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1. Introduction

In this paper we consider the radially symmetric solutions for the semi-
linear elliptic equation

(1.1) 4u + g(u) = Q9 xeΩ,

(1.2) u = 0 , x e dΩ ,

where Ω = {x e R": |x| < 1}, n > 2. The nonlinear function g(s) is supposed to
be a continuous function with the following properties:

0(0) = 0 , lim|sHoo g(s)/s = GO and
(gi)

0'(0) = lims_0 g(s)/s exists .

Hence (1.1) may be called a superlinear elliptic equation. For radially sym-
metric solutions u — u(t\ t = \x\, Equation (1.1) is converted to the boundary
value problem for the second order ordinary differential equation

(1.3) u" + *—-λu' + g(u) = 0 , ί e (0, 1),

(1.4) w'(0) = 0, w(l) = 0.

Equation (1.3) can be written as

(1-3)' (ί'-V)' + t*-lg(u) = 0 , ί e (0, 1),

so that we can treat the problem (1.3)'-(1.4) as a singular boundary value
problem for a nonlinear Sturm-Liouville equation.

Under some growth conditions on g(s\ Ambrosetti and Rabinowitz estab-
lished in [1] that the semilinear problem (1.1)-(1.2) formulated in an arbitrary
bounded domain Ω possesses infinitely many solutions and moreover HQ(Ω)
norms of solutions assume arbitrarily large values. Related problems are treated
in [2, 8, 13, 18, 19, 20]. In the case where Ω is the unit ball, the existence of
infinitely many radially symmetric solutions has been investigated by Castro-
Kurepa [4] and Struwe [21] (see also [12] in the case of the whole space



260 Ryuji KAJIKIYA

Ω = R"). In fact, Struwe [21] has proved by means of a variational method
that there is an integer k0 such that for any k > k0 the problem (1.3)-(1.4)

admits a solution with exactly k zeros in the interval [0, 1]. On the other
hand, using the so-called shooting method, Castro and Kurepa [4] have showed
the same results under weaker assumptions on the nonlinear term g(s). In the
case of n = 1 Berestycki [3] has obtained similar results by applying bifurcation
theory (cf. [16, 17]). It is therefore an interesting problem to study the relation
between HQ(Ω) norms of radially symmetric solutions and the numbers of their

zeros.
In the present paper we deal with the nonlinear term g(s) satisfying

0 < α x < g(s)/\s\p~1s < a2 for sufficiently large \s\ and some constants aί9 a2 and
1 < p < (n + 2)/(n — 2). As mentioned above, under appropriate additional
conditions on g(s) one obtains various existence results of solutions. However,
in this paper, we mainly focus our attention on the estimation of HQ(Ω) norms
of solutions in terms of the number of their zeros. In fact, we establish the

following estimate

(1.5) C^D/C-D < ||M||Hέ(β) < C2fcθ «>«p-»

for any solution u having exactly k zeros. For the case of k = 1 (hence only
positive or negative solutions can be considered), HQ(Ω) estimates for positive or
negative solutions in (0, 1) have already been obtained in [6, 7, 9, 15]. How-
ever, for k > 1, it seems to the author that the above estimate has not been
known.

We now roughly sketch our proof of the above result. First, the nonlinear
equation (1.3)' is interpreted as a linear Sturm-Liouville equation

(ί"-V)' + a(f)u = 0 , ίe(0, 1),

where a(i) = (g(u(t))/u(i))tn~l. Next the integral of the coefficient a(i) over
[0, 1] is estimated through the number of zeros of u(t). This yields an estimate
for the integral of the function u(i)g(u(t))tn~l over [0, 1], which is exactly equal
to the square of the H<J(ί2) norm of u(i). Thus we obtain the conclusion.
Main tools used in this argument are a suitable Liouville transformation,
Sturm's comparison theorem and the variational characterization of the first
eigenvalue for the boundary value problem

-(f-V)' - a(t)υ = λtn~lv , ί e (α, β),
(1.6)

φ) = υ(β) = 0 .

To accomplish the argument mentioned above, this paper is organized into four

sections as below.
In Section 2, we state our main results in Theorems 1, 2 and 3. In fact,
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lower and upper estimates for the HQ(Ω) norm of u as stated in (1.5) are given

in Theorems 1, 2 and 3. Furthermore, as a typical case of g(s\ we treat the
Emden-Fowler equation satisfying the assumptions of the main theorems, and

then study the asymptotic distribution of the solutions in the space HQ(Ω).

