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1. Introduction

This paper is concerned with the existence and qualitative behavior of
nonnegative entire solutions of the degenerate elliptic equation

(A) A(um) + u(\ -u)(u-a) = Q, x e Rn, n > 2 ,

where m and a are positive constants. By a radial entire solution of (A) is
meant a function u e C(Rn) depending only on |x| such that um e C2(Rn) and
that (A) is satisfied at every point of Rn.

The one-dimensional case of (A) has been studied by Aronson, Crandall

and Peletier [1], who have shown, among other things, that (A) (n = 1) has
nonnegative radial entire solutions u with compact support provided m > 1 and
0 < a < (m 4- l)/(m + 3). Our purpose here is to extend some of the results of
[1] to the higher dimensional case (n > 2) of (A) by proving the theorem below.

THEOREM. Let 0 < a < (m + l)/(m + 3). Then, there exists a constant u^ e

(0, 1) such that (A) has a nonnegative radial entire solution u(x) satisfying w(0) =
u0 if 0 < u0 < u^ and (A) has no nonnegative entire solution u(x) satisfying
w(0) = u0 if u^ < u0 < 1. Furthermore, the following statements hold.

(i) // 0 < u0 < u^, the radial entire solution u(x) satisfying u(0) = u0 oscil-
lates around a and converges to a as \x\ -* oo.

(ii) The radial entire solution u(x) satisfying w(0) = u^. decreases mono-

tonically to zero as \x\ -» oo. This solution has compact support if m > 1.

The substitution v = um reduces (A) to

(B) Δv + v1/m(l - v1/m)(vllm - a) = 0 , x e R", n>2

which is formally a special case of the equation

(C) Jι; + /(ι;) = 0, x e R\ n>2.

Although there is a vast literature devoted to the investigation of (C) from
various viewpoints (see e.g. [1-6, 13-18]), none of the existing results for (C)
seems to be applicable to establish the existence of entire solutions of (B)
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because of lack of smoothness of the function f(v) = v1/m(l — v1/m)(v1/m — a)

at v = 0. We therefore attempt here to develop an existence theory of non-
negative entire solutions for a class of equations of the form (C) including (B) as
a particular case, so that the above-mentioned theorem immediately follows.

This is accomplished in Section 3 on the basis of the asymptotic analysis,

presented in Section 2, of the ordinary differential equation associated with (C).
From a viewpoint of variational analysis, Yoshida [19] has recently obtained a
related result to our problem.

Finally we note that equation (A) represents stationary states of phe-

nomena described by the degenerate parabolic equation

(D) ιι, = A(um) + u(l - u)(u - a), (ί, x) e R+ x Rn .

Equation (D) and its variants arise in various fields of applied sciences and have
been the object of numerous investigations in recent years. In the theory of

population genetics, the simplest mathematical model

ut = uxx + M(l ~~ u) 9 (t,x)e R+ x R,

was first derived by Fisher [9], and models of the form

(E) u, = A(um) + σ(ιι), (ί, x) e R+ x Rn ,

were proposed by Gurtin and MacCamy [11], who studied the initial value

problem for (E) in one space dimension (n = 1) in the following two cases:

(1) the Malthusian law: σ(u) = μu, μ> 0;

(2) the Verhulst law: σ(ύ) = μu - λu2, μ, λ > 0.

In the study of Fisher type equations (E), the nonlinearity

σ(ύ) = ιι(l - ii)[(Tl - τ2)(l - 11) - (τ3 - τ2)tι]

also appears (see. e.g. Aronson and Weinberger [2] or Fife [8]) and the
equation (D) is regarded as a normalization of the equation (E) with this type of

nonlinearity. For typical results on this subject we refer to the survey article of
Fife [8] and the papers [2, 9, 11, 12].

