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1. Introduction

A fractional 2m factorial (2m-FF) design derived from a two-symbol orthog-
onal array (O-array) of strength 2p is said to be best in the sense that all facto-
rial effects up to p-factor interactions are estimable uncorrelatedly and these
estimates have the same variance under the situation in which all (p + l)-factor
and higher order interactions are assumed to be negligible. However, such a
design can be constructed only for quite restricted number of observations.
The concept of an O-array was generalized by Chakravarti [2] to a balanced
array (B-array). A 2m-FF design derived from a two-symbol B-array of strength
2p has been investigated by several authors (see [3-15, 17-29, 32-36, 38, 39]).

It is known that there are so many designs having odd (2p 4- 1) resolution
in the class of 2m-FF designs derived from two-symbol B-arrays of strength 2p
(see [3-12, 17, 18, 20]). Yamamoto, Shirakura and Kuwada [38, 39] intro-
duced the concept of a triangular type multidimensional partially balanced
(TMDPB) association scheme among the sets of factorial effects up to p-factor
interactions of a 2m factorial design. The MDPB association scheme was first
introduced by Bose and Srivastava [1] as a generalization of the ordinary
association scheme. Yamamoto, Shirakura and Kuwada [39] obtained an ex-
plicit expression for the characteristic polynomial of the information matrix of a
balanced fractional 2m factorial (2m-BFF) design of resolution 2p + 1 by utilizing
the algebraic structure of the TMDPB association scheme. This includes the
results of a 2m-BFF design of resolution V given by Srivastava and Chopra
[27] as a special case. Yamamoto, Shirakura and Kuwada [38] also showed
that a 2m-BFF design of resolution 2p + 1 is equivalent to a design derived
from a two-symbol B-array of strength 2p provided the information matrix is
nonsingular.

It is also known that there are so many designs having even (2p) resolution
in the class of 2m-FF designs derived from two-symbol B-arrays of strength 2p
(see [19-22]). There are, however, so many designs which have neither odd nor
even resolution in the class of those designs (see [13-15, 34-36]). Yamamoto
and Hyodo [34, 35] introduced an extended concept of resolution, which
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includes both odd and even resolution as a special case. Recently, Hyodo

and Yamamoto [15] have obtained some algebraic properties of information

matrices of 2m-FF designs derived from two-symbol simple arrays (S-arrays)

which belong to a slightly restricted class of two-symbol B-arrays of strength

2p. In the class of those designs, Yamamoto and Hyodo [34-36] and Hyodo

and Yamamoto [13-15] have also obtained some designs having various type

resolution, which includes both odd and even, by utilizing the algebraic struc-

ture of the information matrix.

In this paper, we shall consider a two-symbol B-array of strength 2p, m

constraints, index set {μ(

0

2p), μ(ιp\ .., μ(ip

p)} and frequency set {z(

o

m), z{™\ . . . , z£°}

where zf* are the number of row vectors of weight j in the array. Such

an array is traditionally denoted as BA(JV, m, 2, 2p){μ%p\ μfp\ ..., μ%p

p)}9 where

N is the total number of assemblies. We, however, denote it here as

BA(m, 2p\ z(

o

m), z{™\ ..., zjj0) since the characterization of the information matrix

can be explicitly expressed by the frequencies zjm). It is well known that its

array provides us a two-symbol B-array of strength u( ̂  2p\ m constraints and

index set {μ(

0

M), μ<?\ . . ., μ™} where μ\u) = Σh=o(\P-iU)μί2p) for 0 ^ i ^ u. The

indices μ|M) are completely determined by given z*jm) as will be seen in Lemma

1. Note that the usual boundary convention for the binomial coefficient (£),

i.e., (£) = 0 if and only if ft < 0 or 0 g a < ft, will be used throughout this

paper. In Section 3, some algebraic properties of the irreducible matrix repre-

sentations based on a design derived from a BA(m, 2p; z(

o

m), z(™\ ..., zj^0) will be

investigated through the fundamental formula representing a connection be-

tween /4U) and zjm) (see [30, 31]). Using their algebraic properties, some class

of estimable linear parametric functions as well as resolution of a design derived

from a BA(m, 2p; z(

0

mV4m)» » zim]) will be obtained in Sections 4 and 5.

2. Preliminaries

Consider a 2m-FF design with m factors Fί9 . . ., Fm9 each at two levels 0 or

1. Assume that all (p + l)-factor and higher order interactions are to be

negligible for a fixed integer p satisfying 1 ^ p ^ m/2. The vp x 1 vector of

factorial effects is denoted by

(1) §.' — (θφ' , θ l 9 . . . , θm; θ 1 2 , . . . , θm-lm; ... θ ί m m . p , . . . , θ m - p + ί m )

= (θφi ΘΊ; θ'2; ... θp),

where vp = £ £ = 0 ( J ) , and θφ9 θtί and, in general, θh...ffc denote the general mean,

the main effect of the factor Fh and the /c-factor interaction of the factors

F f l, . . ., Ftk, respectively. Here θ^ denotes the (£) x 1 vector of fe-factor interac-

tions (k = 0 and k = 1 stand for the general mean, i.e., θ0 = θφ, and main effects,
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respectively). Let T be a (0, l)-array of size N x m whose rows denote the
assemblies under consideration. The linear model based on T is then given by

(2) yτ = Eτθ+eτ,

where yτ, Eτ and eτ denote a vector of N observations, the N x vp design
matrix whose elements are —1 or 1, and an N x 1 error vector with E\_eτ~\ =
0N and Cov\_eτ~\ = σ2IN, respectively. Here 0N and IN are the N x 1 vector
with all zero and the identity matrix of order N, respectively. The normal
equation for estimating θ is given by

(3) Mj = E'τyT9

where Mτ = E'TET is the information matrix of order vp.
Among the p + 1 sets of factorial effects {θφ}9 {0,J, {θtlt2}, ..., {θtι.mmtp}9 a

TMDPB association scheme is defined by introducing a natural relation of
association such that θtι tu and 0^...^ are the α-th associates if and only if

(4) \{tl9..., tu) n {t'l9..., t'v}\ = m i n (w, Ό) - a ,

where \S\ and min(w, v) denote the cardinality of a set S and the minimum of
integers u and υ, respectively.