In Section 3, the proofs of Theorems 1 and 2 are given. Theorem 2 is
obtained by using Moser's iteration technique together with a certain compact-

ness method. To prove Theorem 1 we introduce a new Liouville transforma-
tion which reduces Equation (1.3) to a simpler one. We then apply Corollary

5.2 of [11] to the transformed equation to obtain the lower estimates of
solutions.

Finally, in Section 4, we give the proof of Theorem 3. To this end, we
prepare Lemma 4 in which certain technical but crucial estimates for the

solutions are established via weighted integrals. On the other hand, we com-
pute the integral of the function (g(u(t))/u(t))tn~l on the interval [0, 1] except
for small neighborhoods of zeros of u(t). This estimate and Lemma 4 are the

bases of our argument for proving Theorem 3. To obtain these results, we will

use Sturm's comparison theorem and a well-known characterization of the first
eigenvalue for the boundary value problem (1.6).

The author wishes to express his hearty thanks to Professor S. Oharu for
valuable discussions and comments.

2. Main results

We begin by introducing some notations and definitions used in this paper.
First Ω == {x G R": \x\ < 1} is the open unit ball in R". We denote by U(Ω)

(1 < r < oo) and by HQ(Ω) the usual Lebesgue and Sobolev spaces, respectively.

The norm of Lr(Ω) is denoted by || ||r. The H&(Ω) norm is defined by

α \l/2
\ru(x)\2dx) .

Ω J

We consider the subspace H of HQ(Ω) which consists of radially symmetric

functions. We define the norm || ||H of H by

α i V/2

u'(t)2t*-* dt) ,
3 /

where ωn means the surface area of the unit sphere dΩ. Moreover we write S

for the set of all solutions u ε C2(0, 1) n C^O, 1] of the problem (1.3)-(1.4). By

a nontrivial solution we mean a solution u(t) such that u(t) φ 0. For k e N, Sk

denotes the set of all solutions which have exactly k zeros in the unit interval

[0, 1].
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REMARK 1. Any nontrivial solution u(t) of (1.3)-(1.4) has at most finite
zeros in [0, 1] and w(0) ̂  0. In fact, if a solution u(t) of (1.3)-(1.4) has infinitely
many zeros or else it satisfies w(0) = 0, then u(t) has a double zero, i.e., u'(t0) =

u(t0) = 0 for some ί0 e [0, 1]. Therefore if u(i) is regarded as a solution of the
initial value problem at ί = ί0, it follows that u(i) = 0 from the usual uniqueness
argument for solutions.

Let n* be defined by n* = oo if n = 2 and n* = (n + 2)/(n — 2) if n > 3; n*
is usually called the critical number. We now state our first result which is
concerned with the lower bounds of solutions.

THEOREM 1 (lower estimates). Suppose that g(s) satisfies (gx) and

(g2) there are constants p e (1, n*) and aί > 0 (i — 1, 2) such that

sg(s) < αjsl^1 + a2 for all s e R .

Then there are constants cί9 c2 > 0 SMC/I ί/iαί

/or any u e Sk and k > 1.

Theorem 1 may assert nothing for small /c in the case of c± < c2. How-

ever, as stated below, it is possible to show that any nontrivial solution is
bounded away from the trivial solution.

THEOREM 2. In addition to conditions (gj and (g2) suppose that g'(Q) is not
an eigenvalue of the boundary value problem:

(2.1) -^-ϋJllϋ^Ai;, f e ( 0 , l ) ,

(2.2) ι/(0) = t (l) = 0 .

Then there is a constant c > 0 such that

c< \\u\\H for all u e S\{0} .

The result stated in Theorem 1 is optimal, since we also have upper
estimates for the solutions in the following way.

THEOREM 3 (upper estimates). Set G(s) = JQ g(r) dr. In addition to (gj
suppose that the following conditions are satisfied:

(g3) lim supi,^^ sg(s)/G(s) < n* + 1.



Radially symmetric oscillatory solutions 263

(g4) There are constants p e (1, n*), bl9 b2 > 0 and R > 0 such that

b1\s\p+1<sg(s)<b2\s\p+1 for all \s\>R.