2. Asymptotic analysis

This section is of preparatory nature and analysis is given of properties of

nonnegative radial entire solutions of the equation (C) for which the following
conditions are always assumed to hold:

(HI) f(v) is continuous on [0, 1] and locally Lipschitz continuous on

(0, 1].
(H2) /(O) = /(I) = 0 and there is α E (0, 1) such that f(v) < 0 on (0, α),

/(α) = 0, and f(v) > 0 on (α, 1).
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(H3) The integral Ji/(t?) dv exists and is positive.
(H4)

We define

(2.1) F(v)= \ f ( s ) d s .(»)= Γ.
Jo

From (H2) and (H3) it follows that F(v) has a negative minimum at v = α, a
positive maximum at v = 1 and a unique zero v = β in (α, 1).

A radial function u(x) = y(\x\) is an entire solution of (C) if and only if
y(t) e C2[0, oo ), t = |x|, satisfies the initial condition y'(Q) = 0 and the ordinary
differential equation

(2.2) y» + y > + f ( y ) = Q 9 f > 0 ,

or equivalently,

(ί" 1/y + ί""1/(3') = 0, ί > 0 ,

where a prime denotes differentiation with respect to ί. Thus, the solution
y 6 C2[0, oo) of (2.2) subject to the initial conditions

(2.3) y(0) = p , /(O) = 0

gives rise to an entire solution u(x) = y(\x\) of (C) satisfying u(0) = p. In the
present situation the solutions of (2.2)-(2.3) for various values of p are under-
stood to take their values in [0, 1].

Integration of (2.2) shows that

(2.4) /(«)=- (-} f ( y ( s ) ) d s , t > 0
Jθ W

and that the problem (2.2)-(2.3) is equivalent to the integral equation

(2.5) y(t) = p- — !— Γ s (l - (*Y 2 } f ( y ( s ) ) ds, t > 0 , n > 2 ,
n ~ z J o \ w /

Γ' ίt
= p-\ s log -

Jo
(2.6) y(t) = p- s log - f(y(s)) ds , ί > 0 , n = 2 .

The method of successive approximations easily establishes the existence of
a local nonnegative solution y(t) of (2.5) or (2.6) for every p e (0, 1). Let
[0, T(p)) be the maximum interval of existence of y(t). The problem, therefore,
is to determine those values of p e (0, 1) for which T(p) =00. It can be shown
that both sets {p e (0, 1) : T(p) < 00} and {p e (0, 1) : T(p) = 00} are non-empty.
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That T(p) < oo for all p sufficiently close to 1 is a consequence of the following
proposition proved in [10, Lemma 5].

PROPOSITION 1. There exists p* e (0, 1) such that if p* < p < 1, the solution
y(y) of the initial value problem (2.2)-(2.3) has a finite zero t = T(p) > 0 at which
y'(T(p)) < 0.

The set {p e (0,1): T(p) =00} contains the interval (0, β\ where β is the

unique zero in (α, 1) of the function F(υ) given by (2.1). In fact, let y(t) be the
solution of (2.2)-(2.3) defined on [0, T(p)). Multiplication of (2.2) by y'(t) and
integration on [0, ί] yield

(2.7) i/(ί)2 + (n - 1) P ̂  ds + F(y(t)) = F ( p ) ,

which implies that F(y(t)) < F(ρ) for 0 < ί < T(ρ). Now consider the set

{c e (0, 1): F(c) < F(p)}. It is easy to see that if 0 < p < β, this set forms a
closed subinterval [cl9 c2~] of (0, 1). It follows that if 0 < p < β, the solution
y(t) satisfies c1 < y(t) < c2 for 0 < t < T(p\ which immediately implies that
T(ρ) =00. Ni [13] has studied the behavior at infinity of y(t) with 0 < p < β
in the case that f(v) is Lipschitz continuous on [0, 1]. Our aim is to show that
a similar result (Proposition 2 below) holds under our weaker hypotheses
on f(v).

PROPOSITION 2. Let yeC2[0, oo) be a solution of the problem (2.2)-(2.3)
for some p e (0, 1), p φ α, and suppose that inf^o^ί) > 0. Then the following
statements hold.

