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The aim of this paper is to study the asymptotic and (\jj, p)-integral equiv-
alence of differential systems of the form

(a) x'(t) e A(t)x(t) + F(t, x(ί), Sx(t)),

(b) y'(t) = A(t)y(t),

where A(t) is an n x n matrix-function defined on J = [0, oo) whose elements
are integrable on compact subsets of J; x and y are n-dimensional vectors, S is
a continuous operator mapping the set Bψ(J) of continuous and ^-bounded
functions defined on J to Bψ(J) in the sense that if xn -+ x then Sxn -> Sx (precise
definitions are given below) e.g.

Sx(ί):= K(t, s)x(s) ds ,

under certain conditions on the function K(t, s\ and F(ί, w, v) is a nonempty,
compact and convex subset of Rn for each (ί, M, υ) e J x Rn x Rn.

By a solution of (a), we mean an absolutely continuous function x(ί) on
some nondegenerate subinterval of J which satisfies (a) almost everywhere (a.e.).

DEFINITION 1 (A. Hascak and M. Svec [10]). Let ψ(t) be a positive
continuous function on an interval [ί0, oo) and let p > 0. We shall say that
two systems (a) and (b) are (ψ, p)-integral equivalent on [ί0, oo) iff for each
solution x(t) of (a) there exists a solution y(t) of (b) such that

(c) ψ - l ( t ) \ x ( t ) - y ( t ) \ e L p ( [ t θ 9 < x > ) )

and conversely, for each solution y(t) of (b) there exists a solution x(t) of (a)
such that (c) holds.

By a restricted (ψ, p)-integral equivalence between (a) and (b) we shall mean
that the relation (c) is satisfied for some subsets of solutions of (a) and (b), e.g.
for the ^-bounded solutions.
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We shall say that a function z(t) is ^-bounded on the interval [ί0, oo) iff

sup I \l/~l(ί)z(t) I < oo .
f^*o

REMARK 1. In [17], two examples are given which demonstrate that, in

general, integral equivalence does not imply asymptotic equivalence, and con-

versely, asymptotic equivalence does not in general imply integral equivalence.

Now we shall define some notions and give preliminary results which will
be needed in the sequel.

We shall write | | for any convenient matrix (vector) norm. Let A be a
subset of Rn. Then \A\ := sup {|α|: a e A}. Ln

p(J) will denote n-th Cartesian

product of Lp(J). B(I) will denote the space of all continuous functions from
/ := [ί0, oo) to Rn. Let ψ(t) be a positive continuous function on [ί0, oo). For
z e B(I\ we denote

Let Bφ(J) := {z e B(J) : \z\φ < oo}. Then Bφ(J) with the norm | |^ is a Banach
space. For p > 0, we denote

Further, let φ(t) be a positive continuous function defined on J. By

Lp φ(J) (1 ̂  p < oo) we shall denote the set of all real-valued measurable func-

tions y(t) defined on J such that

αoo \ l / p

\φ-l(s)y(s)\'ds) < o o .
3 /

Lp φ(J) with the norm \'\ptψ is also a Banach space.

It is easy to prove the following lemma.

LEMMA 1. Let g: J x J —> J be a function such that

i) g(t, x) is monotone nondecr easing in x for each fixed t e J;
ii) 0(ί, c) E Lp,(J) for each c^O.

Then the set

Lp',φ,g(J) '•= {y e Lp.ttp(J): there are nonnegative constants c, K

such that \y(t)\ ^ Kφ(t)g(t, c) a.e. on J}

is a linear subspace of Lp, φ(J).

DEFINITION 2. Let a function g fulfil the hypothesis i) of Lemma 1. A set
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A of functions which are defined on J is g-bounded iff there are two non-
negative constants c and K such that

\y(t)\ ^ Kφ(t)g(t, c) a.e. on J

for each y e A.

COROLLARY 1. Let a function g fulfil the hypotheses of Lemma 1. Then
each g-bounded set A is also bounded in the space Lp. φ(J).

The converse of Corollary 1 is not true: boundedness in Lp^φ(J) does not
imply ^-boundedness, as the following example shows.

EXAMPLE 1. Let φ(t) = 1 and g(t, x) = e~\ t e J. It is easy to see that φ
and g fulfil the assumptions of Lemma 1. Then the set {yn} of functions

1, tεAn:= \J[k-2-\k-\
yn(t) := \

0, t€R-An

is bounded in Lp,(J\ p' e [1, oo), but it is not 0-bounded.

Let X and Y be topological spaces. Let us denote by 2Y the family of all
nonempty subsets of the space Y and let cf (Y) be the set of all nonempty closed
and convex subsets of Y.