It is well known that a TMDPB association algebra R generated by the
(p + 1)0? + 2)(2p + 3)/6 ordered association matrices D%tV) (0 <; a ^ min (M, t;);
M, t; = 0,1, ...,p) is semi-simple and completely reducible. It is decomposed
into p + 1 two-sided ideals Rb generated by (p — b -f I) 2 ideal bases
{D(«. *># : w, v = 0, 1,..., p} for b = 0, 1, ..., p. The ideal /?b is isomorphic to
the complete (p — b + 1) x (p — fr + 1) matrix algebra with multiplicity (£) —
( ^ J (= ^b> say). The details of the TMDPB association scheme and its alge-
bra can be seen in Yamamoto, Shirakura and Kuwada [38, 39] and Shirakura
[20].

It is shown in Yamamoto, Shirakura and Kuwada [38, 39] that the
information matrix Mτ of a 2m-FF design T derived from a two-symbol B-array
of strength 2p, m constraints and index set {μ(

0

2p), μfp\ ..., μ^} belongs to the
TMDPB association algebra R and is given as follows:

{?) 1V1T — ZJU=0 JL,V=O 2^a=0 Y\u-v\ + 2aυa e κ •>

or equivalently,

(6) Mτ = ΣP

b=oΣ^oΣ^oK sDrr'"+s)*eR,

where

(7) yk = ΣUo ΣU ( - l) (ϊ)(»2-VΛ)A*ί2rt for k = 0, 1,..., 2p,
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y s - r + 2 α 4 α + r ' & + S ) &>Γ 0 ̂  Γ ̂  S ̂  p - b \ b = 0, 1, . . . ,

/ i \a—c/r\/b+r—c\/m—2b—r+c\ (ίm — 2b—r\/s\\ 1/2 //s—r+c\
K~ 1) \c)\b+r-a)\ c ) \\ s-r )\r)j l\ c ) '

The irreducible matrix representation of M Γ with respect to each ideal Rb is

given by a (/? — b + 1) x (/? — b + 1) symmetric matrix JCft such that

(10)

7,0,0 ILO.I Lθ,p-b
Kb Kb Kb

kp-b,0 kp-bΛ kp-b,p-b

3. Characterization of 2m-FF designs

The following lemma is due to Yamamoto and Aratani [30, 31]:

LEMMA 1. Let T be a BA(m, 2p; z(

o

m), zψί

9..., z ^ ) . Then a connection

between μ{"] and zjm) is given by

(11) μ}«) = Σf = 0 (7ir){^jm)/(7)} /or 0 ^ i ̂  M ̂  2p ̂  m ,

vv/î r̂  μ(

0

0) = ΛΓ for convenience.

Applying Lemma 1 into (7), we have the following lemma:

LEMMA 2. For T being an array of Lemma 1, a connection between yk and

zf* is given by

(12) yk = ΣT=o { Σ U ( - for k = 0, 1, . . . , 2p .

THEOREM 3. 77ιe irreducible matrix representation Kb of the information

matrix Mτ associated with T being an array of Lemma 1 with respect to the ideal

Rb can be expressed as follows:

(13) Kb = YjL-b" {2f >/(7)}fcwk« far b = 0, 1, ..., p ,

where (r + Y)th element of the (p — b + \)-dimensional column vector kbj is

(14)

Kj = ί=o (- mrΛ
j)} {(T-f)/(m;2i)}1/2 far r = 0, 1, ..., p - b .

PROOF. Substituting (9) into (8), changing the order and region of the

summation, and using (12), we have
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(15)

κ = Σϊ-oK- i) c(ί)(m- 2r r + c){(m?r r)(ί)} 1 / 2/rr c)] ΣS=Ό (- mb:re<)y2a+M-r

= Σc=o [Q( m " 2 r r + c ){( m " s

2 -r r )( ί )} 1 / 2 /( s T c )] Σ - ό " c ( - i) f l(6T c)y2(β +c+ s-r

= Σc=o ιθ(m'2br+c){(m-s2-br)(sr)V'2/rrc+cΏ

7 = 0 lZ^«=0 2 ^ = 0 l " " 1 ^ V q ) \ m-j-q ) \ a )}

Putting x = b + r — c, 3; = 5 — r + 2c, z = m — 2b — s — r and u = m —j in

Lemma 1 of Hyodo and Yamamoto [15], the following yields

Vδ+r~~c V 2 ( f l + C ) + S ~ r f tV+ί/2(β+c)+j-r\/m-2(α+c)-s+r\/Hr-c\
Z J « = 0 Z J « = O V X^ V g M m-j-q ) \ a )

(16)
— L hh = 0 V— AJ I h )\j-b-s-c+h)

Since (TL^Ij ϋ) = 0 for < b or j > m - b, it follows from (15) and (16)

that

K ΣfV [ΣΣ

• {(m-sir
r)

The term in [ ] of (17) is identical with kr

b)
s in the formula (8) of Hyodo and

Yamamoto [15]. Thus we have

(18) fcfβ = ΣΓ-ifcfeΣ/W"V(7)}

This implies (13), since fcjjs = Kjkζj holds for 0 ^ r ^ s g p — b, as has been

given in Theorem 3 of Hyodo and Yamamoto [15]. This completes the proof.

Note that (14) is identical with the formula in Theorem 3 of Hyodo and

Yamamoto [15].