( i ) The zeros of y'(t) form an infinite sequence {tk}f=0 such that

0 = ί0 < ίx < < tk < - - - and lim tk = oo .
fc->00

(ii) h = supk \tk+1 - tk\ is finite.
(iii) For each fe, y(tk) φ α ana y(t) attains a local maximum or a local

minimum at t = tk according as y(tk) > α or y(tk) < α, respectively.
(iv) lim,^ y(t) = α and lim^ y'(t) = 0.

PROOF. We claim that there exist constants ηί9 η2 e (0, 1) such that η1 <
y(t) < η2 for t > 0. As was remarked above, this is true if the initial value p of
y(t) satisfies 0 < p < β (we have ct < y(t) < c2, t > 0, in this case). If β < p < 1,
then the inequality F(y(t)) < F(p) implies that y(t) < p for t > 0, which, com-
bined with the assumption inϊt>0y(t) > 0, leads to the claimed conclusion.
Since f(v) is Lipschitz continuous on [ηί9 η2] c: (0, 1), y(t) is uniquely deter-
mined by its initial value /?, and y'(t) φ 0 on the set A = {t > 0: y(t) = α}.
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We first show that A is an infinite set, that is, y(i) takes on the value
α infinitely often in every neighborhood of infinity. Suppose the contrary:
A = 0 or A is a finite set. Consider the function zx(ί) = t(n~1)/2(y(t) — α),
which, by assumption, does not vanish for all sufficiently large ί, say t > T. As
is easily seen, z^ί) satisfies the differential equation

i =0, t > T.
* 4ί2

In view of the hypotheses (HI), (H2) and (H4) a constant ε > 0 can be chosen
so that

/Y,Λ
> ε for η± < v < η2 , v φ α ,

v — α

and hence we have

f(y(t)) (n - l)(n - 3) ε

y(t) - α 4ί2 2

for t > max {Γ, \(n — l)(n — 3)/2ε|1/2}. We are now able to apply the Sturm
Comparison Theorem (see e.g. [7, Chapter 8, Theorem 1.1]) to (2.8) and the
equation

z2' + ̂ z2 = 0, teR,

having the solution z2(ί) = sin ((ε/2)1/2ί) to conclude that A n ((2/ε)1/2fcπ,
(2/ε)1/2(fe + l)π) φ 0 for all k > \(n - l)(n - 3)|1/2π, which is clearly a contradic-
tion. Therefore the set A must be an infinite set, so that y(t) must have
infinitely many critical points accumulating at oo. Now the assertions (i), (ii)
and (iii) are easily verified.

It remains to prove (iv). Suppose that

Define

(2.10) M = max [\f(υ)\: 0 < v < 1} ,

(2.11) μ = min {|/(ι?)|: \v - α| > ιy/2, ηl < v < η2} .

Obviously, M > μ > 0. Since y'(tk) = 0, it follows from (2.4) and (2.10) that

\f(y(s))\ds £ M(t - tk), ί>ί f c ,
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and

M
(2.12) \ y ( t ) - y ( t k ) \ < Ύ ( t - t k ) 2

9 t>tk.

From (2.9) and (2.12) we see that

\y(t) -a\>η/2 for 0 < t - tk < δ = (η/M)1/2 ,

from which it follows that \f(y(t))\ > μ for t E [ίfc, tk + 5], and accordingly

f ' /sV"1 f ' AV'1

I / W I = T \ f ( y ( s ) ) \ d s * μ \ (-} ds
Jίk V/ Jίk \v

Using the last inequality and noting that tk + δ < tk+1 <(k+ l)h by the asser-
tion (ii) of this proposition, we obtain

Π -, k = 0,1,2,...,

which implies that $ y'(s)2/s ds = oo. On the other hand, from (2.7) we have

ι,'(c\2

f '
-l)\

Jo
F(p) - F(y(t)) < F(p) -

for all t > 0, which gives a contradiction as ί -> oo. Thus we conclude that
(2.9) is impossible, that is, η = inΐk\y(tk) — α| =0.