DEFINITION 3 (C. Berge [2]). A mapping F:X-+2Y is upper semicon-
tinuous at a point x e X iff for an arbitrary neighbourhood OF(X} of the set-
image F(x) there exists such a neighbourhood Ox of the point x that F(OX) c
0F(X), where

F(0X):= U F(z).
zeOx

This mapping is said to be upper semicontinuous iff it is upper semicontinuous
at each point x e X.

DEFINITION 4 (W. Sobieszek [14]). A mapping F:X^2Y is upper semi-
compact (sequentially upper semicontinuous) at the point x e X iff from the
assumptions xn -> x, xn e X, yn e F(xn) it follows that there exists a subsequence
of the sequence {yn} which converges to some y e F(x).

DEFINITION 4' (W. Sobieszek and P. Kowalski [15]). A mapping F is said
to be upper semicompact at a point x e X iS it is upper semicontinuous at the
point x and the set F(x) is compact.
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It turns out (see Theorem 1 and Corollary 2 below) that Definitions 4 and
4' are equivalent under some additional assumptions.

THEOREM 1. Let X fulfil the first axiom of countability and let Y be such
that compactness and sequential compactness are equivalent in Y.

Then F is upper semicompact at a point xe X in the sense of Definition 4 if
and only if it is upper semicompact at x in the sense of Definition 4'.

Theorem 1 is a generalization of Theorem 4 of [15], but its proof is
formally the same. The hypotheses of Theorem 4 of [15] will not be fulfilled in
our case and thus it is not applicable in this case.

COROLLARY 2. Let X and Y be metric spaces. Then F is upper semi-
compact at a point x e X in the sense of Definition 4 if and only if it is upper
semicompact at x in the sense of Definition 4'.

Let / c= R be an arbitrary interval (finite or infinite). By B0(/) we shall
denote the Banach space of all bounded continuous functions on 7 with the
norm

l/k</) := sup |/(x)| .
x e /

DEFINITION 5 (M. Svec [16]). A sequence fkeB0(I) quasi-converges (q-
converges) to / e B0(I) iff

lim fk(x) — f(x) for every x e I.
fc-*oo

This convergence will be denoted by fk Λ /.

DEFINITION 6. A set M c B0(I) is said to be ^f-closed iff, for fk e M, fk Λ /
implies / e M.

DEFINITION 7 (A. Hascak [6]). Let Y be a normed linear space. An
operator T: B0(I) -> 2y is upper ^-continuous iff from the assumptions fk -+/, /fc,
/e J50(/), yk e T(fk) it follows that there exists a subsequence of {yk} converging
to some y e T(f) (in the norm of Y).

COROLLARY 3. // T is upper q-continuous, then T is upper semicompact
(and hence it is upper semicontinuous).

DEFINITION 8 (A. Hascak [6]). An operator T: B0(I)^2Y is weakly upper
^-continuous iff from the assumptions /fc-+/, /k, /e B0(I), yke T(fk) it follows
that there exists a subsequence of {yk} converging weakly to some y e T(f).
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THEOREM 2 (A. Hascak [6]). Suppose that D c= B0(/) is a nonempty, convex
and q-closed set and T: D -> cf (D) is an upper q-continuous operator such that TD
is a uniformly bounded set of functions which are equicontίnuous on every compact
subinterval of I. Then there is a point x e D such that x e Tx.

THEOREM 3 (A. Hascak [9]). Let w-limw^00xπ = x0 (i.e. xn->x0 weakly) in
L1([α, oo)) and let there exist a function g e L1([α, oo)) such that

\xn(t)\ ^ g(i) a.e. on [α, oo), n = 1, 2, ....

Then there exists a subsequence {xln} of the sequence {xn} such that

-(xn +x 1 2 + ' + x l f c)

converges to x0 in the norm of L1([α, oo)).

LEMMA 2 (A. Hascak [7]). Let p ^ 1 and f(t) be a nonnegative function for
t ^ 0. Then

α°° / Γ°° V \1/p Γ°°
f ( s ) d s ] d t ) g s^f(s)ds.

3 \Jί / / Jo

LEMMA 2' (A. Hascak and M. Svec [10]). Let g(t) ^ 0 be continuous on
0 g t < oo and such that

Γ00

sg(s) ds < oo .
Jo

Then
Λoo

flr(s)ώ6L.([0,oo)),Γ
LEMMA 3 (A. Hascak [8]). Let K a L^([tQ, oo)) and suppose that there

exists g: [ί0, oo) -> [0, oo), g e ^([fo, oo)) such that for each f e K

\f(t)\ ^ g(t) a.e. on [f0, oo).