REMARK 1. It is well known that a two-symbol S-array with param-

eters (m; λθ9'λί9..., λm) belongs to a slightly restricted class of a BA(m, 2p; z(

o

m),

z(

x

m),..., zj 0) (see [16, 37]). Since z^ = φ λ , (j = 0, 1,..., m) hold for such an

S-array, (13) in Theorem 3 is a generalization of the formula (15) of Hyodo and

Yamamoto [15].

REMARK 2. Let T be a BA(m, 2p; z(

o

m), z(

x

m),..., z^ }). Then the information

matrix Mτ is also given by

Mτ = Σ?=o Σ
(19)

Σ T H
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where the vp x vp matrix M, is

M — ymin(j,m-j,p) ^p-b ^p-b (ur us \τ\(b+r,b+s)#
m j — L b o L o λ o yKbjKbjjVb

which is identical with the information matrix of a 2m-FF design 7J derived

from an atomic array of weight j in Hyodo and Yamamoto [15].

By use of Theorem 2 and Lemma 4 of Hyodo and Yamamoto [15], we can
obtain the following theorems:

THEOREM 4. Let T be a BA(m, 2p; z(

o

m), z^\ ..., z£°). Tfcen tfte determinant

of the irreducible matrix representation Kb of Mτ is represented by

* Z()
Jp-b

\b\ jLb£j0<jί<...<jp-b£m-bc*(Jθ9 Jl9 •••» jp-b)

. 7(m) (m) () £ L

where

This theorem implies that the matrix Kb is positive definite if and only if

none of the p — b + 1 frequencies zf^\ z* ™\..., zjm b̂ is zero for some choice

of {JoJi>'~Jp-b}c{b,b + l9...9m-b}. Note that c*(jojl9...,jp-b) =

c*{m -jp-b9...,m -jl9 m -j0).

THEOREM 5. The rank of Kb based on T being an array of Theorem 4 is

given by

(23) rank [ K 6 ] = min (w(zt»\ zV$lt..., z%lb),p - b + 1) for b = 0, 1, . . . , p ,

where w(x') denotes the number of nonzero elements of a row vector x'.

REMARK 3. The matrices Kb have the following properties:

(i) 0 ^ rank [X f t + 1 ] ^ rank [Kh~\ ^ min (rank [ X 6 + 1 ] + 2, p - b + 1)

for b = 0, 1, ..., p - 1.

(ii) If rank [X f t] = r, then the first r rows in Kb are always linearly

independent.

4. Estimable linear parametric functions in 2IN-FF designs

Consider a 2m-FF design T derived from a BA(m, 2p; z(

o

m), z^, . . . , z^}).

Let i4f Γ)( = (i4f•">)') (0 ̂  α ̂  M ̂  i; ^ p) be the (?) x (?) local association matrix

of the TMDPB association scheme (see [38]). Further let Ab

u-v)*( = {Aγu)*)')
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(0 g b ^ u ^ v ^ p) be the (™) x (™) matrix which is linearly linked with Λ ^ as

follows (see [24, 39]):

(24) 4 " y ) = Σ ϊ - o 4«'y )4M ' ι ? ) # foτO£a£u£Ό£p

and

(25) Λ < T ) # = Σu

a=0 zfcΌ)A™ f o r O ^ b ^ u ^ v ^ P ,

where

/O/C\ -ba x τ(u'v)/fίm\ίu\( m~u \\
\A^) Z(UfV) — ψbZba /{{u){a)\v-u+a)i -

The matrices Ah

UtV)* have the following properties:

(27) 4

(28)

(29)

and

(30)

where δab and G p X 9 denote Kronecker's delta and the p x q matrix with all

unity, respectively. It follows from (28) that the vector of u-factor interactions

is given by

Note that (i) every element of the vector of linear parametric functions A(g'u)* θu

(0 ^ u ^ p) represents the average of the effects of w-factor interactions, (ii) the

elements of A^*^ (b Φ 0; 1 ^ u ^ p) represent the contrasts between these

effects, (iii) any two contrasts, one belonging to 4"'M ) #ϋ< a n ( i the other to

A{"'u)# θu (b φ c\ 2 ^ u ^ p\ are orthogonal, and (iv) there are φb linearly

independent functions of θu in 4"'")#fi< ( O ^ ^ M O ^ M ^ P ) . Applying the

arguments used in Theorems 8, 9 and 10 of Hyodo and Yamamoto [15], we get

the following theorems.

THEOREM 6. Every estimable linear parametric function of θ in T being a

BA(m, 2p; ztf\ zf\ . . ., z£>) is given by

(32)
for an arbitrary xbj e R{b); b^j^m — b, b = 0, 1, . . . , p .

There are £?=o φb min (w(zb

m\ z$l9..., rf£±b\ p - b + 1) linearly independent

functions of θ in φ.
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THEOREM 7. For T being an array of Theorem 6, the vector of linear

parametric functions Λb

SfS)#Q, is estimable if and only if

(33) rank [X ] = rank [Kfc* : /6«] ,

where X? = [ z f ^ w , 4 ϊ i * ω + i , •••> *£&**«-*] ^ Λ ( s ) denotes the (p - b + 1) x
1 canonical basis vector whose (s — b + l)th element is unity.

REMARK 4. It can be also shown that the vector of linear parametric

functions £f=f, (asAb

b's)#)Ab

SfS)#θs is estimable for a given constant vector ab =

(ab, ab+ί9..., ap)
f if and only if

(34) rank [X?] = rank [ X ? : α 6 ] .

THEOREM 8. For T being an array of Theorem 6, the vector of s-factor

interactions 6̂  is estimable if and only if

(35) rank [X?] = rank [X : /,«] for all b e {0, 1,..., 5}.

REMARK 5. The vector of ft-factor interactions θh is not estimable if and

only if

(36) rank [X?] Φ rank [Xb* : /fc

(/l)] for some b e {0, 1,..., h}.

