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1. Introduction

In this paper we are concerned with neutral differential equations of the
form

(1.1) ^ [x(ί) - Λ(ί)x(τ(ί))] + σp(t)f(x(g(t))) = 0 ,

where n > 2 , σ = l o r — 1, and the following conditions are always assumed to
hold:

(1.2) τ(f) e C[α, oo), τ is nondecreasing on [α, oo), τ(f) < t for t > a and
lim^ τ(ί) = oo

(1.3) h(i) 6 C[τ(α), oo), \h(t)\ < h < 1 for t > α, where h is a constant, and
h(t)h(τ(t)) > 0 for ί > α;

(1.4) p(ί) E C[α, oo) and p(ί) > 0 for t > α;

(1.5) f(u) € C((-oo, oo)\{0}) and f(u)u > 0 for u φ 0;

(1.6) 0(ί) e C[α, oo) and lim^ g(t) = oo.

By a solution of (1.1) we mean a continuous function x which is defined
and satisfies (1.1) on [7 ,̂ oo) for some Tx > a (so that x(t) — h(t)x(τ(t)) is rc-times
continuously differentiate on [Tx, oo)). Such a solution is said to be non-
oscillatory if it has no zeros on [Γ, oo) for some T > Tx.

Recently there has been an increasing interest in the study of neutral
differential equations, and a number of results have been obtained. For typical
results we refer in particular to the papers [1-9, 14-18]. In this paper we
make an attempt to study in a systematic way the structure of the set of non-
oscillatory solutions of equation (1.1). In Section 2 we discuss the relation be-
tween two functions x(ί) and x(t) — h(t)x(τ(t)). The results obtained in Section
2 will be effectively used in subsequent sections. In Section 3 we classify the
nonoscillatory solutions of (1.1) into several classes according to the asymptotic
behavior as t -» oo. In Sections 4 and 5 we establish necessary and sufficient
conditions for the existence of nonoscillatory solutions of (1.1) with specific
asymptotic properties as t -> oo.
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If h(t) = 0, then equation (1.1) becomes

(1-7) x(n)(t) + σp(t)f(x(g(t))) = 0 .

Our results extend some of the results for equation (1.7). As a result we see
that, concerning the characterization of the existence of nonoscillatory solutions,

there is not much difference between equation (1.1) and equation (1.7). Further
we see that if h(t) and τ(t)/t are convergent as ί -> oo, then the structure of
nonoscillatory solutions of equation (1.1) is similar to that of nonoscillatory
solutions of equaton (1.7) or the ordinary differential equation

(1.8) x(n)(ί) + σp(t)f(x(t)) = 0 .

Related results are contained in Jaros and Kusano [8, 9]. In particular,
existence theorems of nonoscillatory solutions of (1.1) have been obtained by
Jaros and Kusano [8, Theorem 1; 9, Theorem 3.1]. However, for the Emden-
Fowler type neutral differential equation

(1.9) ^[x(ί) - h(t)x(τ(t))-] + σp(t)\x(g(t)W sgn x(g(t)) = 0 ,

their theorems cannot be applied to the case of γ < 0, because they assume that
/ in (1.1) is a nondecreasing function. In this paper the existence theorems of
nonoscillatory solutions of (1.1) are proved by a different method from [8,

9]. Our theorems can be applied to not only the case of γ > 0 but also the
case of y < 0, provided h and τ are locally Lipschitz continuous.

2. Preliminaries

In this section we study the relation between two continuous functions x(t)
and x(ί) — h(t)x(τ(t)). As regards τ(ί) and h(t\ we assume that conditions (1.2)
and (1.3) in Section 1 are satisfied.

Let T > a. Then we use the notation:

(2.1) T0(T)=T9 Ti(T) = sup{t>a;τ(t)=Ti-1(T)}, i = l , 2 , . . . ;

(2.2) τ°(ί) = ί , τ'(ί) = τίτ'-^ί)) , i = 1, 2, ....

Note that τ1^) = τ(ί) and that τl(t) is defined on [7J(α), oo), ί = 1, 2, ... . It is
easily verified that

τ(T) < T < 7ί(Γ) < < Tm-ι(T) < Tm(T) < ,

lim Tm(T) = αo
m-+oo

and
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(2.3) τ(T) < τm+1(t) < T for Tm(T) < t < Tm+1(T) , m = 0,1,2,....

We define the functions Hm(ί) on {Tm^(a\ oo) as follows:

(2.4) H0(t)=ί; Hm(t) = jf fc(τ'(t)) , m = l,2, ....
i = 0

For an x e C[τ(T), oo), we define Lx e C[Γ, oo) by

(2.5) (Lx)(t) = x(t)-h(t)x(τ(t)), t>T.

LEMMA 2.1. Let T > a and x e C[τ(T), oo). Then

(2.6) x(ί) = £ Hk(t)(Lx)(τk(t)) + Hm+1(ί)x(τ-+1(0)
fc=0

/or t>Tm(T), m = 0,1,2,....

PROOF. In view of (2.5) we see that

(2.7) x(ί) = (Lx)(t) + Λ(ί)x(τ(t)) , t > T0(Γ) .

Note by (2.1) that τ(t) > T0(T) for ί > 7\(T). Then equality (2.7) implies that

(2.8) x(t) = (Lx)(t)

for t > Γ^T). Repeating this argument, we find that (2.6) is satisfied for
t > Tm(T\

LEMMA 2.2. Suppose that x e C[τ(T), oo), T > a.
(i) If Lx is bounded on [T, oo), then x is also bounded on [T, oo).

(ϋ) //

(2.9) lim(Lx)(ί) = 0,
f->oo

then

(2.10) limx(ί) = 0.
ί->00

PROOF, (i) There are positive constants c1 and c2 such that

(2.11) |(Lx)(ί)| < Cl , ί > Γ ; |χ(t)| < c2 , τ(T) < ί < T.

Recall that (2.3) holds and notice that \Hk(t)\ < hk for t > Tm(T\ k = 0, 1, 2, . . . ,
m + 1. Then it follows from (2.6) and (2.11) that

k=o
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for Tm(T) < t < Γm+1(Γ), m = 1, 2, . . . , which implies that

s*

\x(t)\£γ^ + c2 for t>T.

Thus x is bounded on [T, oo).

(ii) In view of (i), x(t) is bounded. Therefore there is a positive constant
cλ such that

|x(f)| < c3 , ί > τ(Γ) .