Then K is weakly relative compact in Lι([tθ9 oo)).

LEMMA 4 (A. Hascak and M. Svec [10]). Let ψ(t) and φ(t) be positive
functions for t ^ 0, Y(t) a nonsingular matrix and P a projection. Further
suppose that

a t \ l /p

\ψ-l(t)Y(t)PY-l(s)φ(s)\* ds) ^K
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for t ^ 0, K > 0, p > 0 and

Γ00 / Γ \
exp (-K-P \ φp(s)ψ-p(s) ds)dt<oo.

Jo \ Jo /

limφ-ί(t)\Y(t)P\ = 0
ί->00

Then

and

Now we shall prove the following theorem.

THEOREM 4. Let \l/(i) and φ(i) be positive continuous functions on
J := [0, oo) and let the mapping F:JxRnx Rn-*d(R") satisfy the following

conditions'.
(c0) F(ί, u, v) is a nonempty, compact and convex subset of Rn for each (ί, u9 v) e

J x Rn x Rn;
(cι) for every fixed t e J, f/ie function F(ί, w, t;) is upper semicontinuous',

(^2) for eacn xεBψ(J) there exists a measurable function fx:J-+Rn such that
fx(t) e F(t, x(t)9 Sx(t)) a.e. on J;

(c3) there is a constant k e (0, oo) such that \Sz\ψ ^ k\z\ψ, z e Bψ(J).
Further suppose that there exists g: J x J x J -> J such that

i ) g(t, u, v) is monotone nondecreasing in u for each fixed t E J, v e J, and
monotone nondecreasing in v for each fixed t E J, u e J;

ii) g(t, c9 c) e Lp,(J) for any constant c ̂  0 and some p' e [1, oo);
iii) for each w, v e Rn \F(t, w, ι;)| ^ φ(t)g(t, ψ~l(t)\u\, ψ~l (t)\v\) a.e. on J.
Given a function x e Bψ(J) denote by M(x) the set of all measurable functions
y\J^Rn such that

y(t) e F(ί, x(ί), Sx(t)) a.e. on J .

Then the correspondence x -> M(x) defines a bounded mapping of BΦ p(J) into

Pκcκ)F. We have to show that for every x e BΦ p(J) (a) M(x) is nonempty;
(b) M (x) is convex; (c) M(x) is closed; (d) M(x) c Ln

p,^g(J)\ (e) for every δ > 0

there is a constant K>0 such that |x|^ ̂  δ implies \y\p tφ ^ K for every
y e M(x).

The statements (a) and (b) are trivial, (e) follows from assumptions (ii) and
(iii) and obviously implies (d). Thus we have to prove (c) only. Let {yn},
yn e M(x) be a sequence such that \yn — y\p^φ -> 0 as n -> oo, p' e [1, oo). By
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the Riesz Theorem there is a subsequence {yίn} of the sequence {yn} such that
{^inW} converges a.e. on J to y(t) as n -> oo. On the other hand

yln(t) e F(t, x(ί), Sx(t)) a.e. on J .

Because of (c0)

y(t) e F(ί, x(ί), Sx(t)) a.e. on J .

Thus y e M(x) and the proof of Theorem 4 is complete.

THEOREM 5. Let the hypotheses of Theorem 4 be satisfied. Then the
mapping M: Bψ p(J) ->cf (Ln

p^φ^g(J)} is weakly upper q-contίnuous.

PROOF. Let xn -+ x, xw, x e Bψ P(J) and yn e M(xn). The existence of a
subsequence {yln} of the sequence {yn} which converges weakly to some
yeLn

p, φ(J) is implied by Lemma 3 in the case p' = 1. For p' > 1 it follows
from

αoo \ l/p '

gp'(s9c9c)ds)
) /

< oo ,

where c = max (p, kp). Thus we have only to prove that y e M(x). By
Theorem 3 (in the case p' = 1) or by the Banach-Saks Theorem (in the case
p' > 1), there is a subsequence {y2n} of [yln] such that

- Σ y^k — y ~* 0 as n -> oo .

Now, by the Riesz Theorem, there is a sequence {σπ}, σn e N, σn ^ n such that

— Σ ^2fc(0 ~* y(0 a e on ^ f°Γ w -̂  oo .

On the other hand, by the assumption (cj, for almost every fixed t e J and any
ε > 0 there is an integer N(ε, t) such that

F(t, Xl(t), Sxt(t)) c F(ί, x(ί), Sx(ί)) + Kε

:= {u + v'.ue F(ί, x(ί), 5x(ί)), \v\ ̂  ε} for i ^ ΛΓ(ε, ί) -

Thus

y2k(ί) e F(ί, x(ί), Sx(ί)) + Xβ, 2fc ^ ΛΓ(ε, ί)

and by the convexity of F(ί, x(ί), 5x(ί)) we get
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SO that

y(t) G F(t, x(t), Sx(t}) a.e. on J .