To illustrate the usefulness of the results in this section we present an

example here.

EXAMPLE 1. Consider a 2m-FF design T derived from a BA(m, 2p; z(

o

m), z{^\

. . ., zjj0) for the cases of m = 2p, 2p + 1 and 2p + 2 under the assumption that

all (p -I- l)-factor and higher order interactions are to be negligible. For p = 1,

2 and 3, some class of estimable linear parametric functions in T is given in

Tables 1.1, 1.2 and 1.3, respectively. Every estimable linear parametric function

in T can be also obtained by linear combinations of each component of the

estimable class.

m

2

3

4

Conditions

Z(2) > 0 (/ =

z[2) > 0, z\2)

z!3) > 0 (i =

zί 4 ) > 0 (i =

z(

2

4) > 0, zί 4 )

TABLE 1.1. The

on

0, 2), z{2) = 0

= 0 (i = 0, 2)

0, 3), zj3) = 0 (7 = 1,

0, 4), zj4) = 0 (7 = 1,

= 0 (i = 0, 1, 3, 4)

case p =

2)

2,3)

1, i.e., θ' = (θφ;θ[).

The class of estimable linear parametric

functions

ίJ;;ί : ; : ; ;:ί!
{(Mί/ 1'^}
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TABLE 1.2. The case p = 2, i.e., & = (Θφ; θ[ θ'2).

465

Conditions on

BA(wi,4;zJΓ)

fz
(Γ),...,z£l))

The class of estimable linear parametric

functions

zj*> > 0 (i = 1, 3), zj4) = 0 (j = 0, 2, 4)

z|4> > 0 (i = 1, 3), z<0

4> + z<*> > 0,

z<4) = 0

z<4) > 0 (i = 0, 2, 4), zj4) = 0 ( = 1, 3)

zj5) > 0 (i = 1, 4), zj5) = 0 0 = 0, 2, 3, 5)

z< 5 ) > 0 (i = 2, 3), zj5) = 0 ( = 0,1, 4, 5)

z< 5 ) > 0 (i = 1, 4), z(

0

5) + zψ > 0,

zj5> = 0 (j = 2, 3)

{θl9

{θu 5ll2θφ - (21I2A$>2)#)A{

O

2'2)#Θ2,

A[2'2)*Θ2,A
{

2

2'2)*Θ2}

{ΘΦ,ΘUA{

O

2'2)ΦΘ2,A[2'2)ΦΘ2}

zj6) > o (i = 1, 5),

zf) = 0 (7 = 0, 2, 3, 4, 6)

z<6) > 0 (i = 2, 4),

zf) = 0 (7 = 0, 1, 3, 5, 6)

z\6) >0(i= 1, 5), z(

0

6) + z(

6

6) > 0,

zf> = 0 (7 = 2, 3, 4)
z!6) > 0 (i = 0, 3, 6),

zf = 0 (7 = 1, 2, 4, 5)

A[2>2)*θ2}

{Θu15ίl2θφ-(A^

A[2>2)*Θ2,A2

2>2)*Θ2}

TABLE 1.3. The case p = 3, i.e., θ' = (θφ; θ[; θ'2; θ'3).

Conditions on

BA(m,6;z (

0

m ),z (im ),...,4m ))

The class of estimable linear parametric

functions

z(6) > o (i = 1, 4, 5),

z}6) = 0 0 = 0, 2, 3, 6)

z(6> > 0 (i = 1, 4, 5), zS)6) + z(

6

6) > 0,

z[6) > 0 (i = 2, 3, 4),

zj6) = 0 ( = 0, 1, 5, 6)

z<6) > 0 (i = 0, 2, 4, 6),

zf> = O ( ; = l , 3 , 5 )

z! 6 ) > 0 (i = 2, 4, 5),

z<>6) + z<6) + z(

6

6> > 0, z<36) = 0

z(6) > o (/ = 1, 3, 5),

zj6) = 0 ( = 0, 2, 4, 6)

z(6) > o (i = 1, 3, 5), z(

0

6) + z(

6

6) > 0,

zf = 0 ( = 2, 4)

{βj, 3 5 1 / 20, + (14 31/2A$<2)*)A{

O

2'2)*Θ2

3ΘΦ - (5ίf2A<0

0>3)*)A$>3)#θ3. A[3>3)#θ3,

A[2'2)*Θ2,A2

2'2)ΦΘ2

+ (21I2A2

2'3)*)A2

3'3)*Θ3}

A{?>3)*θ3, Aψ3)*θ3, Aψ3)*θ3)

\Vφ>2l>22>A0 Ξ3> A2 £3ί

{θφ, θu θz, A (

o

3 '3 ) #^3, i4(

1

3'3)#fi3, A

{θφ, θu 02, Ai3>3)*θ3i AΫ'VtO,,
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TABLE 1.3. (continued)

Conditions on The class of estimable linear parametric

ψ\ zψ\ ..., zj£°) functions

z\η) >0(i= 1, 5, 6), z<,7) + z(

7

7) > 0,

zj7 ) = 0 (j = 2, 3, 4)

zj7 ) > 0 (i = 0 ,1, 4, 7),

z<7> = 0 (j = 2, 3, 5, 6)

zj7 ) > 0 (i = 1, 4, 6), z(

0

7) + z(

7

7) > 0,

zj7> = 0 (j = 2, 3, 5)

zj7) > 0 (i = 0, 2, 5, 7),

zj
7> = 0 (j = 1, 3, 4, 6)

zj7 ) > 0 (i = 0, 3, 4, 7),

zj7 ) = 0 (j = 1, 2, 5, 6)

zj7) > 0 (/ = 2, 5, 6),

z(7) + ZΠ) + z(7, > O j z(7) = 0 ( = 3, 4)