Then there is a constant c > 0 such that

for any u e Sk and k > 1.

REMARK 2. The assumptions of Theorems 1, 2 and 3 do not necessarily
guarantee the existence of solutions. To get existence results, it is necessary to
impose some appropriate additional conditions. For instance, it is known that
if g(s) is strictly increasing and locally Lipschitz continuous and if it satisfies the
conditions assumed in Theorem 3 then there is an integer /c0 such that Sk is
nonempty for all k > fc0 (see [4]).

Finally, we consider the Emden-Fowler equation which involves a typical
nonlinear term g(s). Applying the above results, we can discuss the asymptotic
distribution of solutions in HQ(Ω).

EXAMPLE (Emden-Fowler Equation). Consider the boundary value problem

(2.3) u" + **-— * M' + \u\p~lu = 0 , t e (0, 1) ,
i

(2.4) ιι'(0) = u(ί) = 0 ,

where p e (1, n*). We shall show that for each k > 1 the problem (2.3)-(2.4)
possesses a unique solution which has exactly k zeros in [0, 1] and satisfies

w(0) > 0. If we denote the solution by uk(t\ then it follows that

Sk = {ttk, ~
uk} and

S = { 0 } u { ± w k : / c e N } .

To prove these assertions, we consider (2.3) on [0, oo) together with the initial
condition

(2.5) w'(0) = 0 and w(0) = 1 .

It is not difficult to verify that Equation (2.3) subject to (2.5) possesses a unique
global solution w(ί) on [0, oo). Furthermore it is well known that the solution
w(ί) is oscillatory (e.g. [14, Corollary 6.7]). Here w(ί) is said to be oscillatory if

w(ί) has an unbounded sequence of zeros in [0, oo). As mentioned in Remark
1, we see that w(ί) has at most finite zeros in any bounded interval, and so we

may denote the set of all zeros of w(ί) as {sfc}2°=1(0 < s^ < s2 < '"I °°)
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we observe that λ2/(p~ί}w(λt) (λ > 0), as well as w(ί), satisfies Equation (2.3) on

[0, oo). Set uk(t) = s^/(p~υw(skί) Then the function uk(t) is a solution of (2.3)-
(2.4) which has exactly k zeros in [0, 1] and satisfies uk(Q) > 0. Such a solution
is unique, since any solution of (2.3) satisfying w'(0) = 0 and w(0) > 0 can
be written in the form A2/(p~1}w(/U) (λ > 0). In view of these facts we see
that Sk = (uk, -uk} and S = {0} u {±uk : k e N}. We now apply Theorems 1
through 3 to find the asymptotic distribution in HQ(Ω) of solutions of the
problem (2.3)-(2.4). That is, there exist constants c l 9 c2 > 0 such that

) for any fc 6 N

3. Proofs of Theorems 1 and 2

The purpose of this section is to prove Theorems 1 and 2. First we need
the following lemma:

LEMMA 1. For each u e 5, we have

(3.1) ii'ίί)2*"-1 dt=\ u(t)g(u(t))tn~^ dt .
Jo Jo

PROOF. Multiplying (1.3) by u(t)tn~l and applying integration by parts, we
obtain the desired relation (3.1).

Next we prepare the following lemma. This will be employed to prove
Theorem 2.

LEMMA 2. Suppose that (gx) and (g2) hold. Then there are constants ε,
c > 0 such that

for any u e 5 satisfying \\u\\ H < ε.

PROOF. We give the proof by "Moser's iteration technique" (cf. [10]).
Multiplying (1.1) by \u\qu (q > 0) and integrating over Ω, we obtain

(3.2) f I Vυ\2 dx = ̂ ±-̂  ί \u\*ug(u) dx ,
Jβ 4(0+1) Jo

where v(x) = \u(x)\(q+2)/2. First, we note that there is a constant a > 0 by (gj

and (g2) such that

(3.3) sg(s) < a\s\p+l + as2

for all s e R. Set y = n/(n — 2) for n > 3. For n = 2, choose y so large that
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y > (p + l)/2. Then Sobolev's imbedding theorem implies that H^(Ω) a L2y(Ω)
and that there is a constant c0 > 0 such that for any υ e HQ(Ω).