The proof is complete.

DEFINITION 8. An operator T mapping a subset A of Ln

pf(p(J) into a
Banach space Y is said to be g-compact iff it is continuous and maps each

0-bounded subset of A into a relatively compact set in Y.

COROLLARY 4. Let a function g fulfil the hypotheses of Lemma 1. Then
each compact operator is g-compact. The converse is not true.

COROLLARY 5. The identity operator I: L2(J) -> L2(J) is not e^-compact as

the following example shows.

EXAMPLE 2. Since

\yk(t)\ = \e~l sin kt\ ̂  e~< =: g(t) for t e J

and fc=l, 2, ..., the set {e~l sin kt: k = 1,2,...} is έΓ'-bounded in L2(J).
However, no subsequence of the sequence {yk} converges to any y e L2(J) in
the norm of L2(J) since

ί
oo

£~2ί(sin mt — sin nt)2 at
3

Γ2 π

> e 4π (sin mi — sin /if)2 ί/ί = 2πe 4π for mφn.

THEOREM 6. Lβί ί/i^ hypotheses of Theorem 4 fee satisfied and D be a
Banach space. Suppose that T: Ln

p, φ(J) -> D is a g-compact linear operator
(g satisfies ί) of Theorem 4). Then the operator TM defined by

TMx := {z e D : z = Ty and y e M(x)}

maps B^ p(J) into cf(D) and is upper q-contίnuous.

PROOF. First we shall prove that the operator TM is upper ^-continuous.
Let xn-+x, xn, x e Bψ p(J) and zn e TMxn. We have to show that there is a
subsequence of the sequence {zn} that converges (in the norm of D) to some

z G TMx. Let zt = Tyi9 yt ε M(xt). Since M is weakly upper ^-continuous (by
Theorem 5), there is a subsequence {jij of {yt} which converges weakly to
some yeM(x). Since {yli\ i = 1, 2,...} c= (Jxe^p(j)M(x) is a ^-bounded set

and T is a 0-compact operator, there is a subsequence {y2J °f {^ij suc^
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Ty2ί-+zεD as i-»oo. We shall show that z = Ty e TMx. Because {^ij
converges weakly to y, we infer that also {y2i} converges weakly to y. By
Theorem 3 (in the case pf = 1) or by the Banach-Saks Theorem (in the case
p' > 1) there is a subsequence {y3i} of the sequence {y2i} such that

as

in the norm of Ln

p, φ(J). Since T is 0-compact, T is continuous and we have

as

On the other hand, since Ty3i -+ z e D and T is linear, we have

••• + 7>3ί(**) z = lim Ty3i = lim -̂ 1

= l imT P"

By (*) and (**) we infer that z = Ty e TMx. Thus the operator TM is upper
g-continuous. From this we conclude that TMx is closed. Further, M(x) is a
convex set and T is a linear operator. Thus TMx is also a convex set.

COROLLARY 5. Let the hypotheses of Theorem 4 be satisfied and D be a
Banach space. Suppose that T: Ln

p,fφ(J) -» D is a g-compact linear operator.
Then the operator TM maps Bψtβ(J) into cf (D) and is upper semίcompact (upper
semicontίnuous).

REMARK 2. There are a few papers on asymptotic and integral equivalence
of differential systems which are based on a theorem similar to Theorem 6 with
only linearity hypothesis about T (but not compactness). However, such a
theorem is not valid, as shown by the following example.

EXAMPLE 3. Let the mapping F: [0, oo) x (— oo, oo)-»cf ((— oo, oo)) be
defined by the formula

It is easy to see that F fulfils all the assumptions of Theorem 4 (with n = 1, for
arbitrary number p' ^ 1, ψ(t) = φ(t) = 1 and g(t, u) = e~l) and thus the mapping
M: B1 p(J) -> cf (Lp, ,ι(J)) is bounded and upper ^-continuous.

Now suppose that p' = 2 and that T: L2(J) -> L2(J) is the identity operator
(thus T is a linear operator but T is neither compact nor ^"'-compact (see
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Corollary 5)). However, the operator TM: B{ p(J)->cf (L2(J)) is neither upper
g-continuous nor upper semicompact. In fact, if /fc-+/, fk, f G B1 p(J) (or
fk->f9 /fc, /e£1>p(J) respectively), then yk := e~* sin kt e TMfk and no sub-
sequence of the sequence {yk} converges to any y e TMf in the norm of L2(J)
(see Example 2).

