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Chiral models and the Einstein-Maxwell field equations
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1. Introduction

The main objective in this paper is to provide a geometric picture of
solutions of a (1 + l)-dimensional reduction for the (1 -I- 3)-dimensional principal
chiral model taking values in an arbitrary linear algebraic group.

Let G be a closed subgroup of the group scheme GLN and assume that G is
defined over R. The equations of motion for the S0(l, 2)-invariant chiral
model on flat Minkowski space can be written

(1.1) d(t*dσ σ~1) = Q

for σ e G(C[[£, z]]). Here ί, z are real variables, d is exterior differentiation,
and * is the Hodge operator with respect to the Lorentz metric (dt)2 — (dz)2.

Let λ be a real parameter. Let si denote an algebra {a = ΣneZanλ
ne

C[[f, z, λ, A"1]]; ordαn>n}, where ord φ = sup (k e Z; φe(C[[ί, z]]ί +
C[[ί,z]]z)*}. Set t^

±=^nC[[ί,z,^±1]], ^G = G(^+) and ̂ G = {geG(^~)'9
g(t, z, oo) = 1}. Then G(sί) = Λ*G0>G (Lemma 2.3 and K. Takasaki [6, (3.17)]).
This decomposition is used for solving (1.1).

THEOREM 1.1. There exist w e JfG ana peέPG such that w-1p =
γ(z + λt2/2 + 1/2A) for each y e G(C[[z]]). Furthermore, if we set σ = p(t9 z, 0),
then σ is a unique solution of (1.1) with σ(0, z) = γ(z).

We give a proof of the theorem in §2 and derive an explicit formula for the
solution σ with σ(0, z) e G(C[z]). Also we consider a transformation group for
solutions of (1.1). As an application, we show in §3 a variant of the Geroch
conjecture [3], that is to say, a real form 5*ϊf(l, 2) of SL3(C[[z]]) acts transi-
tively on the space of plane wave solutions of the Einstein-Maxwell field
equations.

The authors would like to thank Prof. T. Kako for his aid to use the
computer algebra system REDUCE 3.3.

2. The chiral models

To start with, w€ consider a manifest in variance of (1.1). We note that
d(t * dτ"1 τ) = -Ad τ~l(d(t * dτ - τ'1)) for any τ e G(C[[ί, z]]). The following
result is obvious;
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LEMMA 2.1. Let 0:G->G' be a homomorphism or an antίhomomorphism

between linear algebraic groups G and G'. If σ e G(C[[f, z]]) satisfies (1.1), then

θ(σ) does also.

We shall prove the solvability of (1.1) using this invariance.

PROPOSITION 2.2. There exists a unique solution σ e G(C[[ί, z]]) of (1.1)

with σ(0, z) = y(z) for each y e G(C[[z]]).

PROOF. We rewrite (1.1) as follows:

(2.1) (tδt)
2σ = t2dzσ + tdtσ-σ~ltdtσ - tdzσ- σ'ltdzσ .

We set φ[n\ = dt

nφ(Q, z)/nl for φ e gIN(C[[ί, z]]). By (2.1), σ[0] determines

σ[n] for n > 0. The proposition is now valid if G = GLN.

Let p be a polynomial representation of GLN on V such that G = {g e GLN;

v0p(g) e Cv0} with t?0 e V. Let σ e GLN(C[[ί, z]]) satisfy d(t * dσ σ'1) = 0 and

0 (0, z) = y(z). Then (2.1) combined with Lemma 2.1 implies that

n2ι;0τ[n] = v0d?τ[n - 2] ̂ Q<p^r

for τ = p(σ) and p(σ)"1. Hence UoPfa)*1!/!] e C[[z]]t;0. This means that

]]). D

We now consider a linearization of (1.1) (cf. K. Nagatomo [5]). Let αx

and α2 e g(C[[ί, z]]). If o^ = dtσ- σ'1 and α2 = dzσ- σ~l with σ e G(C[[ί, z]]),

then

(2.2) 3,α1-3ία2 + [α1,α2]=0.

Moreover, if σ satisfies (1.1), then

(2.3)

Conversely, if (α1? α2) e g(C[[ί, z]]) x g(C[[ί, z]]) is a solution of (2.2), then

there exists a unique σ e G(C[[ί, z]]) satisfying dtσ = cn^σ, dzσ = α2σ and

σ(0, 0) = β for each j? e G(C). Therefore (1.1) is equivalent to the system (2.2-3).