Let ε > 0. By condition (2.9) there is a T > T such that

β, t>f.

Since 0 < h < 1, there is an integer m0 such that

g
hm+lc3 < - , m = m0, m0

As in the case of (i), we can obtain the estimate

1 — h
\ x ( t ) \ <

fc=0

for ί > Γm(f ), m = m0, m0 + 1, — Therefore we have

|x(ί) |<ε for ί>T m o (f),

which shows that x(ί) -> 0 as ί -> oo.

LEMMA 2.3. Swppose ί/zαί x e C[τ(T), oo), T> α. // |(Lx)(ί)| is not iden-

tically zero and is nondecreasing on [T, oo), then there are constants Λ* > 0 and
T* > T such that

(2.12) |x(ί)|</ι*|(Lx)(f)| for t > T* .

PROOF. There are positive constants T* > T, ̂  and d2 such that

(2.13) |(Lx)(ί)| > d, , ί > Γ* |x(ί)| < d2 , τ(Γ*) < t < T* .

On account of the nondecreasing property of |(Lx)(ί)|, we can see from (2.6)

that

k=0

-—
1 — n
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for Γm(T*) < t < Tm+1(T*), w = 1, 2, .... Since the first half of (2.13) implies

that 1 < |(Lx)(ί)|/dι for t > T*, we obtain

ί ̂  τ*

This completes the proof of Lemma 2.3.

LEMMA 2.4. Let x e C[τ(T), oo), T > a. Suppose that x is of constant sign

on [τ(T), oo) and x(t)(Lx)(t) >Ofort>T. If either

(2.14) |(Lx)(ί)| is nondecreasing on [T, oo), or

(2.15) lim (Lx)(ί) = / , 0 < |/| < oo ,
ί-*oo

then there are constants h^ > 0 and T^>T such that

(2.16) |x(ί)| > MLx)(ί)| for t > T*

PROOF. We may assume that x(t) > 0 and (Lx)(ί) > 0 for ί > T, since a
parallel argument holds if x(ί) < 0 and (Lx)(ί) < 0 for ί > T. We have (2.8) for

ί > 7\(Γ). From the underlying condition (1.3) and the positivity of x it
follows that

(2.17) x(ί) > (Lx)(ί) + h(t)(Lx)(τ(t)) > (Lx)(t) - h(Lx)(τ(t))

for t > Tj(T). Suppose first that Lx satisfies (2.14). Then we obtain

x(ί) > (Lx)(ί) - h(Lx)(t) = (1 - h)(Lx)(t), ί > T^T).

Suppose next that Lx satisfies (2.15). We choose a positive constant η such
that h < η < 1. By (2.15), there is a Γ^ > ΓX(T) such that

(2.18) Jηl < (Lx)(τ(ί)) < 4= , Jηl < (Lx)(ί) < -^ for t>
>A

and in particular

(2.19) 1^v r^vv for t^

From (2.18) and (2.19) it follows that

(Lx)(τ(ί)) < 4= ̂  4= - ̂  ~(Lx)(ί) ' l ^ T*
\/n

From (2.17) we have
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x(ί) > (Lx)(ί) - Vx)(ί) = f 1 -

This completes the proof of Lemma 2.4.

LEMMA 2.5. Lef x e C[τ(T\ oo), T > a. Suppose that x is of constant sign

on [τ(Γ), oo) and

lim (Lx)(f) = / , -oo < / < oo ,
f-»oo

then
0< / sgnx(f)< oo .

PROOF. We may suppose with no loss of generality that x(t) > 0 for

t > τ(T). We claim that 0 < / < oo. Assume to the contrary that — oo < / < 0.

There is a f > T such that

(Lx)(ί) = χ(t) - Λ(ί)x(τ(ί)) < 0 , ί > f.

We obtain

x(ί) < Λ(ί)x(τ(ί)) < fac(τ(ί)), ί > f.

By induction it can be shown that

x(ί) < Λ-xίτ-ίί)), t > Tm.,(f), m = 1, 2, ....

Set y = max (x(s): τ(f) < s < f} and recall (2.3) with T = f'. Then we have

x(t) < hmy, Tm^(f) < t < T m ( f ) , m=l 2, ...,

which implies that lim^^ x(ί) = 0. By (2.5) we have lim^ (Lx)(ί) = 0. How-

ever this contradicts the assumption that lim,^ (Lx)(ί) = / e [—oo, 0). Thus

we conclude that 0 < / < oo.

REMARK 2.1. Assume that

fx( ί )>0, ί>τ(Γ), and
(2.20) 1

L(Lx)(ί) = x(ί) - h(t)x(τ(t)) < 0 , t > T.

Then in view of the proof of Lemma 2.5 we see that lim^ x(t) = 0. Notice

that (2.20) can occur only when h(t) is positive on [Γ, oo).

From Lemmas 2.2, 2.4 and 2.5 we obtain the next lemma.

LEMMA 2.6. Suppose that x e C[τ(Γ), oo), T > a. Let x be of constant sign

on [τ(Γ), oo).
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(i) // \(Lx)(t)\ is nondecreasing on [Γ, oo) and

lim |(Lx)(f)| = oo ,
ί->oo

then

lim |x(f)| = oo .
ί-xχ>

(ϋ) //

lim (Lx)(ί) = / , 0 < | / | < o o ,
f-»oo

then

0 < lim inf \x(t)\ < lim sup \x(t)\ < oo .
r->αo t-κχ>

PROOF. We may suppose with no loss of generality that x(ί) > 0 for

ί > τ(Γ).
(i) From Lemma 2.5 we see that lim^^ (Lx)(ί) = oo. By Lemma 2.4 we

have

(2.21) x(t)>ht(Lx)(t), ί > T * ,

where h^ > 0 and 7^ > T are constants. Then it is clear that linv^ x(t) = oo.
(ii) From Lemma 2.5 we obtain / > 0; and so (Lx)(t) > 0 for all large

ί. By Lemma 2.4 we have (2.21) for some constants h# > 0 and Γ^ > T.
Then (2.21) gives lim inf^ x(ί) > 0. From (i) of Lemma 2.2 we see that
lim sup^oo x(t) < oo. The proof of Lemma 2.6 is complete.