zj8) > o (ί = 1, 5, 6), { 0 2 , θi

z<8> = 0 (j = 0, 2, 3,4, 7, 8) 1

zj8> > 0 (i = 1, 6, 7), zif> + z<8

8> > 0,

zj8 ) = 0 (j = 2, 3, 4, 5)

zj
8> > 0 (ί = 1, 5, 7), z(

0

8) + z(

8

8) > 0, {θφ, 0 1 } ̂
( o 2 ' 2 ) # 0 2 , A (

o

3 ' 3 ) # 0 3 ,

zj8> = 0 ( = 2, 3, 4, 6) Λ<1

2 2 ) # 0 2 , Aγ>3)#θ3, A2

2-2)*θ2

zj8 ) > 0 (i = 0, 2, 6, 8),

z<8> = 0 (j = 1, 3, 4, 5, 7)

zj8 ) > 0 (i = 0, 3, 5, 8),

zj8> = 0 ( = 1, 2, 4, 6, 7)

zj8 ) > 0 (i = 1, 4, 7),

zj8) = 0 ( j = 0, 2, 3, 5, 6, 8)

zj8) > 0 (i = 2, 4, 6),

z}8) = 0 (; = 0, 1, 3, 5, 7, 8)

z<8> > 0 (f = 3, 4, 5),

zj8> = 0 ( = 0, 1, 2, 6, 7, 8)
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TABLE 1.3. (continued)

467

Conditions on

BA(m, 6; zg">, z(?\ ..., z£°)
The class of estimable linear parametric

functions

zj8 ) > 0 (i = 2, 6, 7),

z(

0

8) + z(8> + z(

8

8) > 0,

zj8) = 0 ( = 3, 4, 5)

zj8) > 0 (i = 1, 4, 7), z(

0

8) + z(

8

8) > 0,

j8) 2 3 5 6 )

{θφ, θu θ2f A{

0

3'3)*θ3, A[3'3)*θ3,

{θφ, θu 0 2 , A$>3)*θ3, A^3)*θ3,

5. Resolution of 2m-FF designs

An extended concept of resolution has been defined by Yamamoto and

Hyodo [34, 35] as follows:

DEFINITION 1. Let Pp = {0,1,..., p} and S cz Pp . Then a 2m-FF design is

said to be of resolution R(S\Pp) if

(i) D(Q'S)Θ, i.e., a vector of s-factor interactions θs,

is estimable for every se S

and

(ii) D$'h)θ9 i.e., a vector of ̂ -factor interactions θh,

is not estimable for every he Pp — S.

(37)

(38)

Note that resolution R(PP\PP) and R(Pp-{p}\Pp) (or R(PP - {0, p}\Pp))

correspond, respectively, to resolution 2p + 1 and 2p.

DEFINITION 2. A 2m-FF design of resolution R(S\PP) is said to be balanced

and denoted by 2m-BFF design of resolution R(S\Pp) if the covariance matrix of

the BLUE of £ S € S Do's)Q is invariant under any permutation of m factors.

Now we consider a 2m-FF design T derived from a BA(m, 2p; z(
o
m), z{?\ . . . ,

zjj0). The following theorems, which can be obtained by the arguments similar
to Theorems 11 and 12 of Hyodo and Yamamoto [15], are useful for classifying
the designs by the structure of resolution.

THEOREM 9. An array T is a 2m-BFF design of resolution R(S\PP) if and

only if T satisfies the following conditions:

(39) (i) rank [X?] = rank [Xf : /b
(s)] for every b e {0, 1, . . . , s} (s e S)
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and

(40) (ii) rank [X?] Φ rank [K* : /><*>] /or some ft e {0, 1, ...,ft} (ΛeP p - S).

THEOREM 10. Λn array Γ is a 2m-BFF design of resolution R(Pp\Pp), i.e.,

2p + 1, if and only if the vector of p-factor interactions θp is estimable.

We now present some examples to illustrate the usefulness of Theorems 9

and 10.

EXAMPLE 2. Let T be a 2m-FF design derived from a BA(m, 2p; z(

o

m),

z\m),..., z[£°) and m = 2p9 2p + 1 and 2p + 2. For p = 1, 2 and 3, all designs

under considering possible combination of the ranks of the irreducible matrix

representations Kθ9 Kl9 . . ., Kp can be classified as in Tables 2.1, 2.2 and 2.3,

respectively.

TABLE 2.1. The case p = 1, i.e., Pj = {0,1}.

m Resolution Conditions on BA(m, 2; z(

o

m), zξ10,..., z{™])

i.e., Ill z<,2), zψ > 0 for some g e {0, 2}

., II z!2) > 0 (i = 0, 2), z(!2) = 0; or

zψ > 0, z\2) = 0 (ί = 0, 2)

K^IPj) others

3 K({0, 1} |PJ), i.e., Ill zg

3\ z[3) > 0 for some h e {1, 2}, # e {0, 1, 2, 3} - {/ι}

K({0}|Pi), i.e., II z\3) > 0 (i = 0, 2), zj3) = 0 ( = 1, 2)

R^IPj) others

i.e., Ill zg*\ z^4) > 0 for some h e {1, 2, 3},

9 e {0,1, 2, 3, 4} - {/i}

., II z! 4 ) > 0 (i = 0, 4), zj4) = 0 ( = 1, 2, 3); or

z(

2

4) > 0, zj4) = 0 (/ = 0, 1, 3, 4)

R(Φ\Pι)

m Resolution

TABLE 2.2. The

others

case p = 2, i.e., P2

Conditions

= {0,1,2}.