(3.4)

It follows from (3.2), (3.3), (3.4) and Holder's inequality that

< c'(q

where c and c' are positive constants independent of u and q. We now define

4k = (P+ l)α* and fl = 2γ/(p + 1), and so α > 1 from the definition of γ. The
substitution of q = 2ak — 2 into (3.5) yields

Since these inequalities hold for k = 1, . . . , m — 1, we have

(3.6) ||«||4m < coCl | |Fw||2 ΠΓ-i1 d + ll"!!?;1)1'2

where we have used (3.4) and

Notice that c1 < oo since a > 1. We then set c2 = max (21/(2fl~2)c0c1, c0} and

suppose c2 1| Fti || 2 < 1. By induction on m, the inequalities (3.4) and (3.6)
together imply

\\u\\qm<c2\\?u\\2<\

for all m e N. Consequently, we obtain

provided that c2 | |FM||2 < 1. This completes the proof.

PROOF OF THEOREM 2. We prove Theorem 2 by contradiction. Suppose

that there is a sequence of nontrivial solutions {w7 }£Lι <= S\{0} such that
lim,.̂  \\Uj\\ H = 0. Then Lemma 2 asserts that lim,^ HM,!^ = 0. We then set

Vj(x) = Uj(x)/ \\Uj\\vi each vj satisfies

— AVJ = (g(Uj)/Uj)Vj for xe Ω .

Since the right hand side is bounded in L°°(ί2), {i^ JjL i is bounded in W2'*(i2)
by the regularity theorem for elliptic operators and is relatively compact in
Wlt9(Ω) for any q e [1, oo). Hence one finds a subsequence of {Vj}^ which
converges to some function t (x) in both Wltq(Ω) and L°°(ί2). This together with
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\\Vj\\ ^ = 1 implies

xeΩ,

v = 0 , xedΩ,

Wlαo = 1 -

Since υ(x)9 as well as Uj(x), is radially symmetric, the above equation implies

that g'(O) becomes an eigenvalue of (2.1)-(2.2). This contradicts the assump-

tions of Theorem 2 and the proof is complete.

In what follows, we put the following condition in addition to (gj:

(gi)' sg(s) >0 and G(s) > 0 for all seR\{0} .

REMARK 3. Condition (gj' does not give any additional restrictions to the

assumptions of Theorems 1 and 3. Indeed, condition (gt) implies that g(s)/s is

bounded below. We define f(s) = g(s) + as for a > 0. At this point we can

choose a so large that sf(s) > 0 for all s φ 0. This implies that

ί f(r) dr > 0 for any s φ 0 .
o

In this case (1.3) can be rewritten as

u' -au +/(ιι) = 0.

We shall prove Theorems 1 and 3 in the case a = 0 only, since the same

methods are valid for the case a > 0 as well. Consequently we may assume

To prove Theorem 1 we need the following lemma, which is obtained by

applying Sturm's comparison theorem.

LEMMA 3 ([11, p346, Corollary 5.2]). Let q(t) be a continuous function on

[a, b~\. Let v(t) φ 0 be a solution of the equation:

v" + q(t)v = 0 , t e I

Assume that v(t) has exactly k zeros in (α, &]. TTierc we fiαue

f f t \ι/2
-α) q+(t)dt) + 1 ,

Jfl /

w/iβrβ g+(ί) = max (g(ί), 0}.
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PROOF OF THEOREM 1. It follows from a simple computation that (g2) is
equivalent to the following condition:

(g2y There are constants cί9 c2 > 0 such that

g(s)/s < c1(sgf(s)f 4- c2 , where μ = (p- l)/(p + 1) .

