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1. Introduction

The main objective in this paper is to provide a geometric picture of
solutions of a (1 + 1)-dimensional reduction for the (1 + 3)-dimensional principal
chiral model taking values in an arbitrary linear algebraic group.

Let G be a closed subgroup of the group scheme GLy and assume that G is
defined over R. The equations of motion for the SO(1, 2)-invariant chiral
model on flat Minkowski space can be written

(1.1) d(t+do-71) =0

for 0 € G(C[[t, z]]). Here t, z are real variables, d is exterior differentiation,
and * is the Hodge operator with respect to the Lorentz metric (dt)?> — (dz)>.

Let A be a real parameter. Let o/ denote an algebra {a =X,  za,A"€
C[[t, 2,4, A7']]; orda,>n}, where ordo = sup{keZ; e (C[[t,z]]t +
C[[t,z]]12)}. Set #*=of NC[[t,z, A*!]], P3=G(#") and V5= {geG(~L);
g(t, z, ©) = 1}. Then G(&) = #;%; (Lemma 2.3 and K. Takasaki [6, (3.17)]).
This decomposition is used for solving (1.1).

THEOREM 1.1. There exist we Ny and peP; such that wlp=
y(z + At?/2 + 1/24) for each y € G(C[[z]]). Furthermore, if we set ¢ = p(t, z, 0),
then o is a unique solution of (1.1) with (0, z) = y(z).

We give a proof of the theorem in §2 and derive an explicit formula for the
solution ¢ with ¢(0, z) € G(C[z]). Also we consider a transformation group for
solutions of (1.1). As an application, we show in §3 a variant of the Geroch
conjecture [3], that is to say, a real form %%(1, 2) of SL,(C[[z]]) acts transi-
tively on the space of plane wave solutions of the Einstein-Maxwell field
equations.

The authors would like to thank Prof. T. Kako for his aid to use the
computer algebra system REDUCE 3.3.

2. The chiral models

To start with, we consider a manifest invariance of (1.1). We note that
dit*dt™t-1)= —~Ad 7} (d(t*dr-17")) for any e G(C[[t, z]]). The following
result is obvious:
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LEMMA 2.1. Let 6:G — G’ be a homomorphism or an antihomomorphism
between linear algebraic groups G and G'. If ¢ € G(C[[t, z]]) satisfies (1.1), then
0(o) does also.

We shall prove the solvability of (1.1) using this invariance.

PROPOSITION 2.2. There exists a unique solution o € G(C[[t, z]]) of (1.1)
with (0, z) = y(z) for each y € G(C[[z]]).

PrROOF. We rewrite (1.1) as follows:
2.1 (t0,)%c = t*0%¢ + t0,06- 6~ 'td,0 — t0,06- 0 't0,0 .

We set ¢[n] = 3/¢(0, z)/n! for ¢ e gly(C[[t, z]]). By (2.1), ¢[0] determines
a[n] for n > 0. The proposition is now valid if G = GLy.

Let p be a polynomial representation of GLy on V such that G = {g € GLy;
vop(g) € Cvy} with vy e V. Let o € GLy(CL[t, z]]) satisfy d(t*do-0™') = 0 and
d(0, z) = y(z). Then (2.1) combined with Lemma 2.1 implies that

n*vpt[n] = 0602t[n — 21 +Y 0 < pgr<np+a+r=nOopt[plz " [g]re[r]
—vo0,t[p — 11-77' [¢q]0,z[r — 1])
for 1= p(0) and p(6)"!. Hence v,p(0)*'[n] e C[[z]]v,- This means that
ceG(C[[sz]]). O

We now consider a linearization of (1.1) (cf. K. Nagatomo [5]). Let a,
and a, e g(C[[t, z]]). Ifa, =8,6-07! and a, = 0,0- ¢! with o € G(C[[¢t, z]]),
then

2.2) 0,000 — G0, + [otg,2,]=0.
Moreover, if o satisfies (1.1), then
(2.3) 0,(ta;) — 0,(ta,) = 0.