LEMMA 5. Let the function g fulfil the hypotheses of Lemma 1. Let Y(t) be
a continuous matrix for t ^ 0 with det Y(t) φ 0 for each t ^ 0 and P be an n x n
constant matrix with P2 = P.

Suppose that there exist constants K^ > 0 and 1 < p < oo such that

a t \ ί / p

\φ-1(t)Y(t)PY-1(s)φ(s)\p ds) ^K, for allt^O;
3 /

Γ00 Γ Γ 1
(c) exp ^ -Xξ φp(5)^-p(s) V Λ < oo

Jo I Jo J

Γ^(d) |P7 1(s)φ(s)\g(s, c) ds < oo /or any constant c ̂  0 .
Jo

ί/iβ /meαr operator T^\ Ln

p,t(p(J)^> BΦ(J), (l/p) + (l/pf) = I defined by the
formula

:= I Y(t)PY-1(s)y(s)ds
0

is g-compact.

PROOF. For each y e L"p^φ(J) we have

^sup \φ-1(t)Y(t)PY-1(s)φ(s)\\φ-1(s)y(s)\ds
f^o Jo

^ *ι ( Γ \φ-l(s)y(s)\>' ds\/P = KJylp',, ,
\ J o /

which implies that T± is bounded and hence continuous on Ln

p, φ(J). Further,

take any gf-bounded sequence {yk} from Ln

p, φ(J). We have to show that the
sequence {7^} contains a subsequence which is convergent in Bψ(J). Let

ί'
Jo

f(ί):= Y(t)PY-l(s)yι(s)ds9
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Since {j^: i = 1, 2,...} is ^-bounded subset of Ln

p^φ(J\ p'e (1, oo) there is a
subsequence {y^} of {yj which converges weakly to an element y e Ln

p^φ(J\ i.e.

*»(*) := (7i *»)(*) - (Tιy)(t) := f ' Y(t)PY-l(s)y(s) ds =: z(ί).
Jo

Further, there are nonnegative constants c and K such that

(1) \yu(t)\ ^ Kφ(t)g(t, c) a.e. on J, i = 1, 2, ....

Using this fact, the Holder inequality and (v), we have

\φ-l(t)Zίi(t)\ ϊ£ K,κ( Γ g"'(s, c) ds}1'" , i = 1, 2, ....
\ J o /

The the functions zli9 i = 1, 2, ... are uniformly ^-bounded, and from the
inequalities holding for 0 ̂  ίx ^ ί2

~1(t2)Y(h)PY~l(s)φ(s)\\φ-l(s)yli(s)\ dsΛ
Γ i^-Hίoy^

Jo

\ l / P / f t 2

Wφ^Γds l<P"1(^ii
/ \Jίι

Uίi y/p / pi
o i i s φ s sy y^ φ

α oo \1/PY f ί 2

gp'(s, c ) d s ] ^(tΛYίtJPY-^
3 / V J f ,

+ XX1(Γ^f(s,c)ώ
\Jo

I/P'

it follows that the functions ^f~1(ί)zlί(ί), i = 1, 2, ... are equicontinuous on every
compact subinterval of J. By the Ascoli theorem as well as by Cantor's
diagonalization process, the sequence {z l f} contains a subsequence {z2i} such
that {ψ~l(t)z2i(t)} is uniformly convergent on every compact subinterval of J.
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This fact together with the inequality

\PY~i (s)φ(s)\g(s,c)dsfJoo

(note that, by Lemma 4, \ψ~ί(t)Y(t)P\ ->0 as t -> oo and use d)) guarantees the
convergence of {z2ί} on J in the norm of Bψ(J).

COROLLARY 6. Let p = oo (and p' = 1). Lei the conditions (v) and (c) of
Lemma 5 be replaced by

and

lim III/'1(t)Y(t)P\ =0

and let the other assumptions of Lemma 5 hold. Then the linear operator

T2' Ln

lt(p(J) -> BΦ(J) defined by the formula

--fJo
(T2y)(t):= Y(t)PY-ί(s)y(s)ds

is g-compact.

LEMMA 6. Let the function g fulfil the hypotheses of Lemma 1. Let Y(t) be

a continuous matrix for t ^ 0 wίίft det Y(t) ̂  0 for each t ^ 0 and P be an n x n

constant matrix with P2 = P.