Let u e Sk. In what follows, we denote various constants independent of u and
fc by C(>0). We first consider the case in which n > 3. In this case we
employ the following Liouville transformation:

r = ί1/α, v(r) = rβu(t),

where 2β = (n — 2)α + 1 and α(> 1) is a constant to be determined later. Then
Equation (1.3) is reduced to the following second order equation:

Q 9 r e (0, 1

where

q(r) Ξ αV -2flr(ιι(ι «))/u(r ) - β(β -

Note that q(r) has singularity at r = 0. Since q(r) and v(r) satisfy the assump-
tions of Lemma 3 on the interval [ε, 1] for sufficiently small ε > 0, it follows
that

-«r
1/2

-h i
J

< c{ ί1 {0(M(r'))Mr')}r2'-2 drΓ* + 1 .
Uo J

Under condition (g2)', the application of Holder's inequality implies

C f l Ίμ/2 r pi ~)(l-μ)/2

(3.7) k < C<\ u(t)g(u(t))tn~l dt\ \\ ίy/(1"μ) at\ + C ,
Uo J Uo J

where γ = 1 — μ(n — 1) — 1/α. Since μ = (p — l)/(p + 1) and p e (1, n*), one can
choose α > 1 so large that y/(l — μ) > —1. This implies that the function
jy/σ-μ) js ίntegrable over [0, 1]. Thus we obtain the desired estimate from (3.7)

and (3.1).
We next deal with the case of n = 2. This time we employ the following

Liouville transformation:
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Then (1.3) is reduced to the equation,

v" + q(r)v = 0 , r e (0, 1] ,
where

q(r) = ί2|log (ί/e)|4flf(u(ί))/tt(ί) with t = e(r-1)/r.

Applying Lemma 3 to the above equation, we see in the same way as in the
case of n > 3 that the estimate

k < C <\ u(t)g(u(t))t dt> < ί|log (t/o)\2/(1~μ} dt\ +C.
Uo J (Jo J

is valid. This estimate and the relation (3.1) together imply the assertion for
the case of n = 2, and the proof is complete.

4. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. To this end we verify
the following theorem, which is slightly more general than Theorem 3.

THEOREM 4. Let g(s) satisfy conditions (gj, (gj', (g3) and

(g5) there are constants μ e (0, 1), v e [μ, 2μ) and at > 0 (1 < i < 4) such that

alG(s)μ -a2< g(s)/s < α3G(s)v + α4 for all s e R\{0} .

Then there exists a constant c > 0 such that

\WL
for all u e Sk.

Once this theorem is proved, then Theorem 3 is derived in the following
way: Under the assumptions of Theorem 3, condition (g5) holds with μ = v =

(P — 1)/(P + 1) and so Theorem 3 follows from Theorem 4.
In order to prove Theorem 4 we need several lemmas. We first establish

technical estimates for some weighted integrals of the solutions.

LEMMA 4. Assume (gj' and (g3). Then there are constants θ > 0 and
Ci > 0 (1 < i < 3) such that

G(u(t))tn < Cl I G(u(t))tn'1 dtΊ Γ G(u
Jo

-J1
Jo

G(u(t))t2n~3+θ dt

i G(u(t))tn

for any u e S.
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PROOF. By (gj' and (g3) there are constants θ, σ > 0 and c > 0 such that
for all s e R,

(4.1) (2n - σ)G(s) + c > (n - 2 + θ)sg(s).

Multiplying (1.3) by u'(t)tm (m > 0) and integrating the resultant identity over

[0, T], we have

^u'(T)2Tm + G(u(T))Tm

(4.2)
Cτ ί \ Cτ

= m G(u(t))tm-1 at + (^ + 1 - n) uf(t)2tm~l at.
J o V 2 / J o

First we substitute m = n into (4.2) to obtain

P ι Γ1

G(u(T))Tn < n G(u(i))tn~l dt<n\ G(u(t))tn~l at

for all T e [0, 1], which implies the first inequality of Lemma 4. Secondly, the
substitution of m = n and T = 1 into (4.2) yields

1 Γ1

-u'(l)2 = n
z Jo

-^ ί'liίί^Nί))^-1*,
z Jo

G(u(t))tn~1 at
*• Jo

(4.3)

where we have used (3.1). Thirdly, substituting m = 2n — 2 + θ and T = 1 into
(4.2), we have

•ΓJo
= (2n - 2 + θ)

u'(t)2t2"-3+β dt

(4.4)

<(2n-2 + θ ) \ G(u(t))t
lo

2n"3+θ

* dt,

where we have used (3.1) and n — 2 + θ > 0. Combining (4.3) and (4.4), one

finds
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if, (2nG(ιι(ί)) - (n - 2 +
0

f 1
2n-3+0< (In - 2 + 0) G(u(t))t2n~3+θ at,

Jo

which implies the second inequality of Lemma 4 from (4.1). Finally it is not
difficult to check the last inequality of Lemma 4, and the proof is complete.