LEMMA 2.7. Let x e C[τ(T\ oo), T > α, and i be a nonnegative integer.
(i) If lim,^ (Lx)(t)/tl = 0, then limt^ x(t)/tl = 0.
(ii) Suppose in addition that x is of constant sign on [τ(T), oo).

// |(Lx)(ί)|/ί'' is nondecreasing on [T, oo) and lim^^ \(Lx)(t)\/tl = oo, then

(iii) Suppose in addition that x is of constant sign on [τ(Γ), oo). //
lim^^ (Lx)(t)/tl exists and is a nonzero finite value, then

PROOF. Observe that

(Lx)(t) x(t)

and apply (ii) of Lemma 2.2 and Lemma 2.6 with x(ί) and h(t) replaced by
x(t)/tl and h(t)[τ(t)/t]l

9 respectively.
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We can assert that, in (iii) of Lemma 2.7, the limit of \x(t)\/tl as t-> oo
exists if the following condition is satisfied:

(2.23) lim Λ(ί)[τ(ί)/ί]1' exists and is finite .
t->αo

To see this we first prove the next lemma.

LEMMA 2.8. Suppose that x e C[τ(T), oo) and that

(2.24) limh(t) = λ, \λ\ < h< 1 .

(2.25) lim (Lx)(t) = / , |/| < oo ,
f->00

then

(2.26) limx(ί) =

PROOF. Set x(t) = x(t) - 1(1 - λ)~l. We have

(Lx)(t) = x(t) - h(t)x(τ(t))

From (2.24) and (2.25) it follows that lim^ (Lx)(t) = 0. In view of (ii) of

Lemma 2.2 we have lim^^ x(t) = 0, which implies (2.26). The proof of Lemma
2.8 is complete.

LEMMA 2.9. Let x e C[τ(T), oo), T > a, and i be a positive integer. Suppose

that (2.23) is satisfied. If lim^ (Lx)(t)/tl = lim^ [x(ί) - h(t)x(τ(t))]/tl exists
and is a nonzero finite value, then lim^^ x(t)/tl exists and is a nonzero finite

value.

PROOF. Note that (2.22) holds, and employ Lemma 2.8 with x(t) and h(t)

replaced by x(t)/tl and h(t)[τ(t)/f]1.

3. Classification of nonoscillatory solutions

In this section we classify nonoscillatory solutions x of (1.1) according to

the asymptotic behavior of (Lx)(t) = x(t) — h(t)x(τ(t)) as t -> oo. Some of the
results in this section have been obtained by Jarόs and Kusano [9]. However

we write the full proofs since a part of the proof is different from [9]. We

make use of the following well-known lemma of Kiguradze.
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LEMMA 3.1 (Kiguradze [10]). Let n>2 and σ = l or -1 and let

weC[T, oo ) satisfy

σu(t)u(n\i) < 0 , t>T.

Then there exist an integer j e {0, 1, 2, . . . , n} and a number ί0 > T such that

(-iγ-J-lσ= 1 and

u(t)u(ί\t) > 0 , ί > ί0 , 0 < i < ,

> 0 , ί > ί0 , j<ί<n.

THEOREM 3.1. Lei x be a nonoscίllatory solution of (1.1). Tnen one of the

following two cases holds:

(I) There are an integer j with 0 < 7 < n, ( — l)π~7~1σ = 1 and a number

t0> a such that

(3.1) x(f)(Lx)(f)>0, t>ί 0 ,

Γ(Lx)(t)(Lx)«(ί) > 0 , ί > ί0 , 0 < i < j ,
(3.2) . .

W(ί) > 0 , ί > ί0 , j<i<n;

(II) Ήiere is α number t0> a such that

(3.3) x(f) (Lx)(f)<0, ί>ί 0 ,

(3.4) (- l)'(Lx)(ί)(Lx)«(ί) > 0 , ί > ί0 , 0 < i < n

(3.5) lim(Lx)(ί) = 0, lim x(ί) = 0 .
ί-»oo ί->oo

Furthermore the case (II) can noW on/j; wnen (— l)πσ = 1 and h(t) is eventually

positive.

PROOF. We may assume that x(ί) > 0 and x(g(t)) > 0 for t > T0 (> a).

By equation (1.1) we see that (Lx)(w)(ί) = — σp(t)f(x(g(t))) is either positive or

negative for t > T0. Therefore Lx is either decreasing or increasing on [Γ1? oo)

for some large 7\ > T0. We have the following two possibilities:

(I) (Lx)(ί)>0 for t>T2;

(II) (Lx)(ί) < 0 for t > T2 ,

where T2 (> 7\) is sufficiently large.
In the case of (I) we have σ(Lx)(ί)(Lx)(w)(ί) < 0 for t > T2. Applying

Lemma 3.1 to the case of T = T2 and u(t) = (Lx)(r), we conclude that there are

j e {0, 1, 2, . . . , n} and ί0 > T2 satisfying (- l)n~j~lσ - I and (3.2).
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In the case of (II) we have (-σ)(Lx)(ί)(Lx)(π)(ί) < 0 for ί > T2. Lemma 3.1
with σ, T and u(t) replaced by — σ, T2 and (Lx)(f), respectively, shows that there
are j e {0, 1, 2, . . . , n} and ί0 > T2 such that (- l)n~jσ = 1 and

(Lx)(ί)(Lx)(ί)(ί) > 0 , ί > ί0 , 0 < i < 7 ,
(i)(i) >0 , ί > f 0 , j<ί<n.

We claim that 7 = 0. Otherwise, we have (Lx)(t) < 0 and (Lx)'(f) < 0 for

t > ί0 Then limt^ao(Lx)(t) = I exists and / satisfies — oo < / < 0. On the
other hand, Lemma 2.5 implies that 0 < / < oo. This contradiction asserts that
the case 0 < j < n is impossible. Since 7=0 in the above, we have (— l)nσ= 1.
Further, since x(ί) > 0 and (Lx)(ί) < 0 for t > ί0, Remark 2.1 implies that
lim^oo x(ί) = 0 and that the case (II) can occur only when h(t) is eventually
positive. The proof of Theorem 3.1 is complete.

DEFINITION 3.1. Let Jf denote the set of all nonoscillatory solutions of
(1.1). For an integer j with 0 < j < n and (— l)n~j~1σ = 1, we denote by Λ^J
the set of all nonoscillatory solutions x of (1.1) which satisfy (3.1) and (3.2). In

addition, we denote by Jf$ the set °f all nonoscillatory solutions x of (1.1)
which satisfy (3.3)-(3.5).