// ί/zere exist constants K3 > 0 and 1 < p < oo SMC/I ί/iaί

aoo \ l / p

\ψ-l(t)Y(t)PY-l(s)φ(s)\'ds\ ^K 3 / o r a H ί ^ O ,

ίήβn ίfte /inβar operator Γ3: L
n

p^φ(J) -+Bψ(J)9 (1/p) + (1/p') = 1, d^nβd fcy ίfte

/ormw/a

is g-compact.

PROOF. The proof of Lemma 6 proceeds analogously to that of Lemma 5.

COROLLARY 7. Let p = oo (and pr = 1). Let the condition (vi) of Lemma 6

be replaced by

sup \ψ-1(t)Y(t)PY-l(s)φ(s)\^K4
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and let the other assumptions of Lemma 6 hold. Then the linear operator
T4: LΪ,φ(J) -> BΦ(J) defined by the formula

is g-compact.

:= Y(t)PY-i(s)y(s)ds

COROLLARY 8. Let the mappings Ff: X ->2y, i = 1, 2 be upper q-continuous.
Then the mappings —Fi(i= 1, 2) and F1 + F2 are upper q-continuous.

THEOREM 7. Let φ(t) and ψ(t) be positive continuous functions for t ^ 0,
Y(t) a fundamental matrix of (b) and let the hypotheses (c0), (cj, (c2) and (c3) of
Theorem 4 be satisfied.

Suppose that
a) there exist supplementary projections P1, P2 and constants K > 0 and

2 ^ p < oo SMC/I £/ιαf

Γι^-ι(oywΛir 1(s)φ(srώ+ f
Jθ Jί

/or α// ί ̂  0.
b) there exists g: J x J x J ^>J such that

( i ) g(t,u, v) is monotone nondecr easing in u for each fixed t ε J, v e J;

monotone nondecreasing in v for each fixed t e J, u e J and integr-
able on compact subsets of J for fixed u e J, v e J;

(ii) Jo sp/pgp '(s, c, c) ds < oo for any constant c ̂  0, -where (1/p) -f

(i/p') = i;
(iii) for each u, v ε Rn\F(t, u, v)\ ̂  φ(t)g(t, ^(i)\u\, ψ~l(t)\Ό\) a.e. on J.

c) ftexp {-K-'f0φ>(s)ψ-*(s) ds} dt < oo.

d) fj|P1r-1(s)φ(sMs,c,c)ds<oo.
i^ 5βί o/ {//-bounded solutions of (a) and of (b) are (̂ , p)-integral equivalent.

PROOF. Let y(t) be a ^-bounded solution of (b) on [ί0, oo), ί0 ̂  0. Then

there is p > 0 such that y e Bψ >p([ί0> °°)) Define for x e β^f2p([ίoj °°)) ^e
operator

TMx := jz: z(ί) := y(t)

- Γ Y(t)P2 Y-1(s)fx(s) ds, fx E M(x) .
Jί J

By Lemmas 5 and 6, Theorem 6 and Corollary 8 the operator TM maps
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Bψt2p([tθ9 oo)) into cf (£^([ί0, oo)) and is upper ^-continuous on B^i2p([t^ oo)).

Further, for each z e TMx, x e ^,2p([io» °°)), we have

f \
Jίo

\ψ~l(t)z(t)\ ^ \ψ-l(t)y(t)\ + \ψ-l(i)Y(t)P, γ-1(s)φ(s)\g(s, 2p, 2kp) ds

s9 2p, 2kp) ds

a t \ 1 / p ί Γ , Y/p'
\φ~1(t)Y(t)P1 Y~ί(s)φ(s)\p ds] gp (s, 2p, 2fcp) ds

J VJ ίo /

α y / p / r o o y/p'
\ψ~l(t)Y(t)P2 Y~1(s)φ(s)\p ds) ί gp (s, 2p, 2fcp) ds \

^ p + K[ \ gp(s,c,c)ds) , where c = max (2p, 2kρ).
Jίo

If we choose ί0 so that

/ Γ 0 0

, c) ds} ^ p ,αoo
g>'(s9c,

o

then we see that TM maps Bψt2p([tθ9 °°)) into °f (^.ipίC^Oί °°)) The functions
in TB^>2p([ίo» °°)) are evidently uniformly bounded for each t ̂  ί0 because

'

Let x e £^f2p([ίo» °°)) anc^ z e ̂ ^̂  Then there is fx e M(x) such that

z'(ί) = ^(ί)^(O + /,(*) a.e. on [ί0, oo).

Therefore by (in) of b) we have for ί0 ̂  t1 ^ ί2

< Γ'a Γ ί2

1 "Jί i J f l

 X S

^ 2p I ι^(s)|^4(s)| ds + φ(s)g(s, c, c) ds .