The next lemma, which follows readily from Sturm's comparison theorem,
is useful for proving Lemma 6 below.

LEMMA 5 (cf. [11, p336, Exercise 3.2]). In the differential equation

(4.5) (p(t)u'Y + q(t)u = 0 , t e [α, 6] ,

let p(t) e Cl[a, b~\ and q(t) e C[α, b] satisfy

p(t) > m and M > q(t),

where m and M are positive constants. If u(t) is a solution with a pair of zeros
f ι> *2 (*ι < t2) and u(t) φ 0, then we have

t2~tl> π(m/M)1/2.

In view of Lemma 4, we introduce the next notation for convenience.

DEFINITION 1. We define

M(u) = maxo^i G(u(t))tn for u e S .

By Lemma 4, (4.1) and (3.1) there is a constant c4 > 0 such that

(4.6) w'ίOV"1 at < c4M(ύ) + c4
Jo

for any u e S. Hence, to prove Theorem 4, it is sufficient to compute the value
of M(u) instead of the HQ(Ω) norm of u. To evaluate M(u) we subdivide the
interval [0, 1] in the following way:

DEFINITION 2. Let u e Sk and {ίj^j. (0 <tt <t2<"m <tk= I) denote its
zeros. Let δ be an arbitrary number given in (0, 1/2). Moreover we set

and J = [0,1]\J.
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In what follows, we denote various constants by Cε, Q, CM and C; Cε

means a constant depending upon ε, Cε><5 represents a constant depending
possibly on ε and <5, and C denotes an absolute constant. The next lemma and
Lemma 4 together play the most important role in the proof of Theorem 4.
Indeed, the key lemmas, Lemmas 7 and 8 below, are obtained from this lemma.

LEMMA 6. Suppose (gj, (gj' and (g5). Let u e Sk and ε e (0, 1). Then we
have

(ϋ) ^^-t'-1 dt <. Cά
J/o "W

(i

(iii) if tι > ε, then

(ti+1 - tiΓ1 < CεM(u)v/2 + Cε.

PROOF. Consider the eigenvalue problem for the Sturm-Liouville equation

-(ί--V)'-α(r)t; = λί--1ι?, ίe(α,jS),

= v(β) = 0 ,

where α = ti9 β = ίί+1, i > 1 and α(ί) = [g(u(t))/u(t)}t"~l. We see that λ = 0 is
the first eigenvalue of this problem and u(i) is the corresponding eigenfunction.
In fact, v(t) = u(t) and λ = 0 satisfy the above equation and moreover u(t) has
no zeros in the interval (α, β) = (th ίί+1). Then it follows (see [5, p454], [11,
p337, Theorem 4.1]) that λ = 0 is the first eigenvalue with the corresponding
eigenfunction u(t). According to [5, p399], we have the following variational
characterization:

where V denotes the set of all functions v e C^α, β] satisfying t (α) = v(β) = 0
and v φ 0. It follows from (4.7) that

Γβ Γβ
vf(t)2t"-1 dt> a(t)v(t)2dt

J α Jα

>(minίe/iι;(ί)2) a(t) dt
J/l

for any v e V. Applying this inequality to the particular function t (ί) =
(β — t)(t — α) e V, one finds
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a(t)dt.

In view of the definitions of α and β we see that the assertion (i) is valid.
Next we prove the assertion (ii). In the same argument as above we have

[t\\t)2tΛ-1dt^(ΏUnt6lov(t)2) ί
Jo J/(

a(t) at
\

for any v e C^O, 1] satisfying ι/(0) = t^tj) = 0. Substituting v(t) = t\ — ί2, we
obtain the assertion (ii).

We then prove the last assertion (iii). The function u(t) e Sk satisfies
the differential equation (4.5) with p(t) = tn~l and q(t) = {g(u(t))lu(t)}tn~*. The
functions p(t) and q(t) are estimated as

p(t) > ε"-1 and q(t) < CEM(u)v + Cε, ί e [ί,, ίl+1] ,

where we used the condition (g5) and li > ε. Therefore assertion (iii) follows
from Lemma 5. The proof is thereby complete.