Theorem 3.1 means that every nonoscillatory solution x e Jf falls into one
and only one of the classes Λ/J (0 < j <n,(—l)n~j~1σ= 1) and Jf^. More
precisely, Ji* has the following decomposition:

_3 u u Λ^i u ^o~ for σ = 1 and n is even

-3 u u e/Γ2 u Jf$ for σ = 1 and n is odd

Jf = Λ^ u ,̂-2 u u ^Γ2 u ̂  for σ = — 1 and n is even

Jf — Jfn u Λ^_2 u u J^ u J^~ for σ = — 1 and n is odd ,

where Jf^ can appear only when h(t) is eventually positive.

Let x 6 ^Vj. Then we see by (3.2) that the asymptotic behavior of (Lx)(ί)

as ί -> oo is as follows:
( i ) If j = 0, then either

(i-1) lim(Lx)(ί) = const φ 0 or
ί->00

(i-2) lim (Lx)(ί) = 0 .
ί-*oo

(ii) If 1 < j < n — 1, then one of the following three cases holds:
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(iί-1) lim —-.— = const Φ 0

(ii-2) lim —p^— = const φ 0
f-»00 t

(ii-3) lim —-.— = 0 and lim —-pi— = oo .

(iii) If j = n, then either

(iii-1) lim *_[ = const φ 0 or

Notice that the function \(Lx)(t)\/tj 1 in (ii-3) is eventually nondecreasing
(see Kusano and Natio [13, Lemma, p. 365]). Arguing as in [13], we can

prove that \(Lx)(t)\/tn~l in (iii-2) is also eventually nondecreasing. From (i)-(iii)
of Lemma 2.7 we find that the asymptotic behavior of x as t -> oo is as follows:

( i ) If x e Λ^, then either

(i-1) 0 < lim inf \x(t)\ < lim sup \x(t)\ < oo or
ί-»ΌO t~*ao

(i-2) lim χ(t) = 0 .
ί-*00

(ii) If x e ΛJ, 1 < j < n — 1, then one of the following three cases holds:

(ii-1) 0 < lim inf—j— < lim sup —γ- < oo
ί-*αo t ί~*oo ί

Ixfί^l Ixίί^l
(ii-2) 0 < lim inf ._1 < lim sup ._1 < oo

(ii-3) lim —r- = 0 and lim J._1 = oo .
ί->oo t ί-^oo t

(iii) If x E Jfn, then either

(iii-1) 0 < lim inf y i_1 < lim sup n_1 < oo or

(iii-2) lim ——p = °o .

Now consider the case where the next condition holds:
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(3.6) lim h(t) [τ(t)/t]1 exist and are finite for all i = 0, 1, 2, ..., n - 1 .
ί-»oo

Condition (3.6) is certainly satisfied if lim^ h(t) = 0, or if both lim,^ h(t) and
lim,^ τ(t)/t exist and are finite. If (3.6) holds, then we can ultilize Lemma 2.8
and Lemma 2.9 instead of (iii) of Lemma 2.7. Then we conclude that, under
condition (3.6), the asymptotic behavior of a solution x belonging to Λ/J is as
follows:

( i ) If j = 0, then either

(i-1) lim x(t) = const ^0 or
f-*00

(i-2) lim x(t) = 0 .
f->oo

(ii) If 1 < j < n — 1, then one of the following three cases holds:

x(t)
(ii-1) lim — ̂  = const Φ 0

f-*oo t

χ(t)
(ii-2) lim -pf = const φ 0

(ii-3) liιn = 0 and lim = oo .
t-XX>

(iii) If j = n, then either

x(t)
(iii-1) lim -^- = const Φ 0 or

ί->00 ί

(iϋ-2) lim 1^1=00.
ί-^oo ί

It is worth while to note that, if (3.6) is satisfied, the structure of the
nonoscillatory solutions of the neutral equation (1.1) is exactly the same as that
of the nonoscillatory solutions of the non-neutral equation (1.7) or (1.8) with the
exception of the Λ^ for (1.1). For the structure of the nonoscillatory solutions
of (1.8), see, for example, [13].

4. Nonoscillatory solutions asymptotic to tk

The aim of this section is to find, for each k = 0, 1, 2, ..., n — 1, a
necessary and sufficient condition for the existence of a nonoscillatory solution
x of (1.1) which behaves like tk as t -> oo, i.e., a solution x of (1.1) satisfying
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Hereafter, in addition to conditions (1.2)-(1.6), we assume the next conditions
(4.1) and (4.2):

(4.1) τ is locally Lipschitz continuous on [a, oo)

(4.2) h is locally Lipschitz continuous on [τ(a\ oo) .

First we consider the case of k = 0.

THEOREM 4.1. Assume that (1.2)-(1.6), (4.1) and (4.2) are satisfied. Then
equation (1.1) has a nonoscillatory solution x such that

(4.3) 0 < lim inf \x(t)\ < lim sup \x(t)\ < oo
f-+αo ί-»oo

if and only if

(4.4) Γ t*~lp(t) dt<oo.

PROOF. (The "only if" part.) Let x be a nonoscillatory solution of (1.1)

having the property (4.3). We may assume that x(t) and x(g(t)) are positive on
[T, oo) for some T > a. We easily find that

lim^ (Lx)(ί)(ί) = 0 for i = 1, 2, . . . , n - 1 .

Therefore, integrating (1.1) repeatedly from t to oo, we have

x)(ί)(ί) = (- ir'-1* Γ !5"°n t'
Jt (n-ι- 1)1

(4.5) (Lx)(ί)(t) = (- IΓ'-'σ i ^—Γr.p(s)f(x(9m ds , t>T,
J, (n - i - 1)!

for / = 1, 2, ..., n — 1. Noting that lim,^ (Lx)(t) exists and is finite and
integrating (4.5) with i = 1 from ί to oo, we obtain

(Lx)(t) = (Lx)(άo) + (- IΓ'σ f" (S~^T* p(s)f(x(g(s))) ds , t>T,
J t \ '*

where (Lx)(oo) = lim,^^ (Lx)(t). Then we see that

(4.6) Γ (s - Tr-1p(s)f(x(g(s))) ds < oo .

