3.5. There is Te(0, Γo] such that ΦveEγ for veEγ.

PROOF. Let veEγ. In the same way as in the proof of Lemma 3.1, we

have

\\Φv-φ\\γ

< IIS"1 \\XtY' {|| U(t, 0)S(uo - φ)\\x + || ϋ(t, O)Sφ - Sφ\\x}

+ US'1 \\XtY' Γ II ΰ(t, s){Sfv(s) - Bv(s)Sv(s)} \\x ds
Jo

~ Ί * , r J ^ - < / > l l r

\\U(t,O)Sφ-Sφ\\x

x | | S - 1 | | x , y μ / + ^ ( r + \\φ\\γ)}.

Therefore, by (2.7), we can choose Te(0, To] so that

| | Φ ϋ - φ\\γ <r,

since supo< ί s T II ̂ ( ^ O)S0 - Sφ\\x ->0 as Γ|0. Q.E.D.

In the rest of this section, we fix TE(0, T O ] SO that Ψ(E) c E and Φ(£)
^ £ .

LEMMA 3.6. There is a unique fixed point ϋeEγ of Φ.

PROOF. We apply the contracting mapping principle. Let v, weEγ. Then
we have

< WS-1 \\x,γ Γ || ϋ(t9 s)S{Γ(s) -Πs)} \\x ds
Jo

+ IIS-Mky Γ||ί7(ί,s){βy(5)-βw(5)}Sι;(5)||x 5̂
Jo

+ II5"J \\x,γ- Γ II Ϊ7(ί, 5)Bw(5)5{t;(5) - vφ)} H, ds
Jo

<c2Λ \\v(s)- w(s)\\γ ds,
Jo

where c2 = WS'1 \\XtY- \\S\\γtX'MeβT{μf + (r + || 0 | | y ) μ β + ^ β } . It follows that
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for n = 1,2, ... Q.E.D.

LEMMA 3.7. Let {un} a E be the sequence defined by (3.2) and ύeEγ the
unique fixed point of Φ. Then we have

\\uΛ(t) - "(Oily = 0.

PROOF. Since ΰ = Φw, we have

Sύ(t) = ϋ(t, 0)Suo + f ϋ(t, 5){S/(s, ύ(s)) - B(s, ύ(s))Sύ(s)} ds.
Jo

Since un = x¥un~1, Lemma 1.3 gives

Sun(t)=Un.1(t, 0)5wo+ Γ Un.x(t9 s){Sfn.ί(s)-Bn.1(s)Sun(s)} ds,
Jo

where we write

fn(s) =f(s, un(s)) and Bn(s) = B(s, un(s))

for n > 0, and {£/π(ί, s)} is the evolution operator generated by {Λ(t, un(t))} as
before. Then we have

\\Sun(t)-Sύ(t)\\x

<\\Un-1(t,0)Suo-U(t,0)Suo\\x

+ Γ II C/π-i(ί, s)S{f(s9 un~Hs)) -f(s, ΰ(s))} \\x ds
Jo

+ Γ II {l/a-xίt, 5) - ί/(ί, S)}5/(5, U(S))\\X ds
Jo

+ Γ II U.-Λt, ^ ^ ^ ( ^ { / ( s ) - S(s)} H, ds
Jo

+ Γ || U^dU s){B(s9 un-Hs)) - B(s9 ΰ(s))}Sΰ(s)\\x ds
Jo

+ Γ II {UH^(t9 s) - ϋ(t9 s)}B(s9 ΰ(s))Sύ(s)\\x ds
Jo

< ε π + Ϊ' {c3\\Slun(s) - ΰ(sn\\x + cJSlu"-1^) - u(sn\\x} ds,
Jo

where c3 = λBMeβT, c4 = M ^ Γ | | 5 | | y ^ H5"1 | |x > y {fif + μβ(r + ||0| |y)} and

Γ |
Jo

/n-!(ί, 5) - 0(t9 s)}Sf(s, ΰ(s))\\x
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+ s u p o < ί ^ r Γ II {!/„_!(*, s) - Ό{t, s)}B(s, ΰ(s))Sΰ(s)\\x ds.
Jo

Put pn(t) = \\Sun(t) - Sύ(ή\\x for n = 0, 1, . Then by the Gronwall's inequ-

ality, we have

P
pn(t) < εn exp(c3ί) + c 4 pn-Λs)'exp[c3 (ί - s)] ds.