From Lemma 6 we obtain:

LEMMA 7. Assume that all the hypotheses of Theorem 4 hold. Let θ (>0)
be defined as in Lemma 4. Let ε e (0, 1). Then for tj > ε, we get

Σ?-/ i G(u(t))t2»-*+θ at

PROOF. By (g5) we find a constant c > 0 such that

(4.8) G(s) <

for all s + 0. Let ί, > ε. We set ξ = nμ + θ - 2. Then (4.8) and Lemma 6
together imply

2"~3+6
\ G(u(t))t

J /f

<c (G(u(t))tn)l~μtξ ,* t"'1 dt + c
Jli W(0 J/i

< c max (ε«, l)M(u)1-"(Ce?aM(M)v/2 + C..a) + c

< C..aAf (w)1-"*"2 + C^.MίM)1-" + c .
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Therefore the application of Young's inequality implies

G(u(t))t2"-3+θ at < CεtδM(u)1-^2 + Cβi, .1
Summing up both sides with respect to i=j,j+l, ..., k — 1, we obtain the
desired inequality. This completes the proof.

Using Lemmas 6 and 7, we prepare the following lemma:

LEMMA 8. Assume all of the hypotheses of Theorem 4. Then we have

G(u(t))t2n~3+θ dtI
< CεaM(u) + Ct

for any ε e (0, 1/2), where a = n - 2 + θ (>0).

PROOF. There are the two cases to be considered.
(A) There is an integer i e [1, k — 1] such that ίf e [ε, 2ε]:
(B) Any ti (1 < i < k — 1) does not belong to [ε, 2ε].

We can find an integer j e [1, k — 1] such that ί̂  < ε < tj < 2ε in case (A),
where we understand that ί0 = 0. On the other hand, there is an integer
j E [1, k] such that ί̂  < ε <2ε < tj in case (B). In either case, it follows from
Lemma 7 that

(4.9) G(u(t))t2n-*+θ dt
J[ε,l]n/

< G(u(t))t2n~3+θ dt + CεtδkM(u)l~μ+v/2 + CEfδk .

Now suppose [ε, tj] n Ij_1 Φ φ. We want to estimate

K = J G(u(t))t2n~*+θ dt.

First, in case (A) it follows from the direct computation that

(4.10) K < i £ G(u(t))t2n~3+θ dt < 2^^εaM(u).
Jε 0

Secondly, in case (B), it follows from (4.8) that

K < CeM(u)i~tlKj_i + C,
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where

Since t^ < ε <2ε < tj9 Lemma 6 implies that

Kj-^Cώj-tj^Γ^ε^Ct if ;>2, and

K, -ι<Q if 7 = 1 -

Therefore we obtain

(4.11) K£CΛtΛM(u)1-" + C.

From (4.9), (4.10) and (4.11), we have

G(u(t))t2n~3+θ dt
J[ε,l]n/

< CεaM(u) + CEjδ

Thus, we can apply Young's inequality to the right hand side to get the
conclusion.

We are now in a position to give the proof of Theorem 4.

PROOF OF THEOREM 4. We set a = n — 2 + θ (>0) as in Lemma 8. Let ε,
δ be arbitrary numbers given in the interval (0, 1/2). In order to evaluate M(w),
we estimate

(4.12) I G(u(t))t2n~3+θ Λ = ( Γ + I + I ) G(u(f)}t2n~^θ dt .
Jo \ J θ J[ε,l]nJ J[ε, l]n//

First, we see from Definition 2 that the measure of J is 26. Therefore the first
and the second terms can be estimated as

ί£ G(u(
Jo

(4.13) I G(u(t))t2n~3+θ dt < -M(u)

and

(4.14) G(u(t))t2n~3+θ dt < C(δa + δ)M(u),

respectively. The last term on the right hand side of (4.12) has already been
estimated in Lemma 8. Using (4.12), (4.13), (4.14) and Lemmas 4 and 8,
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we have

(4.15) M(u) < C(εa + δa + δ)M(u) + Cε,^
2/(2^v) + Cβ.a ,

where C is independent of M, fc, ε and δ. We now choose ε, δ > 0 so small that
C(εfl + δa + δ) < 1/2. Then (4.15) implies

M(u) < C/c2/(2μ"v) + C .

Thus, the desired assertion is obtained by applying (4.6). The proof is thereby
complete.
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