Thus the functions in TMBψ,2p([t0, oo)) are equicontinuous on every com-

pact subinterval of [ί0, oo). Then Theorem 2 ensures the existence of Λ; e

Bψ,2P([tQ> °°)) suc^ triat x e TMx. Clearly this fixed point x(t) is a ^-bounded
solution of (a).
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Conversely, let x(t) be a ^-bounded solution of (a). Define

y(t):=x(t)- \ Y(t)PlY-l(s)fx(s)ds + \ Y(t)P2γ-l(s)fx(s) ds ,
Jί0 Jί

where

fx(t) := x'(t) - A(t)x(t) e F(ί, x(ί), Sx(ί)) a.e. on [ί0, oo) .

It is easy to prove that y(t) is a ^-bounded solution of (b). It remains to prove
that

ψ-l(t)\x(t)-y(t)\eLp([tθ9co)).

Since

= f ' i
Jίo

-

it is sufficient to show that the terms on the right-hand side belong to
Lp([ί0, oo)). By the assumptions of the theorem and the Holder inequality we

get

Γ ιΓ W«Λ Y~l(s)fx(s) ds ^ f ' l^-HOyWPi Y-l(s)\φ(s)g(s9 c, c) ds
J ίo J Ό

I ' IΛ Y-l(s)φ(s)g(s, c, c)\ ds .
Jίo

Since (from Lemma 4)

and d) holds, it is evident that this first term belongs to Lp([ί0, oo)). For the
second term we have

Γ\^(t)Y(t)P2Y~l(s)\\fMds

^ Γ \φ-1(t)Y(t)P2γ-ί(s)\φ(s)g(s9 c, c) ds

α °° -1 -1 y / P / f o o , \
\ιl/ (t)Y(t)P2Y (s)φ(s)\p ds ] I gp (s, c, c) ds I

/ \Λ /

\1/P'

1"'
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Thus from (ii) of b) and Lemma 2 we see that this term also belongs to

^pd^o* °°)) The proof of the theorem is thus complete.

REMARK 3. If we substitute in Theorem 7 the condition (ii) of b) by the
condition

(Γ (s, c, c)ds 1 eLp([0, oo))

with p such that 1 < p < oo, then the conclusion of Theorem 7 still holds.

REMARK 4. Let p = oo (and p' = 1). Let the conditions a), c) and (ii) of b)
of Theorem 7 be replaced by

sup^(t)Y(t)P1γ-\s)φ(s)\ + ̂ 11̂  \ψ-i(t)Y(t)P2γ-i(s)φ(s)\^K,

lim I i/r1 (07(0^1 = 0 ,

sgp'(s, c, c) ds < oo for any constant c ̂  0 ,
o

and let all the other assumptions of Theorem 7 hold. Then the sets of ψ-

bounded solutions of (a) and (b) are (ψ, t>)-integral equivalent.

THEOREM 8. Let Y(t) be a fundamental matrix of (b), φ(t) and φ(t) be
positive continuous functions for t ^ 0, and let the hypotheses (c0), (cj, (c2) and
(c3) of Theorem 4 be satisfied. Suppose that

a) there exist supplementary projections Pί9 P2 and constants K>Q and
1 < p < oo such that

\\ψ-l(t)Y(t)Plγ-l(s)φ(s)\*ds + \
Jo Jί

' ds + I |^-1(ί)y(ί)^2lr~1(s)φ(s)ll> <k ̂

/or α/ί ί ̂  0;
b) ί/iere exisfs g: J x J x J -+J such that

( i ) g(t, u, v) is monotone nondecreasing in u for each fixed ί e J, v e J;
monotone nondecreasing in v for each fixed ί e J, u e J and integr-
able on compact subsets of J for fixed u e J, v e J;

(ii) Jj gp'(s, c, c) ds < oo for any constant c ^ 0, vv/iere (1/p) + (l/pr) =

i;
(iii) /or eαc/i u, v G Rn

\F(t, ii, i?)I ^ <p(ί)0(f, lA'HOIwl, ίA'MOI^I) fl-«. on J
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c) ft exp { -X-pf0 φp(s)φ-p(s) ds} at < oo;
d) ft\P1Y-l(s)φ(s)\g(s,cίc)ds<aϋ.

Then, to each ψ-bounded solution y(t) of (b) there exists a solution x(t) of (a) such
that

(e) ψ-i(t)\x(t)-y(t)\^o as ί^oo,

and conversely, to each ψ-bounded solution x(t) of (a) there exists a solution y(t)
of (b) such that (e) holds.

PROOF. The proof of Theorem 8 is essentially the same as that of
Theorem 7.