Since F(y(tk)) > F(α) for all fc, we have infk F(y(tk)) = F(α), and since, by
(2.7),

ftk v>(s\2

- (n - 1) *±L
Jo s

(2.13) F(y(tk)) =

the sequence (F(^(ίk))} is decreasing and limk^00F(y(tk)) = F(α). Substitution
of (2.7) into (2.13) gives

(2.14) F(y(tk)) = \y'(t)2 + F(y(t)) + (n - 1) f ' ̂  ^5 ,
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which shows that

(2.15) F(y(tk))>F(y(t))>F(*)9 t > tk .

It follows therefore that lim,^ F(y(t)) = F(α), and consequently lim^^ y(t) = α.

That lim,^ y'(i) = 0 follows from the relation

which is a consequence of (2.14). This completes the proof.

3. Main results

The purpose of this section is to prove the existence theorem for equation
(A) stated in the Introduction. The theorem is easily seen to be equivalent to
the following theorem regarding the initial value problem

(3.1) y" + ̂ — l / + //m(l - yllm)(y1/m - a) = 0 , t > 0 ,

(3.2) >>(0) = P, /(0) = 0.

THEOREM 1. Suppose that m > 0 and 0 < a < (m + l)/(m + 3). Then there
exists a constant p^ e (0, 1) such that the problem (3.1)-(3.2) has a nonnegative
solution yeC2[0, oo) if 0 < p < p^ and the problem (3.1)-(3.2) has no non-
negative solution y e C2[0, oo) if p^. < p < 1. Furthermore, the following state-
ments hold.

(i) // 0 < p < p#, the solution y(t) of (3.1)-(3.2) oscillates around am and
converges to am as t — > oo.

(ii) // p = p^, there exists a solution y#(t) of (3.1)-(3.2) which decreases

monotonίcally to zero as t —> oo. This solution has compact support if m > 1.

This theorem is essentially a corollary of the following theorem for equation
(C) which is formulated in terms of the initial value problem (2.2)-(2.3). The
hypotheses (H1)-(H4) are assumed to hold without further mention.

THEOREM 2. There exists a constant p^ e (0, 1) such that the problem (2.2)-
(2.3) has a nonnegative solution yeC2[0, oo) if 0 < p < p^. Furthermore the

following statements hold.
(i) // 0 < p < / 0 * , the solution y(t) of (2.2)-(2.3) has the property

m{t>0y(t) > 0, oscillates around α and converges to α as t -> oo.
(ii) // p = p^, there exists a solution y^(t) of (2.2)-(2.3) which decreases

monotonically to zero as t -» oo.
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PROOF OF THEOREM 2. Denote by P the set of all p e (0, 1) such that the
problem (2.2)-(2.3) has a solution yeC2[0, oo) with inf^o-VW > 0. As was
noted before Proposition 2, the set P contains the interval (0, β). Let p+
denote the least upper bound of p 6 (0, 1) such that (0, p) a P. Proposition 1
implies that p+ < 1, and Proposition 2 guarantees the truth of the statement (i).

To prove (ii) take a sequence {pk} of positive numbers such that pk < p^
and linifc^ pk = p*, and let yk e C2[0, oo) be the nonnegative solution of (2.2)-
(2.3) for p = pk, k = 1, 2, — Since the sequence (yk(t)} is uniformly bounded
on [0, oo) and since, by (2.4) and (2.10),