Here we introduce two vector fields:

D^ = dt - λtdz and D2 = dz- λtdt -f 2Λ23λ .

If Λ! and α2 e g(C[[ί, z]]) satisfy

(2.4) £.w = α ίw, i = l , 2 wi thweG(j/) ,
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then (α l 5α2) is a solution of (2.2-3), since [^ι,/)2]
= —λDί and DίD2w —

D2DlW = {3,α2 - dzαι + [α2, αj -

In the remainder of this section, we study the space of solutions of (1.1).

Our approach is based on a theory of transformation. We begin with a slight

extension of the Birkhoff decomposition theorem due to K. Takasaki.

LEMMA 2.3. The map JfG x 0>G -» G(ja/) given by (h, q) -» hq~l is bijective.

PROOF. If G = GLN, the lemma is nothing but [6, (3.17)]. Let p9 V and

v0 be as in the proof of Proposition 2.2. Let χ be a rational character of G

such that χ(g)v0 = v0p(g) for every g e G. Also, without loss of generality, we

may assume that χ is extended to a polynomial mapping on glN.

Let h e ^GLN and q e ^GLfi. Suppose that g := hq'1 € G($#\ We set
c = χ(g). Then c e GL^(stf\ Therefore there exist α e Λ*GLι and b E ̂ GLι such

that a~lb = c. Then av0p(h) = bv0p(q) E C[[ί, z]>0. This implies that h and

PROOF OF THEOREM 1.1. Set g = γ(z + λt2/2 + 1/21) for y e G(C[[z]]).

Then g = exp (/U2δz/2)y(z + 1/2A) e G(j/). Lemma 2.3 implies that gf = w-1p

with w e J^G and p e 0>G. Then γ(z + l/2λ) = w(0, z, A)~V(0, z, A). Furthermore

p(0, z, A) = y(z) by the uniqueness of the Birkhoff decomposition.

Also Dtg = 0. Hence Dtw - w'1 = D# - p~l e g(C[[ί, z]]). Thus Dfp(ί, z, 0) =

dip(t, z, 0) = αfp(ί, z, 0), where dl = dt, δ2 = dz and αf = Dfp /?"1. In view of the

linearization, we see that σ := p(ί, z, 0) is a solution of (1.1) with σ(0, z) = y(z).

D

EXAMPLE 2.4. Let 7 e G(C[z]) with deg y = m. Let Σlnl<mhnλ
n = y(z -f

Aί2/2 + 1/21). We set aϋ = h^j9 btj = /ι ί_ j_m_1 and c</ = Λί+m+1-; 6 gIN(C[ί, z]).

Let ^ = K.)0<u<,n, ^ = (^)o^i,, <m and C = (c0.)0<u<m e gIW(m+1)(C[ί, z]). We
define inductively A0 = A and A{ = A- CA^B for i > 0. Set £f = βAΓ1 and

Cί = CXl~
1. Let £0 = (1N, 0, •• ,0)e0mgIJV(C) and Έ0 is the transpose of

E0. Then

is a solution of (1.1) with σ(0, z) = y(z).

In fact, if y(z + Aί2/2 + 1/21) = w-1p with w e jVG and p = Σn>0pnλ
n e

then

and it is easy to solve the linear algebraic equation (2.5) since the matrix

(αϋ)o<i,j<oo has the blocks of tridiagonal form
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C A B

C A B
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DEFINITION 2.5. Let
of Theorem 1.1, a pair (w,
/). w w

denote the space of solutions of (1.1). In view
J^G x 0*G is called a potential for σ 6 £f(G) if

= D^ - p~l and if p(t, z, 0) = σ.

For g e G(jtf) and (w, p) e JfG x ^>G, set # (w, p) = (ϋ, qp) with t; e Λ^,
q 6 ̂ G satisfying gw"1 = IT1*?. The map G(<s/) x JfG x 0>G-+ jVG x &G defined
by (g, w, p) -> # (w, p) is an action of G(ja/) on Λ^ x ^G. If (w, p) is a potential
for σ e ^(G) and if g e G(^) satisfies Dtg = 0, then D^ iΓ1 = gD W w"1^'1 +
Dtf-q'1. This implies that (ι;, qp) is also a potential for a certain τ e (̂G).
Set g-σ = τ. Since (0 σ)(0, z) = 0(z)σ(0, z), Proposition 2.2 implies that the
map {g e G(<$/); Dtg = 0} x ^(G) -> (̂G) given by (gι, σ) -> gf σ is a transitive
action of the group. Thus we can define an action of G(C[[z]]) on ^(G) via
the following isomorphism.