REMARK 5. Let p = oo (and p' = 1). Let the conditions a) and c) of
Theorem 8 be replaced by

sup \ψ-i(t)Y(t)P,γ-\s)φ(s)\+ sup \^(t)Y(t)P2Y^(s)φ(s)\ ^ K ,
O^s^ί f^s<oo

and

and let the other assumptions of Theorem 8 hold. Then, to each ^-bounded
solution y(t) of (b) there exists a solution x(t) of (a) such that (e) holds.

REMARK 6. For many years the problem of existence of oscillatory solu-
tions of differential equations has been extensively studied. It turns out that
the asymptotic equivalence is a good tool for solving this problem for differen-

tial inclusions.

DEFINITION 9. A vector-function y(t) = col (y^t), ..., yn(t)) e B0(J) is s-
oscillatory iff there is ε > 0 such that for each its component yt(t)9 i— 1, ..., n

there is an increasing sequence {tik} such that lim^^^ tik = oo, yί(tίk)yi(tiίk+1) < 0
for k = 1, 2, . . . , and 1^(^)1 > ε for k = 1, 2, . . . .

It is easy to prove the following theorem

THEOREM 9. Let the systems (a) and (b) be l-asymptotically equivalent and
let y = y(t\ t e J be an s-oscillatory solution of (b). Then there is an s-oscillatory
solution x = x(t) of (a), and conversely.

As a consequence of this theorem we have

THEOREM 10. Let the systems (a) and (b) be l-asymptotically equivalent.
Then the system (a) is s-oscillatory if and only if the system (b) is s-oscillatory.



442 Alexander HA§£AK

References

[ 1 ] S. Banach and S. Saks, Sur la convergence forte dans les champs Lp, Studia Math.,

2(1930), 51-57.

[ 2 ] C. Berge, Espaces topologiques, Fonctions multivoques, Paris, 1966.

[ 3 ] F. Brauer and J. Wong, On the asymptotic relationship between solutions of two systems of

ordinary differential equations, J. Differential Equations, 6(1969), 527-543.

[4] R. Engelking, General topology, PWN-Warszawa, 1985.

[ 5 ] T. Hallam, On asymptotic equivalence of the bounded solutions of two systems of differen-

tial equations, Michigan Math. J., 16(1969), 353-363.

[ 6 ] A. Hascak, Fixed-point theorems for multivalued mappings, Czech. Math. J., 35(1985),

533-542.

[ 7 ] A. Hascak, Integral equivalence of multivalued differential systems I, Acta Math. Univ.

Comeniae (Bratislava) XLVI-XLVII, 1985, 205-215.

[ 8 ] A. Hascak, Integral equivalence of multivalued differential systems II, Colloquia Mathe-

matica Societatis J. Bolyai, 47, Diff. Eq., Szeged (Hungary) 1984, 399-412.

[ 9 ] A. Hascak, A strong convergence in Lp and upper ^-continuous operators, Czech. Math.

J., 38(1988), 420-424.

[10] A. Hascak and M. Svec, Integral equivalence of two systems of differential equations,

Czech. Math. J., 32(1982), 423-436.

[11] S. Mazur, Uber konvexe Mengen in linear normierten Raumen, Studia Math., 5(1933),

70-84.

[12] F. Riesz and B. Sz.-Nagy, Lecons d'analyse fonctionelle, Budapest, 1972.

[13] Sek Wui Seah, Asymptotic equivalence of multivalued differential systems, Boll. U.M.I., (5)

17-B(1980), 1124-1145.

[14] W. Sobieszek, On the point-to-set mappings and functions maximum related to them,

Demonstratio Mathematica, 7(1974), 483-494.

[15] W. Sobieszek and P. Kowalski, On the different definitions of the lower semicontinuity,

upper semicontinuity, semicompacity, closity and continuity of the point-to-set maps,

Demonstratio Mathematica, 11(1978), 1053-1063.

[16] M. Svec, Fixpunktsatz und monotone Lόsungen der Diίferentialgleichung y(n) + B(x, y, y',

..., y(n-")y = 0, Archivum Mathematicum (Brno), 2(1966), 43-55.

[17] M. Svec, Integral and asymptotic equivalence of two systems of differential equations,

Teubner-Texte, Band 47, Equadiff 5, Proceedings of the conference held in Bratislava, 1981,

329-338.

[18] P. Talpalaru, Quelques problems concernant Γequivalence asymptotique des systems

differentiels, Boll. U.M.I., 4(1971), 164-186.

[19] K. Yosida, Functional Analysis, Springer-Verlag, 1965.

Department of Mathematical Analysis,

Faculty of Mathematics and Physics,

Komensky University,

842 15 Bratislava, Czechoslovakia