In view of (4.3) there are positive constants cl and c2 such that

(4.7) G! < x(g(t)) <c2 for t > T.
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From (4.6) and (4.7) it follows that

/* Γ (s - IT-1!
Jr

where /^ = min [f(u)\ c1 < u < c2] > 0. Thus we get (4.4).
(The "if" part.) Let c > 0 be an arbitrary positive number. Put μ =

(1 — /ι)/3, where h is a constant appearing in assumption (1.3) and put /* =
max {f(u)\ μc < u < c/(3μ)}. Choose T > 1 so large that

(4.8)

(4.9)

f = min (τ(Γ), inf,> τ g(t)} > max {α, 0} and

. (n - 1)! μcί
oo
r,.-,p(t) <fc <

For this T, let 7](T), i = 0, 1, 2, ..., be real numbers defined by (2.1). The
solution x of (1.1) satisfying (4.3) will be obtained as a solution x of the integral
equation

(4.10) x(t) = Λ(t)x(τ(t)) + (1 - μ)c

Jί

ί >

Since we are going to get a function x which satisfies (4.10) for t > T^(T\ there
is no loss of generality in supposing that h(t) satisfies, besides assumption (1.3),

(4.11) ft(f) = for f<t<T.

In fact, if h(t) does not satisfy (4.11), then we may replace h(t) in (4.10) by h(t)
defined as follows:

o, T < ί<τ,
h(t)= h(t)(t-T)/(T,(T)-T), Γ < f < 7 ί ( Γ ) ,(4.12)

We define the auxiliary function n(t) on [Γ, oo) by

if f < ί < T ,

1 if Λ(ί)<° and ί>
(4.13) »(ί)=

ff,(ί) if Λ(ί) > 0 and TJ.^T) < ί < 7J(T) , / = 1, 2, ...,
0

where #,(i), i = 0, 1, 2,..., are given by (2.4). Since n(t) < £!=0 Λ1' for
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TJ-^T) < t < η(T), / = 1, 2,..., we have

(4.14) n(t) < 1/(1 - A) = l/(3μ), ί > f.

Furthermore, using the condition h(t)h(τ(t)) > 0, ί > T, in assumption (1.3),
we have

(4.15) π( ί )>l , £ > ? .

It is also verified that if t satisfies h(t) > 0 and t > T9 then

(4.16) Λ(fWτ(t)) = n(t) - 1 .

For the proof of (4.16) we note that h(t)Hi(τ(t)) = Hi+ί(t), i = 0, 1, 2, ..., ί > Γ.
If ί satisfies Λ(ί) < 0 and t > T, then

(4.17) h(t)n(τ(t)) = h(ί) > -ft = 3μ - 1 .

Let L\ and L?, / = 1, 2, •••, be Lipschitz constants for τ(ί) and Λ(ί) on [T, 7J(T)],
respectively, i.e.,

(4.18) |τ(ί)-φ)| <LJ| ί-s | for T < s, ί < 7J(Γ),

(4.19) (MO-MS)! <L?|ί-s| for T < s, ί < η(T).

We may suppose that LJ > 1, / = 1, 2, Define m(ί) on [T, oo) by

for f < t < T,

(4.20) m(ί) = ^ L?

ί-ίw(τ(ί)) + ̂  + (π - l)μ for ̂ (T) < t < T t ( T ) , / = 1, 2, ....

Observe that m can be inductively determined as follows: If t E (T, T^T)], then,
since τ(ί) e (τ(T), T], m(τ(ί)) is known; and so m(ί) is known on (T, T (T)]. Let
m(t) be known on (^(Γ), 7](T)] for some /, then, since τ(ί) e (TJ^CΓ), T (Γ)],

m(τ(ί)) is known; and so m(ί) is known on (Tt(T), 7]+1(T)]. Thus m(ί) is known
for all t > f'. We can easily show that m is a nonnegative nondecreasing step
function on [T, oo). Let C[Γ, oo) denote the Frechet space of all continuous
functions on [T, oo) with the topology of uniform convergence on any compact
subintervals of [Γ, oo). Consider the set X of all x e C[Γ, oo) satisfying

μc < x(t) < cn(t) for t > T

and

\x(t2) - x(ίj| < cm(t2)\t2 - ίj for t2 > ίt > f.

Clearly X is a nonempty, convex and compact subset of C[f, oo). We define
the operator OF on X in the following manner:
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(- IΓV
Jί

h(t)x(τ(t)) + (l -μ)c + (- IΓV p(s)/(x(g(s))) ds for ί > T,

f for f < t < T.

It is easy to see that ^x is well defined on [T, oo) for each x E X. We seek
a fixed point of 3F in X with the aid of the Schauder-Tychonoff fixed point
theorem.

First we show that 3F maps X into X. Assume that x e X. Since we
suppose that (4.11) holds, ^x is clearly continuous on [Γ, oo). We have to
verify that

(4.21) μc < (^x)(t) < cn(t) for t > f

and

(4.22) \(^x)(t2)-(^x)(t,)\<cm(t2)\t2-tί\ for t2>t,>f.

Note by (4.8) and (4.14) that μc < x(t) < c/(3μ) for ί > f and so μc < x(g(t)) <
c/(3μ) for t > T. Let

-Γ(4.23) G(t)=\ _ p(s)f(x(g(s))) ds for ί > T .

Then, by (4.9), G satisfies

1p(s)ds<μc for t > T.
1 Jr

Notice that ^x is written as

/•* Coo

SfoΊ-ίjϊjV1/

for t > T,

forf<t<T.

If ί satisfies t > T and h(t) > 0, then, in view of (4.16),

(^x)(t) < ch(t)n(τ(t)) + (1 - μ)c + μc

= c[n(t) — 1] + c = cn(t)

and
(1 - μ)c - μc>μc.

If ί satisfies ί > T and /ι(ί) < 0, then, in view of (4.17),

(^x)(t) < (1 - μ)c + μc = c = cn(t)
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and

(Px)(t) > ch(t)n(τ(t)) + (1 - μ)c - μc

> c(3μ — !) + (! — μ)c — μc = μc .

Then we get

(4.24) μc < (^x)(t) < cn(t) for ί > T,

and in particular μc < (^x)(T) < cn(T). Since (^x)(t) = (^x)(T) and n(t) =
n(T) for f < t < T we have

(4.25) μc < (^x)(t) < cn(t) for f<t<T.