Conversely, if («;, «,) € g(C[[t, z1]1) x g(C[[t, z]]) is a solution of (2.2), then

there exists a unique o€ G(C[[t,z]]) satisfying 0,06 = a,0, 0,6 = a0 and

6(0, 0) = B for each B € G(C). Therefore (1.1) is equivalent to the system (2.2-3).
Here we introduce two vector fields:

D, = 0, — Atd, and D, = 0, — Atd, + 24%0, .
If &, and a, € g(C[[t, z]]) satisfy
(2.4) Dw = o;w, i=1,2 withweG(¥),
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then («,,,) is a solution of (2.2-3), since [D;,D,]= —AD, and D,D,w —
D,D,w = {G,o0, — 0,001 + [0, 3] — A(t0,a, — tO,01) } w.

In the remainder of this section, we study the space of solutions of (1.1).
Our approach is based on a theory of transformation. We begin with a slight
extension of the Birkhoff decomposition theorem due to K. Takasaki.

LeEMMA 2.3. The map Ny x Pg — G(A) given by (h, q) = hq™! is bijective.

Proor. If G = GLj, the lemma is nothing but [6, (3.17)]. Let p, V and
v, be as in the proof of Proposition 2.2. Let y be a rational character of G
such that y(g)v, = vop(g) for every g e G. Also, without loss of generality, we
may assume that y is extended to a polynomial mapping on gly.

Let he Ag, and ge P, Suppose that g:=hg'e G(). We set
c¢=x(g). Then ce GL,(</). Therefore there exist a € A5, and b e Z;;, such

that a™'b =c. Then avyp(h) = bvyp(q) € CL[t, z]]v,. This implies that h and
qeG(). O

ProoF OF THEOREM 1.1. Set g = y(z + At%/2 + 1/24) for ye G(C[[z]]).
Then g = exp (4t%0,/2)y(z + 1/2A) € G(«¢/). Lemma 2.3 implies that g =w™'p
with we #; and pe Z;. Then y(z + 1/24) = w(0, z, ) *p(0, z, A). Furthermore
p(0, z, 4) = y(z) by the uniqueness of the Birkhoff decomposition.

Also D;g=0. Hence Dw-w™'=D,p-p teg(C[[t, z]]). Thus D;p(t,z, 0)=
o;p(t, z, 0) = a;p(t, z, 0), where 0, = 0,, &, = 0, and a; = D;p-p~*. In view of the
linearization, we see that o := p(t, z, 0) is a solution of (1.1) with (0, z) = y(2).
|

ExampLE 2.4. Let ye G(C[z]) with degy=m. Let X, h,A"=7(z +
At*/2 +1/22). We set a;=h;_;, by=h;_;_,_, and c; = hyp,-; € gly(CLt, 2]).
Let A = (ay)o<ijsm B = (bylo<i,j<m and C = (cy)o<i,j<m € Slyem+1)(CL1L 2]). We
define inductively 4, = 4 and A4, = A — CA; ;B for i > 0. Set B;= BA;! and
Ci=CA;'. Let Eo=(1y,0,--,00e @mgly(C) and 'E, is the transpose of
E,. Then

0:=EqA7 (1 + Y450 B, " B,Gy—y - Co)'Eq

is a solution of (1.1) with ¢(0, z) = y(z).

In fact, if y(z + 4t%/2 + 1/22) = w™'p with we A and p = Z,.0paA" € %5,
then
(25) (pO’ pl"”)(aij)osi,j<oo =(1N’ O,.“),

and it is easy to solve the linear algebraic equation (2.5) since the matrix
(@ij)o<i, j< has the blocks of tridiagonal form
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a
A x W
O x
o]

DEFINITION 2.5. Let &(G) denote the space of solutions of (1.1). In view
of Theorem 1.1, a pair (w, p)e N X &; is called a potential for ¢ € #(G) if
Dw-w=D,p-p~! and if p(t, z, 0) = 0.