on BA(m, 4; zg"»,

Λ({0, 1, 2}|P2), i.e., V z<,4), z£4), z(

2

4) > 0 for some h e {1, 3},

i.e., IV zί4) > 0 (/ = 1, 3), zj4) = 0 ( = 0, 2, 4);

zj4) > 0 (i = 1, 3), z(

0

4) + z(

4

4) > 0, z(

2

4) = 0; or

z(
4> > 0 (i = 0, 2, 4), zj4) = 0 (j = 1, 3)

zj*> > 0 (i = 0, 3, 4), zj4) = 0 ( = 1, 2); or

zj4) > 0 (i = 0, 1, 4), zj4) = 0 ( = 2, 3)

others
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TABLE 2.2. (continued)

m

5

Resolution Conditions on BA(m, 4; z^\ ..., z™)

Λ({0,l,2}|P2),i.e.,V

R({0}\P2)

R(φ\P2)

z<5), z{

h

5\ z\5) > 0 for some i e {2, 3},

h e {1, 2, 3, 4} - {i}, g e {0, 1,. . . , 5} - {i, h)

z\5) > 0 (ί = 1, 4), z(

0

5) + z(

5

5) > 0, zj5 ) = 0 ( = 2, 3)

z p) > 0 (i = 1, 4), zj5 ) = 0 ( = 0, 2, 3, 5); or

z\5) > 0 (i = 2, 3), zj5 ) = 0 ( ; = 0, 1, 4, 5)

z\5) > 0 (i = 0, 4, 5), zj5 ) = 0 ( = 1, 2, 3);

z< 5 ) > 0 (i = 0, 1, 5), z<5> = 0 (7 = 2, 3, 4);

z! 5> > 0 (i = 0, 3), zf> = 0 (j = 1, 2, 4, 5);

zj5) > 0 (i = 2, 5), zj5 ) = 0(j = 0, 1, 3, 4);

z\5) > 0 (/ = 0, 3, 5), z< 5 ) = 0 0" = 1, 2, 4); or

zj5 ) > 0 (i = 0, 2, 5), zj5 ) = 0 ( = 1, 3, 4)

others

R({0,l,2}|P2),i.e.,V

R({0}\P2)

zf\ z{

h

6\ z\6) > 0 for some i e {2, 3, 4},

h e {1, 2, 3, 4, 5} - {*}, g e {0, 1,. . . , 6} - {i, fc}

z! 6 ) > 0 (i = 1, 5), z(

0

6) + 4 6 ) > 0,

z<6> = 0 (j = 2, 3, 4); or

z(.6> > 0 (i = 0, 3, 6), zj6 ) = 0 (j = 1, 2, 4, 5)

z<6) > 0 (i = 1, 5), zj6 ) = 0 ( = 0, 2, 3, 4, 6); or

z\6) > 0 (i = 2, 4), zj6 ) = 0 ( = 0, 1, 3, 5, 6)

zS6) > 0 (i = 0, 5, 6), zj6 ) = 0 ( = 1, 2, 3, 4);

z(
6> > 0 (/ = 0, 1, 6), zj6 ) = 0 ( = 2, 3, 4, 5);

z\6) > 0 (i = 0, 4, 6), zj6 ) = 0 (j = 1, 2, 3, 5); or

z!6> > 0 (i = 0, 2, 6), zj6 ) = 0 ( 7 = 1, 3, 4, 5)

others

TABLE 2.3. The case p = 3, i.e., P 3 = {0, 1, 2, :

m

6

Resolution Conditions on BA(m, 6; i

Λ({0, l ,2,3} |P 3 }, i.e., VII

Λ({0,l} |P 3 )

h e

z\6)

z< 6 )

z( 6 >

z[ 6)

z ί 6 )

zj6)

z!6)

z<6>

z[6\ zf\ zf > 0 for some i e {2, 4},

{1, 2, 4, 5} - {/}, 6f e {0, 1, 2, 4, 5, 6} - {i, h}

> 0 (i = 0, 2, 4, 6), zj6) = 0 0" = 1, 3, 5);

> 0 (i = 2, 4, 5), z(

0

6) + z(i6) + z(

6

6) > 0, z(

3

6) = 0;

> 0 (i = 1, 2, 4), z(

0

6) + z(

5

6) + z(

6

6) > 0, zf = 0;

> 0 (i = 1, 3, 5), zj6) = 0 (j = 0, 2, 4, 6); or

> 0 (i = 1, 3, 5), z(

0

6) + z(

6

6) > 0, zj6) = 0 ( = 2, 4)

> 0 (i = 2, 3, 4), zj6) = 0 ( = 0, 1, 5, 6)

> 0 (i = 1, 4, 5), z(

0

6) + z(

6

6) > 0,

= 0(j = 2, 3); or

> 0 (/ = 1, 2, 5), z(

0

6) + z(

6

6) > 0, zj6) = 0 ( = 3, 4)

>0(i= 1, 4, 5), zj6) = 0 (7 = 0, 2, 3, 6); or

> 0 (i = 1, 2, 5), zj6) = 0 (j = 0, 3, 4, 6)

> 0 (i = 0, 1, 5, 6), zj6) = 0 (j = 2, 3, 4);

> 0 {ί = 0, 4, 5, 6), zj6) = 0 ( = 1, 2, 3);
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TABLE 2.3. (continued)

Resolution Conditions on BA(m, 6; zf\ zf\ ..., z™)

zj6) > 0 (i = 0, 1, 2, 6), zj6) = 0 0 = 3, 4, 5);

z<6) > 0 (i = 0, 1, 4),.z}6) = 0 0 = 2, 3, 5, 6);

z< 6 ) > 0 (i = 2, 5, 6), z< 6 ) = 0 0 = 0, 1, 3, 4);

z< 6 ) > 0 (i = 0,1, 4, 6), zj6) = 0 0 = 2, 3, 5);

z<6> > 0 (i = 0, 2, 5, 6), zj6) = 0 0 = 1, 3, 4);

z< 6> > 0 (f = 0, 3, 6), zj6) = 0 0 = 1. 2, 4, 5);

zj6) > 0 (i = 0, 3, 5, 6), zj6) = 0 0 = 1, 2, 4);