Then inequalities (4.24) and (4.25) together yield (4.21).
Let G be the function defined by (4.23). Since

\G'(t)\= Γ(S~tT*p(s)f(x(g(s)))ds
Jt (n - 2)!

A^7 f °
-2)\ Jτ

sn~2p(s) ds<(n- l)μc for t > T,
(n

the mean value theorem gives

(4.26) |G(ί2)- 0(1,)} <(n-\)μc\t2-t,\ for t2>t,>T.

If f < t1 < t2 < T, then

If T < tγ < t2 and TJ.^T) <t2< 7](T), / = 1, 2, ..., then, in view of (4.18)-
(4.20) and (4.26),

I < |fc(ίι)llx(τ(ί2)) - x(τ(t,))\ + |x(τ(ί2))||Λ(ί2) ~ *(ίι)l

+ |G(ί2)-G(ί1)|

< cm(τ(ί2))|τ(ί2) — τ(ίι)l + -z-\h(t2) ~ M^i)!

c|~Lim(T(i2)) + ̂  + (n - I ) μ \ \ t 2 - t,\

= cm(f 2) | ί 2-f 1 | .

Therefore we see that (4.22) is satisfied.
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Furthermore it can be shown without difficulty that 3F is continuous on X.

By the Schauder-Tychonoff fixed point theorem there exists an x e X such that
x = ^x. This function x satisfies (4.10). It is clear that

lim (Lx)(ί) = lim [x(ί) - Λ(ί)x(τ(ί))] = (1 - μ)c .
f-*αo f-»αo

From (ii) of Lemma 2.6 we see that x satisfies (4.3). The proof of Theorem 4.1
is complete.

The solution x of (1.1) which is obtained in the proof of the "if" part of
Theorem 4.1 satisfies lim^^ (Lx)(ί) = (1 — μ)c φ 0. Therefore by Lemma 2.8
we get the next corollary.

COROLLARY 4.1. In addition to (1.2)-(1.6), (4.1) and (4.2), assume that
lim^^ h(t) exists and is finite. Then equation (1.1) has a nonoscillatory solution

x such that

lim x(ί) = const φ 0
f-»oo

if ana only if (4.4) holds.

Next we consider the case o f l < f c < n — 1. In this case equation (1.1)
is required to be either sublinear or superlinear. Here the sublinearity and

superlinearity of (1.1) are defined by the following:

DEFINITION 4.1. Equation (1.1) is called sublinear if / in (1.1) satisfies

&**Uffi fo, M>K,

and equation (1.1) is called superlinear i f/ satisfies

\f(u2)\
\u2

f o r | i i 2 | > | f < ι l , M 1 w 2 > 0 .

Clearly equation (1.9) is sublinear if —oo < y < 1 and is superlinear if
1 < y < oo.

THEOREM 4.2. Assume that (1.2)-(1.6), (4.1) and (4.2) are satisfied. Let (1.1)
be either sublinear or superlinear and let k be an integer with 1 < k < n — 1.
Then equation (1.1) has a nonoscillatory solution x such that

(4.27) 0 < lim inf ̂ P < lim sup ̂ - < oo
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if and only if

(•«>

(4.28) ί"~*~VWI/M0(0]*)l dt < oo for some c Φ 0 .

PROOF. (The "only if" part.) Let x be a solution of (1.1) satisfying (4.27).
Without loss of generaity we may assume that x is eventually positive. Then

we can take a number T > a such that x(t) > 0, x(g(t)) > 0 and g(t) > 0 for
t > T. We note that lim^ (Lx)(ί)(ί) = 0, i = fc + 1, k + 2, . . . , n - 1 and
lim^oo (Lx)(Λ)(f) exists and is a finite value. Integrating (1.1) repeatedly from t

to oo, we obtain

(Lxf\t) = (Lxf>(oo) + (- l)»-fc-V Γ (

(^~^_fc

1j!p(5)/(x(^(s))) ds

for ί > T, where (Lx)(k)(oo) = lim,^ (Lx)(k)(ί). Thus we have

(4.29) Γ (s - tΓk'1p(s)f(x(g(s))) ds < oo .
JT

In view of (4.27) there are positive constants c± and c2 such that

(4.30) c, [0(ί)]k < x(g(t)) < c2 [0(ί)]fc for t > T .

From (4.29) and (4.30) it follows that (4.28) is satisfied for c = c2 if (1.1) is
sublinear and for c — c± if (1.1) is superlinear.

(The "if" part.) Without loss of generality we may assume that c in (4.28)

is positive. Let μ = (1 — h)β. Set c* = c/μ if (1.1) is sublinear and c* = 3μc if
(1.1) is superlinear. Choose T so large that (4.8) and

Γ° . t 1I'(4.31) tn-k-ip(i)f(cίg(t)-]k) dt < 3kl(n -k- ΐ)\μ2c

hold. We shall obtain a solution x of (1.1) satisfying (4.27) as a solution x of
the integral equation

(4.32) x(ί) = h(t)x(τ(t)) + (1 - μ)c*tk

c^ du ds ' ^ Γι(Γ)

Arguing as in the proof of Theorem 4.1, we may suppose that (4.11) is satisfied.
Let n(t) be the function on [T, oo) defined by (4.13), where T is a constant in

(4.8). Let L\ and L? (/ - 1,2,...) be the real numbers satisfying (4.18), (4.19)
and L] > 1, / = 1, 2, . . . . We define m(t) on [f, oo) as follows:
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(4.33)

/cf*-1 f o r f < ί < Γ ,

Jh

L}m(τ(t)) + -[τ(t)-\k + ktk~ι for T^T) < t < T (Γ), 1=1,2, . . . .

Notice that m(ί) can be inductively determined on [Γ, oo) and that m(t) is a

positive nondecreasing piece wise continuous function on [T, oo). Let C[T, oo)

be the Frechet space as mentioned in the proof of Theorem 4.1. We denote

by X the set of all x e C[f, oo) satisfying

μc*tk < x(t) < c*n(t)tk for t > T ,
and

-x(tι)\<c*m(t2)\t2-tι\ for t2>ti>f.

The set X is a nonempty, convex and compact subset of C[T, oo). We define

the operator & on X in the following manner:

ΊjΓ Γ ̂ F^^(M)/(X(^(M))) dM rfs for l * T>
(1 - μ)c*tk for f <ί< T.