PROPOSITION 2.6. We set ι(y) = γ(z + λt2/2 + l/2λ) for
Then i is an isomorphism: G(C[[z]]) -» {g e G(j*0; D^ = 0}.

e G(C[[z]]).

PROOF. We change the variables ί = ί, z = x — λt2/2 and A = λ. Then
<3z = dx9 dt = dt + λtdx and δλ = dλ + ί2δx/2. Hence D^ = dt and D2 = dx- λtdt +
2A25A with respect to the new variables.

Let ψ = ΣneZψnλ
n e §\N(<tf) satisfy Dψ = 0. We set φ(ί, x, /I) = ψ(t, x -

λt2/2,λ) = exp( — λt2dz/2)ψ(t,x,λ). Then φ is independent of ί, since D1φ =
3̂  = 0. Since D2φ = (dx + 2/l25Λ)φ = 0, we have t^ίft, H- 2(/ι — l)^n_! = 0 in
the expansion φ = ΣneZφnλ

n. Hence φn — 0 and φ_π = d"φ0/2nnl for n > 0,
since φ = φ(Q, x, A) = ψ(Q, x, λ). Thus φ = φ0(x + 1/2A) and ψ = φ(t, z + λt2/2, λ)

COROLLARY 2.7. We ftαt;^ α unique potential for a solution of (1.1).

PROOF. Let (w, p) e JfG x £PG be a potential for σ e (̂G). Set 0 = w 1p.
Then £,-0 = 0. From Proposition 2.6, it follows that g = γ(z + /U2/2 + 1/2A)
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with γ e G(C[[z]]). Since w(0, z, λ)γ(z + \/2λ) = p(Q, z, λ\ we see that γ(z) =
p(Q, z, λ) — σ(0, z). The corollary now follows from the uniqueness of the Birk-
hoff decomposition. Π

3. The Einstein-Maxwell fields

In this section, we study a (1 + l)-dimensional reduction for the Einstein-
Maxwell field equations. Those equations are expressed in terms of potentials
due to F. J. Ernst (u, v) e C2[[ί, z]] as follows ([2]):

(3.1) d(t *d(u, v)) = f-*(du -vdv)t*d(u, v), 2f = u + ΰ - \v\2 > 0 .

Moreover, following M. Gϋrses & B. C. Xanthopoulos [4], we shall identify
(3.1) with a subclass of the chiral model (1.1) taking values in 5(7(2, 1). Let

(3.2) σ=f

1

*(«-/)
V

i(f - u)

\u\2

— iΰv

v

ίuv

f+\v\2_

Then, by a direct calculation, we can check that (3.1) is equivalent to (1.1).
Hence we identify the space Jί of solutions of (3.1) with a subspace of

Let J -[-' J , 1) = {g e SL3(C[[z]]); gJ^g = J} and *(2) =Let

{g e <9 (̂2, I);0f0 = 1}, where f denotes the Hermitian conjugation. We set
g o σ = \g \g-σ)) for g e SL3(C[[z]]) and σ e ^(SL3\ where denotes the
action defined in §2. This new action makes M into a homogeneous space of

, 1), that is,

THEOREM 3.1. Set v(g) = go 1 far , 1). Then v induces a bijection:

PROOF. We set

, c) =

1 0 0

i\c\2/2 1 fc

c 0 1

for b E R and cεC. Let TV = {n(fc, c); b e /?, c e C} and v4 = {diag (α"1, α, 1);
a > 0}. Then we have an Iwasawa decomposition SU(2, 1) = NAU(2). We set
u — a2 + \c\2/2 — ib, v = c and s = n(b, c) diag (α"1, α, 1) for a > 0, b e / ? and
c e C. Then we see that sfs is of the same form as σ in (3.2). This implies that

, 1)) = J(, since v(g) = g^g on ί = 0. Π
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