ZJ
6> > 0 (i = 0,1, 3, 6), zj6) = 0 0 = 2, 4, 5);

z<6> > 0 (i = 0, 3, 4, 6), zj6) = 0 0 = 1, 2, 5); or

z<6) > 0 (i = 0, 2, 3, 6), zj6) = 0 0 = 1, 4, 5)

Λ(^|P3) others

Λ({0, 1, 2, 3}|P3}, i.e., VII z<7), z^7), zj7), zj7) > 0 for some e {3, 4},

{ } { }
zί7) > 0 (i = 2, 5, 6), z(

0

7) + z(i7) + z(

7

7) > 0,

zj7) = 0 0 = 3, 4); or
zj7) > 0 (i = 1, 2, 5), z(

0

7) + z<6

7) + z(

7

7) > 0,
zj7> = 0 ( ; = 3,4)

zj7) > 0 (i = 0, 2, 5, 7), zj7) = 0 (7 = 1, 3, 4, 6); or

zί 7 ) > 0 (i = 0, 3, 4, 7), z] 7 ) = 0 0 = 1, 2, 5, 6)

z!7) > 0 (i = 1, 5, 6), z(

0

7) + z(

7

7) > 0,

zj7) = 0 0 = 2, 3, 4);

zj7) > 0 (i = 1, 2, 6), z(

0

7) + z(

7

7) > 0,

zj7) = 0 0 = 3, 4, 5);

zS7) > 0 (i = 1, 4, 6), z(

0

7) + z(

7

7) > 0,

zj7) = 0 O = 2,3,5);

z! 7 ) > 0 (i = 1, 3, 6), z(

0

7) + z(

7

7) > 0,

zj7> = 0 0 = 2,4,5);

zj
7) > 0 (/ = 0, 1, 4, 7), zj7) = 0 0 = 2, 3, 5, 6); or

z}7> > 0 (i = 0, 3, 6, 7), z] 7 ) = 0 0 = 1. 2, 4, 5)

z! 7 ) > 0 (i = 0, 1, 6, 7), zj7) = 0 0 = 2, 3, 4, 5);

zj7) > 0 (/ = 0, 5, 6, 7), zj7) = 0 O = 1, 2, 3, 4);

zj
7> > 0 (/ = 0, 1, 2, 7), zj7) = 0 0 = 3, 4, 5, 6);

zj7) > 0 (i = 0, 1, 5, 7), zj7) = 0 0 = 2, 3, 4, 6);

zj.
7> > 0 (i = 0, 2, 6, 7), zj7) = 0 0 = 1, 3, 4, 5);

zj7) > 0 (i = 0, 4, 6, 7), zj7) = 0 0 = 1, 2, 3, 5);

zj7) > 0 (i = 0, 1, 3, 7), zj7) = 0 0 = 2, 4, 5, 6);

zj7) > 0 (i = 0, 4, 5, 7), zj7) = 0 0 = 1» 2, 3, 6);

z<
7> > 0 (i = 0, 2, 3, 7), zj7) = 0 O = 1, 4, 5, 6);

zj7> > 0 (i = 0, 2, 4, 7), zj7) = 0 0 = 1, 3, 5, 6); or

z!7) > 0 (/ = 0, 3, 5, 7), zj7) = 0 0 = 1, 2, 4, 6)

others
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TABLE 2.3. (continued)

Resolution Conditions on BA(w, 6; z(

o

m), zf\

z^8), z{8\ z\8\ zj8) > 0 for some j e {3, 4, 5}

i e {2, 3, 4, 5, 6 } - { ; } , Λ 6 {1,2,..., 7 } - •

^G{O,l,.. .,8}-{i,7,Λ}

z!8) > 0 (i = 2, 6, 7), z(

0

8) + z(

x

8) + z(

8

0) > 0,

Λ({0, 1,2,3}|P
3
), i.e., VII

R({0,2}\P
3
)

Λ({0,l}|P
3
)

z<
8
> > 0 (i =

z<
8
> = 0 (j =

zj
8)
 > 0 (i =

zj
8
> = 0 (7 =

z<
8
> > 0 (i =

zj
8)
 > 0 (/ =

zj
8)
 > 0 (i =

zj
8)
 > 0 (i =

zj
8)
 > 0 (i =

zj
8)
 > 0 (i =

zj
8
> = 0 (7 =

zj
8)
 > 0 (i =

z
j
8
> = 0 0' =

zj
8)
 > 0 (i =

z<
8
> = 0 ( =

z!
8
> > 0 (i =

zj
8)
 = 0 ( =

zj
8)
 > 0 (i =

z<
8)
 > 0 (i =

zj
8)
 > 0 (i =

zj
8
> > 0 (i =

z!
8
> > 0 (i =

zj
8)
 > 0 (/ =

zj
8)
 > 0 (i =

zj
8)
 > 0 (/ =

zj
8)
 > 0 (i =

z\
S)
 > 0 (i =

z!
8
> > 0 (/ =

z<
8
> > 0 (i =

zj
8
> > 0 (i =

z
(
8
> > 0 (i =

zj
8
> > 0 (i =

zj
8)
 > 0 (i =

zj
8)
 > 0 (i =

z\
8)
 >0(i =

z
j
8
> > 0 (i =

zS
8)
 > 0 (i =

zj
8)
 > 0 (i =

zj
8
* > 0 (i =

1, 2, 6), z
(

0

8)
 + z<

7

8)
 + z

(

8

8)
 > 0,

3, 4, 5); or

1, 4, 7), z
(

0

8)
 + z

(

8

8)
 > 0,

2, 3, 5, 6)