We show that #" maps X into itself. Assume that x e X. By (4.11),

belongs to C[f, oo). Noting (4.14), we find that μc*tk < x(t) < c*tk/(5μ) for

t > T; that is, if (1.1) is sublinear then ctk < x(t) < ctk/(3μ2) for ί > T, and if

(1.1) is superlinear then 3μ2ctk < x(t) < ctk for t > T. Set

ί
ί (t _ e^-i

ΓWV

ί
f (t — sV'"1

Λ^

(4.34) G(t)= I V '„. I ;.. ,; ^p(u)f(X(g(u)))duds, t>T.

Then

|G(t)|

-k-lp(s)f(x(g(s)))ds

for ί > T. Therefore, condition (4.31) gives

Γ n k 1

J Γ

S

ί > T ,
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in the case where (1.1) is sublinear, and

" s*-k-lp(s)f(c\:g(s) ?)ds

<3μ2ctk = μc*tk, t > T,

in the case where (1.1) is superlinear. In either case, we have

(4.35) |G(ί)|<μc*ί* for t > T.

Then it can be shown that

(4.36) μc*tk < (^x)(t) < c*n(t)tk for ί > f

by using (4.35) and the same argument as in the proof of Theorem 4.1.
If f < tί < t2 < Γ, then

(4.37) \(*x)(t2) ~ (^)(ίι)l = (1 - μ)c*\t*2 - tk\

where we have used the mean value theorem for tk. The derivative of G
defined by (4.34) is given by the following:

'(t) = f °° (S~tlr*
Jt (n - 2)1

G'(0=l \ ... p(s)f(x(g(s)))ds, t>T

for the case of fc = 1, and

* f «> (u _ .ςV-*-1

ds , t > T

for the case of 2 < k <n — 1. Therefore we have

|G'(ί)l < ̂ 2)j Γ sn~2P(sV(x(0(sW ds

< μc* , t > T

for the case of k = 1, and

ds

-mCt-Bi
< μc*fcίk~1 , t > T

for the case oϊ2 <k <n — 1. From the above, we get

\G'(t)\^μc*ktk'1 for t>T and \<k<n-l.
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By the mean value theorem we obtain

(4.38) |G(t2) - G(tj)| < μc*fctrΊt2 - ίil

for t2> t1>T and 1 < k < n - 1 .

Let t2>tί>T and T^T) <t2< Tt(T), 1 = 1,2,.... Then we see by (4.18),
(4.19), (4.33) and (4.38) that

(4.39)

< \h(tt)\ |x(τ(ί2)) - xίτίtj)! + |x(τ(t2))||Λ(ί2) - *&)

< c*m(τ(ί2))|τ(ί2) -

< c*Lϊm(τ(ί2))|t2 - t,| + [τ(ί2)]"L?|f2 - t j

+ (1 - μJc fctΓ'Ui - ίil + A*c**t2~1l»2 - ί i l

< c* ΓLJfB(τ(t2)) + ̂  [τ(t2)]* + faΓ1! 1*2 - «ι I

= c*m(ί2)|t2-t1 |.

From (4.37) and (4.39) we obtain

(4.40) I(^ χ)(ί2)-(^x)(ί1)|^c*m(t2)|t2-t1| for t2>t1>f.

Then, inequalities (4.36) and (4.40) mean that & maps X into Jf.
Furthermore it is easily verified that F is continuous on X. By the

Schauder-Tychonoff fixed point theorem we can conclude that there exists
an x e X such that x = ̂ x. This x satisfies

Λ*L w

= (1 - μ)c*fc!! + (- i)"-fc-V τ~Στ—TV"
J I \ ' *

for t > Tj(Γ) and is a positive solution of equation (1.1). From the above

equality it follows that

lira (Lx)(t)/ί* = lim [x(ί) - A(t)x(τ(t))]/t* = (1 - μ)c* > 0 .
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Then, by (iii) of Lemma 2.7 we find that x satisfies (4.27). The proof of
Theorem 4.2 is complete.

COROLLARY 4.2. Let (1.1) be either sublinear or superlinear, and let k be
an integer with 1 < k < n — 1. In addition to (1.2)-(1.6), (4.1) and (4.2), assume
that lim,..̂  h(i)[τ(t)/t]k exists and is finite. Then equation (1.1) has a non-
oscillatory solution x such that

lim - = const Φ 0
ί ' K

. __

if and only if (4.28) holds.

REMARK 4.1. It is easy to verify that if x is a nonoscillatory solution of
(1.1) satisfying (4.27), then x e Λ£ for the case of (- l)n~kσ = -1 and x e ^Vk+ί

for the case of ( — l)n~kσ = 1. This observation is also true in the case of k = 0.

EXAMPLE 4.1. Consider the equation

(4.41) -̂  [x(ί) - ft sin ί x(t - 2π)] + σp(t)\x(t - τψ sgn x(t - τ) = 0 ,

where n > 2, σ = 1 or —1, p e C[0, oo), p(t) > 0 on [0, oo), and ft, τ, γ are
constant such that | f t | < l , |τ| < oo, |y| < oo. Let k be an integer with
0 < k < n — 1. Theorems 4.1 and 4.2 show that the condition

(4.42) ί"-*-1+1*p(ί)Λ< oo

is a necessary and sufficient condition for (4.41) to have a nonoscillatory
solution x satisfying

EXAMPLE 4.2. Consider the equation

(4.43) ^ [x(ί) - hx(t - 2π)] + σp(t)\x(t - τ)P sgn x(t - τ) = 0 ,

where n, σ, p, ft, τ, γ are as in Example 4.1. Then it follows from Corollaries 4.1
and 4.2 that, for an integer fe with 0 < k < n — 1, condition (4.42) is necessary
and sufficient for (4.43) to have a nonoscillatory solution x such that

lim ̂ ^- = const Φ 0 .
ί-»oo t



254 Yΰki NAITO

5. Nonoscillatory solutions in Λ£ 1 </* < n - 1

In this section we establish conditions under which equation (1.1) has non-
oscillatory solutions of the classes Λ^, where 1 <j < n — 1 and (— l)π~ /'~1σ = 1.
These results are based upon the following lemmas which are concerned with

(5.1) {σy(n\t) + p(t)f(y(g(t)))} sgn y(g(t)) < 0 .