f(T'Jo W
\y'k(t)\ < - \f(yk(s))\ds < Mt , t > 0 , k = 1, 2, . . . ,

Jo W

the Ascoli-Arzela theorem shows that the sequence (yk(t))} contains a sequence
converging to a function y^t) uniformly on any compact subinterval of [0, oo).
It is clear that y^t) is continuous and satisfies the integral equation (2.5) or
(2.6), so that y^t) is a nonnegative C2-solution of (2.2)-(2.3) on [0, oo). We
will show that inf^oj^ί) = 0. Suppose the contrary inf^oj^ί) > 0. Let {tk}
be the sequence of zeros of y'^t) as described in Proposition 2. Note that y^t)

has a local maximum at t = t2j and a local minimum at t = ί2./-ι ^n γiew of
(2.15) with y = y^ we have y^tti) < y^t) < p^ for t > 0, and hence there exists
p0 > PX such that for any pe(p#,p0) the solution y(t) of (2.2)-(2.3) exists on
[0, ί2] and satisfies

\y® - JΌoWl < (j>oo(ί2) - jΌo(ίι))/2 , o < t < t2 .

This inequality (with t = t1 and ί = ί2) implies in particular that

y(t2) ,

and so y(t) has a positive local minimum at some point in (0, ί2) and y(ί) can be
continued to the entire interval [0, oo) in such a way that inf^oXί) > 0. This,
however, contradicts the definition of p# and proves that inf^oy^ί) = 0.

Since y^(t) < (̂0) for ί > 0, there are two possible cases: Either y'^t) < 0

on (0, oo) or there is t1 > 0 such that y'^(t) < 0 on (0, ίj and )£,(*! ) = 0. In the
first case, it is enough to put y* = y^. If the second case holds, then we have

.Voo^i) ^ ^ooW ^ P* f°r * ^ 0 by (2.15) and conclude that y^(t^) = 0. In this
case the function y# defined by y^(t) = y^t) for 0 < ί < t1 and ^^(ί) = 0 for
t > tί is easily seen to be of class C2[0, oo) and satisfy (2.2)-(2.3). In either
case the solution y^(t) is decreasing to zero as ί -> oo. This completes the
proof of Theorem 2.

REMARK 1. According to Peletier and Serrin [15, Theorem 5] the above
solution y^(t) has compact support if and only if
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(3.3) I * \F(Ό)\~112 dυ <ao .
Jo

PROOF OF THEOREM 1. Notice that (3.1) is a special case of (2.2) with
f(y) = y1/m(l — yVm)(yl/m — a), for which the hypotheses (HI), (H2) and (H4) are

clearly satisfied. The hypothesis (H3) is also satisfied for this f(y\ since

,_ Γ 1 ,, . , -m / m + 1
(3 4) f(v)dυ = / w_ . a-——

Theorem 2 then ensures the existence of a number p^ e (0, 1) for which the
statements (i) and (ii) hold true. If m > 1, then (3.3) holds, so that, by Remark
1, the solution y^(t) in (ii) has compact support.

The proof will be complete if it is shown that there is no nonnegative
solution y e C2[0, oo) of (3.1)-(3.2) for any p e (p^, 1). Suppose to the contrary
that (3.1)-(3.2) has a nonnegative solution y = y# e C2[0, oo) for some p =
p# > p^. The solution y#(t) satisfies inf,^y#(i) > 0, since otherwise there exist
two distinct solutions y^(f) and y#(t) of (3.1) having the property inf^o^f) =
in{t>0y#(t) = 0, which contradicts the uniqueness of such decaying solutions of
(3.1) (see Peletier and Serrin [15, Theorem 3]). Let p* (>ρ#) denote the least
upper bound of the set P of all pe(0, 1) such that the problem (3.1)-(3.2)
possesses a solution y(t) satisfying mϊt>0y(t) > 0. Then we have p* φ P. Using
a sequence {pk} such that pk e P and lim^^ ρk = p* and arguing as in the proof
of Theorem 1, we can construct a nonnegative solution y* e C2[0, oo) of (3.1)
such that infi>0y*(i) = 0. But this again contradicts the uniqueness result of
Peletier and Serrin [15]. The proof of Theorem 1 is thus complete.
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