Jo
Therefore, for any 0 < m < n, we have

+ c^ + 1 {(ί-s)w/m!} pπ_m_1(s) e x p [ c 3 ( ί - s ) ] ds.
Jo

Put ^k = sup^βi for k > 0. Then pk(s) < 2r | |S | | γ > Λ : for k > 0, and so the above

inequality reduces to

Pn(t) < (5π_m exp[(c3 + cJTl + 2 r | | 5 | | y , x exp(c3r) (c 4 r)- + 1 /(m + 1)!

for 0 < m < n. We have l i m ^ ^ ^ = 0 by Lemma 3.4 and the dominated

convergence theorem, and hence

limsupπ^oo [supo< ίsΓ/>„(£)] < 2r | |5 | | y > Λ : exp(c 3r) ( c 4 r ) m + 1 / ( ^ + 1)!

for any m > 0. Thus we have

^τ\\Sun{t)-Sΰ(t)\\x = O. Q.E.D.

We are now in a position to complete the proof of our Main Theorem.

PROOF OF MAIN THEOREM. Let u be the function defined by (3.3) and ΰ the

unique fixed point of Φ. By Lemma 3.7, we have u = ύeEγ and

|w'I(ί) - u(t)\\γ = 0.

Furthermore, we have

II"W - Φ)\\x < Po\t ~ s\ for (ί, s)eA,

since each un belongs to E. Therefore, we have ueE and we see that both Au(t)
and fu(t) are well defined. We will prove that {ϋ(t, s)} is the evolution
operator generated by {Au(t)}. For each yeY, 0<σ<s<t<T and
n = 1, 2, , we have

Un(t, s)y - UH(t, σ)y = | Un(t9 τ)A(τ, un(τ))y dτ.

Passing to the limit as n -• oo, we have
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U(t, s)y - Ό(t, σ)y = ['ϋ(t, τ)A"(τ)y dτ.
Jσ

This implies that

(d/ds)U(t, s)y = Ό{U s)Λu(s)y for (ί, s )eΔ and ye Y

L e t {Uu(t9 s)} b e t h e e v o l u t i o n o p e r a t o r g e n e r a t e d b y { A u ( ή } . T h e n f o r y e Y
a n d 0 < < x < s < ί < T , w e h a v e

(d/ds)O(t, s)Uu(s, σ)y = ΰ(t, s){Au(s) - Au(s)} Uu(s9 σ)y = 0.

This implies that U(t, s)y = Uu(t, s)y. Since Y is dense in X, it follows that

Ό{U s)x = Uu(t, s)x

for xeX and (ί, s)eΔ. Now, using the relations

iι"(ί) = l/.-xίί, 0)M0 + f l/^^ί, s)/(s, tt"-1^)) ds for 0 < t < T,
Jo

we have

(3.5) u(t) = Uu(t, 0)u0 + Γ l/M(ί, s)/M(5) ds for 0 < ί < Γ.
Jo

By Theorem 1.2, this implies that u is a solution of (CP) satisfying (2.1). To
prove the uniqueness, let v be any solution of (CP) satisfying (2.1). Then, in
view of the identity

(d/ds)Uu(t, s)v(s)

= l/"(ί, 5)μ«(s) - ^ϋ(5)}t;(5) + l/M(ί, s)/y(5),

we have

Γ £/"(ί,
Jo

(3.6) ι (ί) = t/"(ί, 0)w0 + Γ £/"(ί, s)/"(s)
J

+ Γ l/"(
Jo

+ Γt/"(
Jo

By (3.5) and (3.6), we have

|| u(t) - v(t) \\x < MeβT{μA maxs || v(s) \\γ + μf} j || u(s) - v(s) \\x ds.
Jo

Thus we conclude that u = v. Q.E.D.
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