Here we assume that n > 2 , σ = l o r — 1, and p, f and g satisfy (1.4), (1.5) and
(1.6), respectively. We say that a nonoscillatory solution y of (5.1) is of class
^Vj if y satisfies

\(-lΓjy(t)y(i}(t)>θ9 7 + l < i < n ,

for all sufficiently large t. We use the notation

g*(t) = mm {g(t\ t] .

DEFINITION 5.1. Equation (1.1) or inequality (5.1) is called strictly sublίnear
if there is a number α such that 0 < α < 1 and

Equation (1.1) or inequality (5.1) is called strictly superlinear if there is a number
β > 1 such that

:-—~- for | M 1 | < | M 2 | , M 1 w 2 > 0 .

Clearly equation (1.9) is strictly sublinear if — oo < y < 1 and is strictly
superlinear if 1 < y < oo.

LEMMA 5.1. Let (5.1) be strictly sublinear and 1 <j < n — 1, (— \)n~j~lσ = 1.

// (5.1) has a solution of class Λ/J, then

Γ°° (a (t}\ΛJ

(5.2) I \^\tn-^p(t)\f(clg(t)y)\dt<^ for some c ^ O ,

where α is ί/ιe strict sublinearity constant for (5.1).

For the proof of Lemma 5.1, see Kitamura [11, Theorem 2]. A close look
at the proofs of Theorem 1 of Kitamura [11] and Theorem B of Kitamura and
Kusano [12] enables us to obtain the next result.
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LEMMA 5.2. Let (5.1) be strictly superlinear and 1 <j < n — 1, (—\)n~j~lσ =
1. // (5.1) has a solution of class Jf^ then

(5.3) Γ \.g^t)-]n-jp(t)\f(c[_g(t)y-^\dt < oo for some c^O.

First we find a necessary condition for the existence of a solution x of (1.1)
which belongs to Λ^.

THEOREM 5.1. Let (1.1) be strictly sublinear and 1 <j < n — 1, (—l)n~j~1σ =
1. If (1.1) has a nonoscillatory solution x in the class Jf>p then (5.2) holds.

PROOF. Let x be a solution of (1.1) in the class ΛJ. Without loss of
generality we may assume that x is eventually positive. Then (Lx)(ί) is even-
tually positive and increasing. By Lemmas 2.3 and 2.4 there are c* > 0, c^ > 0
and T > a such that

(5.4) c*(Lx)(g(t)) < x(g(t)) < c*(Lx)(g(t)) for t > T.

Then from the definition of the strict sublinearity for (1.1) it follows that

(5-5) /

for t > T. From equation (1.1) and (5.5) we obtain

<τ(Lx)<«>(ί) + (cJc*rp(t)f(c*(Lx)(g(t))) < 0 , t > Γ,

and so the inequality

sgn y(g(t)) < 0

has a positive solution Lx of class J .̂ Then we conclude by Lemma 5.1 that
(5.2) holds. This completes the proof of Theorem 5.1.

THEOREM 5.2. Let (1.1) be strictly superlinear and l<j<n— 1,
(—l)n~j~1σ = 1. // (1.1) has a nonoscillatory solution x in the class Λ/J, then (5.3)
holds.

PROOF. Let x be an eventually positive solution of (1.1) in the class Jfj.
As in the proof of Theorem 5.1, Lx is eventually positive and (5.4) is satisfied
for some c* > 0, c^ > 0 and T > a. By equation (1.1) and (5.4) we have

σ(Lx)<">(ί) + p(t)f(cφ(Lx)(g(t))) < 0 , t > T,
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which means that the inequality

{σ/ >(f) + p(t)f(c+y(g(t)))} sgn y(g(t)) < 0

has a positive solution Lx of class Λj. Then, by Lemma 5.2 we see that (5.3)
holds. The proof of Theorem 5.2 is complete.

THEOREM 5.3. Let (1.2)-(1.6), (4.1) and (4.2) be satisfied. Assume that (1.1)
is strictly sublinear and 1 <j < n — 1, (— l)"~J'""1σ = 1. Assume in addition that
g^(t) = min {#(ί)> ί} satisfies

(5.6) l iminf^>0.

Then, a necessary and sufficient condition for (1.1) to have a nonoscillatory
solution of class Λ^J is that

f*ao

(5.7) tn-j-ip(t)\f(clg(t)']3)\ dt<oo for some c φ 0.

PROOF. Note that, under condition (5.6), (5.2) is equivalent to (5.7). Then
the necessity part follows from Theorem 5.1, and the sufficient part follows from
Theorems 4.1, 4.2 and Remark 4.1.

Likewise, from Theorems 5.2, 4.1, 4.2 and Remark 4.1 we have the following
result.

THEOREM 5.4. Let (1.2)-(1.6), (4.1) and (4.2) be satisfied. Assume that (1.1)
is strictly superlinear and l<j<n—l, (— \)n~j~^σ = 1. Assume in addition
that gj(t) = min {g(t\ t} satisfies

(5.8) lim inf ̂ ^ > 0 .
f-»oo t

Then, a necessary and sufficient condition for (1.1) to have a nonoscillatory
solution of class Λ/J is that

Γ-(5.9) tn-Jp(t)\f(clg(t)y~l)\ dt<ao for some c Φ 0.

EXAMPLE 5.1. Let us reconsider equation (4.41). First notice that the case
(II) in Theorem 3.1 does not occur (that is, the class J "̂ for (4.41) is always
empty) since the function h(t) = h sin t takes a nonpositive value on [T, oo)
for all T. Let j be an integer satisfying ! < ; < n - l and (-\)n~j~lσ = 1.
Theorem 5.3 shows that equation (4.41) with —oo < y < 1 has a nonoscillatory
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solution of class ΛJ if and only if

- t < oo,r
while Theorem 5.4 shows that (4.41) with 1 < y < oo has a nonoscillatory
solution of class ΛJ if and only if

r dt < 00 .

Consider the special case that n is even and σ = 1 in (4.41). We see that if
y < 1 and the condition

(5.10) t**-Vp(t) dt = oor
is satisfied, then all the classes Λ^, j = 1, 3, ..., n — 1, for (4.41) are empty.
Since ^Γ0~ is also empty, we can conclude the following: Let n be even, σ = 1
and 7 < 1. Then equation (4.41) has no nonoscillatory solutions if and only if
(5.10) holds. Similarly we have the following result: Let n be even, σ = 1 and
y > 1. Then equation (4.41) has no nonoscillatory solutions if and only if

r t*-*p(t) dt = oo .
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