For ge G(«) and (w,p)e N5 x P;, set g-(w,p) = (v,qp) with ve A,
q € P; satisfying gw™ = v7'g. The map G() x Ny X Py — N x P defined
by (g, w, p) = g (w, p) is an action of G(&/) on Nz x Z;. If (w, p) is a potential
for 6 € #(G) and if g € G(«) satisfies D;g = 0, then Dv-v™! = gD;w-wq™! +
D;q-q~!. This implies that (v, gp) is also a potential for a certain t € ¥(G).
Set g-o =1. Since (g-0)(0, z) = g(z)a(0, z), Proposition 2.2 implies that the
map {g € G(«); D;g = 0} x ¥(G) > F(G) given by (g,6) > g-o is a transitive
action of the group. Thus we can define an action of G(C[[z]]) on &£(G) via
the following isomorphism.

PROPOSITION 2.6. We set 1(y) = 7y(z + At%/2 + 1/24) for ye G(C[[z]]).
Then 1 is an isomorphism: G(C[[z]]) — {g € G(«); D;g = 0}.

ProOF. We change the variables t =¢, z=x — At?/2 and A= A. Then
0, =0, 6, =0, + Atd, and 9, = 0, + t%0,/2. Hence D, = ¢, and D, = 0, — AL, +
2420, with respect to the new variables.

Let Yy =X, z¥,A" € gly(F) satisfy Dy =0. We set o(t, x, 1) = yY(t, x —
At?)2, 2) = exp (—At28,/2)y(t, x, A). Then ¢ is independent of ¢, since D, =
0,0 =0. Since D¢ = (0, + 24%0;)9 =0, we have 0.0, + 2(n — 1)¢,_; =0 in
the expansion ¢ =Z,. ;¢,4". Hence ¢, =0 and ¢_, = 0l¢,/2"n! for n> 0,
since @ =@(0, x, A)=y(0, x, A). Thus ¢ =@y(x + 1/22) and ¥ = ¢(t, z + At?/2, )
= @o(z + At3/2 + 1/24). O

COROLLARY 2.7. We have a unique potential for a solution of (1.1).

PrOOF. Let (w, p) € /g x P; be a potential for g € #(G). Set g =w'p.
Then D;,g=0. From Proposition 2.6, it follows that g = y(z + At%/2 + 1/24)
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with y € G(C[[z]]). Since w(0, z, A)y(z + 1/24) = p(0, z, ), we see that y(z) =
p(0, z, 4) = 6(0, z). The corollary now follows from the uniqueness of the Birk-
hoff decomposition. []

3. The Einstein-Maxwell fields

In this section, we study a (1 + 1)-dimensional reduction for the Einstein-
Maxwell field equations. Those equations are expressed in terms of potentials
due to F. J. Ernst (4, v) € C*[[t, z]] as follows ([2]):

(B1) ditxdu,v))=f"du—vdv)t*xdu,v), 2f=u+u—|v*>0.

Moreover, following M. Giirses & B. C. Xanthopoulos [4], we shall identify
(3.1) with a subclass of the chiral model (1.1) taking values in SU(2, 1). Let

1 i(f —n) v
(3.2 o=f"i@u—f) |u|? iuv
v —iww  f+ |v?

Then, by a direct calculation, we can check that (3.1) is equivalent to (1.1).
Hence we identify the space .# of solutions of (3.1) with a subspace of &(SL,).

Let J = [—i i 1:|. Let %2, 1) = {g € SL5(C[[2z]]); gJ'g = J} and %(2) =

{ge PUQ2,1);g'g =1}, where T denotes the Hermitian conjugation. We set
goo = T'(g-Y(g-0)) for ge SL;(C[[z]]) and ¢ € ¥(SL;), where - denotes the
action defined in §2. This new action makes .# into a homogeneous space of
SU2, 1), that is,

THEOREM 3.1. Set v(g) =gol for ge SU(22,1). Then v induces a bijection:
SUR, 1)/UQ2)—> M.

PrOOF. We set
1 0 0
nb,c)=|b+ilcl*)2 1 ic
c 0 1

for beR and ceC. Let N ={n(b,c;beR,ceC} and A = {diag(a™',qa, 1);
a>0}. Then we have an Iwasawa decomposition SU(2, 1) = NAU(2). We set
u=a?+|c|?)2—ib, v=c and s=n(b,c)diag(a,a,1) for a>0, be R and
ce C: Then we see that s's is of the same form as ¢ in (3.2). This implies that
WFUR, 1) = M, since v(g) =glgont=0. O
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