0, 2, 6, 8), zj
8)
 = 0 ( = 1, 3, 4,

0, 3, 5, 8), zj
8)
 = 0 (j = 1, 2, 4,

1, 4, 7), zj
8)
 = 0 (7 = 0, 2, 3, 5,

2, 4, 6), zj
8)
 = 0 (7 = 0, 1, 3, 5,

3, 4, 5), zj
8)
 = 0 ( = 0, 1, 2, 6,

1, 6, 7), z
(

0

8)
 + z

(

8

8)
 > 0,

2, 3, 4, 5);

1, 2, 7), z
(

0

8)
 + z

(

8

8)
 > 0,

3, 4, 5, 6);

1, 5, 7), z
(

0

8)
 + z

(

8

8)
 > 0,

2, 3, 4, 6); or

1, 3, 7), z
(

0

8)
 + z

(

8

8)
 > 0,

2, 4, 5, 6)

1, 5, 6), zj
8)
 = 0 ( = 0, 2, 3, 4,

2, 3, 7), zj
8)
 = 0( ; = 0, 1, 4, 5,

0, 1, 7, 8), zj
8)
 = 0 ( = 2, 3, 4,

0, 6, 7, 8), zj
8)
 = 0 (7 = 1, 2, 3,

0, 1, 2, 8), zj
8)
 = 0 (7 = 3, 4, 5,

0, 1, 6, 8), zj
8)
 = 0 (7 = 2, 3, 4,

0, 2, 7, 8), zj
8)
 = 0 (7 = 1, 3, 4,

0, 5, 7, 8), zj
8)
 = 0 (7 = 1, 2, 3,

0, 1, 3, 8), zj
8)
 = 0(7 = 2, 4, 5,

0, 1, 5), zj
8)
 = 0(7 = 2, 3, 4, 6,

3, 7, 8), zj
8)
 = 0 (7 = 0, 1, 2, 4,

0, 1, 5, 8), zj
8)
 = 0 (7 = 2, 3, 4,

0, 3, 7, 8), zj
8)
 = 0 (7 = 1, 2, 4,

0, 5, 6, 8), zj
8)
 = 0 (7 = 1, 2, 3,

0, 2, 3, 8), z)
8 )
 = 0 (7 = 1, 4, 5,

0, 2, 5, 8), zj
8)
 = 0 (7 = 1, 3, 4,

0, 3, 6, 8), zj
8)
 = 0 (7 = 1, 2, 4,

0, 4, 8), zj
8)
 = 0 (7 = 1, 2, 3, 5,

0, 4, 7, 8), zj
8)
 = 0 (7 = 1, 2, 3,

0, 1, 4, 8), zj
8)
 = 0 (7 = 2, 3, 5,

0, 4, 6, 8), zj
8)
 = 0 (7 = 1, 2, 3,

0, 2, 4, 8), z]
8 )
 = 0 (7 = 1, 3, 5,

5,7);

6,7);

6,8);

7, 8); or

7,8)

7, 8); or

6,8)

5,6);

4,5);

6,7);

5,7);

5,6);

4,6);

6,7);

7,8);

5,6);

6,7);

5,6);

4,7);

6,7);

6,7);

5,7);

6,7);

5,6);

6,7);

5,7);

6,7);
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TABLE 2.3. (continued)

m Resolution Conditions on BA(m, 6; z(

o

m), z{"\..., zf })

zjβ) > 0 (i = 0, 4, 5, 8), zj8) = 0 ( = 1, 2, 3, 6, 7); or

zj8) > 0 (i = 0, 3, 4, 8), z< 8 ) = 0 (7 = 1, 2, 5, 6, 7)

R(φ\P3) others

EXAMPLE 3. For p = 1, 2 and 3, the resolution of a 2m-FF design derived

from a BA(m, 2p; z(

o

m), z(

x

m),..., z£°) can be classified into one of the following

possibilities given in Tables 3.1, 3.2 and 3.3, respectively. In these Tables, the

symbols © and x stand for the existence and non-existence of a design having

specified resolution, respectively. The symbol * indicates the existence of a

design having specified resolution for every m ^ 2p.

TABLE 3.1. The case p = 1, i.e., P t =

Resolution

*K({0,l,2,3}|P

Λ({0,l,2}|P3),
R({1, 2}|P3), i.e

*/?({0,2}|P3)

*R({0, 1}|P3)

R({2}\Pi)
Λ({1}|P3)

*R({0}\P3)

*R(φ\P3)

Resolution

*R({0, 1}|J

*R({0}\Pί)

*R(Φ\Pi)

TABLE 3.2.

Resolution

*K({0,l,2}|P2),i.e.

*K({0, 1}|P2), i.e., I

*K({1}|P2), i.e., IV

*R({0}|P2)

*R{φ\P2)

TABLE 3.3.

m: 6

,), i.e., VII O

i.e., VI O

., VI x

Θ
Θ
X

O
Θ
O

p i ), i.e.,

i, i.e., I]

III

The case p

, V

V

The case p =

1

o
Θ
X

O
Θ
X

X

Θ
Θ

8

Θ
Θ
X

O
Θ
O
X

Θ
Θ

= 2, i.e., P

m = 4

Θ
O
X

O
Θ

: 3, i.e., P 3

9

Θ
Θ
X

Θ
Θ
X

O
O
Θ

m

= {0,1

10

Θ
Θ
Θ
Θ
Θ
Θ
X

O
Θ

^ 2

Θ
O
Θ

1,2}.

,2,3}.

11

Θ
Θ
X

Θ
O
X

X

Θ
Θ

m ^ 5

O
O
Θ
Θ
Θ

12

O

o
X

o
o
Θ
X

Θ
O

13

Θ
Θ
X

Θ
Θ
X

O
Θ
Θ

14

Θ
Θ
X

Θ
Θ
O
Θ
Θ
O

15

Θ
O
X

O

o
X

X

O
Θ
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Note that Tables 3.1-3.3 include the results of Hyodo and Yamamoto [15]
as a special case.
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