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Existence theorems for Monge-Ampere equations in RN
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1. Introduction

Our aim is to establish the existence of positive radial entire solutions u(x)
of nonlinear partial differential equations of the Monge- Ampere type

(1) det(D2w) = azlw + A/(|x|,w, |Dιι|), xeRN

9

which grow like constant multiples of \x\2 as |x| -» oo, where α > 0 and λ e R
are constants and fe C(£>, R), D = R+ x R+ x J?+, R+ = (0, oo), R+ = [0, oo).
Detailed hypotheses on / are listed in §2. Under modified conditions we also
prove (Theorem 3) the existence of radial entire solutions of (1) which are
positive in some neighborhood of infinity.

As usual, \x\ denotes the Euclidean length of a point x = (xi9 . . . , XN) in RN,
D, = d/dxi9 Dtj = DtDj for ί, j = 1, . . . , AT, Du = (D, u, . . . , DN u\ A = Σf=1 Dii9 and
D2u is the Hessian matrix (D0 w).

An entire solution of (1) is defined to be a function u e C2(RN) satisfying (1)
at every point x e RN. We seek radially symmetric entire solutions u(x) = y(t\
t = \x\, of (1) such that

(2) 0 < lim inf^ m Γ 2 y(t) , lim sup^^ Γ 2y(t) < oo .

In particular our results apply to the following special cases of (1):

(3) det (D2w) = αJw + λp(\x\)u\ x e RN

(4) det (D2u) = *Δu + λp(\x\)eu , x e RN ,

where γ is a positive constant and p e C(R+, R). If p(t) = 0(ί~2y) as f->oo,
Theorem 1 implies that (3) has an infinitude of positive radial entire solutions
u(x) = y(\x\) satisfying (2), for all sufficiently small \λ\. If in addition γ < N
and p(t) > 0 on /?+, Theorem 2 shows that (3) has positive radial entire
solutions satisfying (2) for all λ > 0.

If p(t) = 0[exp (-2αNί2)] as t -> oo, where

(5) αN = (αΛΓ)1/^-1) , N > 3 ,

Theorem 1 implies that (4) has an infinitude of positive radial entire solutions
u(x) = y(\x\) satisfying (2) for sufficiently small \λ\. Theorem 3 establishes, for
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arbitrary λ e /?, the existence of infinitely many radial entire solutions of (4)
satisfying (2) which are positive in a neighborhood of infinity.

Theorems 1 and 2 also apply to generalizations of (3) having the form

(6) det (D2u) = vΔu + λp(\x\)uy(l + \Du\2)δ , x 6 RN ,

where y, δ are nonnegative constants with y + δ > 0. The condition p(t) =
0(ί~2y~2(5) as t -> oo implies the existence of positive radial solutions of (6)
satisfying (2) if \λ\ is small enough; and if in addition y + 2<5 < N and p(t) is
nonnegative, implies the existence of such solutions for arbitrary λ > 0.

If α = 0, y = 0, and δ = (N + 2)/2 equation (6) arises in differential geom-
etry as the equation for prescribed Gaussian curvature [6, p. 38]. If α > 0, (6)
is an equation for prescribed generalized Gaussian curvature, as described by
Pogorelov [14, Chap. 10-13]. Since the case α = 0 was treated in [8, 9] our
attention here is directed toward the case α > 0, N > 3. If N = 2 sufficient
conditions are given in [8] for equation (1) to have infinitely many positive
radial entire solutions which are strictly convex in R2 and asymptotic to
constant multiples of |x| (if α = 0) or |x|2 (if α > 0) as |x| -* oo. These results
are extended to dimensions N > 3 by our theorems in §2 (for α > 0) together
with those in [9] (for α = 0).

The significance of Monge-Ampere equations (1) in geometry and analysis
have led to many recent investigations [1-7, 10-19], mostly devoted to existence
and regularity questions for boundary value problems in bounded domains.
The results for unbounded domains seem to be limited to those of Popivanov
and Kutev [17] for exterior domains and the authors [8, 9] for (1), as described
above.

2. Statement of theorems and outline of method

The hypotheses on the function / in (1) will be selected from the following
list:

(fi) !/(*» u>v)\ is nondecreasing in u and in v for fixed values of the other
variables.

(f2) F(k) = supίe *+ |/(ί, k(l + ί2), 2fcί)| < oo for all k > 0.
(f3) limk^k-NF(k) = 0.
(f4) H(c) = supίej^+ |/(ί, c + 2<xNt2

9 4αNί)| < oo for all c e R where OCN is defined
by (5).

(f5) limc^_

THEOREM 1. IffεC(D, R) satisfies (fj and (f2), then there exists λ0 > 0 such
that equation (1) has an infinitude of positive radial entire solutions u(x) = y(\x\)
satisfying (2) for all \λ\ < λ0.
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THEOREM 2. ///e C(/>, R+) and satisfies (fι)-(f3), then equation (1) has an
infinitude of positive radial entire solutions u(x) = y(\x\) satisfying (2) for all

THEOREM 3. If feC(R+ xRxR+,R) satisfies (fj, (f4), and (f5), then

equation (1) has an infinitude of radial entire solutions which are positive in a
neighborhood of infinity and satisfy (2) for all real λ.

To prove these theorems we seek radial entire solutions u(x) = y(t\ t = |x|,
of (1) such that y(0) = c > 0 and y'(t) > 0. Standard calculations [5] yield the
polar forms

(7) det (D2u) = ί1-^/)"-1/', Au = ί1-" '̂1/)' ,

where a prime denotes d/dt. It follows that u(x) is a positive entire solution of
(1) if and only if y(t) is a positive C2[0, oo)-solution of the ordinary differential
equation

(8) (/)"-y - α(ί"-y )' = Ai*-y(i, y, y') , t > 0

subject to the initial conditions

(9) χθ) = c > 0 , y'(0) = 0.

Integration of (8) yields

(10) (y'(t))N - αΛΓf *-y (ί) = λN Γ 5w-y(s, ̂ (5), y'(s)) ds, t > 0 .
Jo

In order to write this integro-differential equation in the more accessible form
y(t) = (^y)(t) (see (19) below), we define

z(i) = ai1r1/(i), ί > 0 ,

where αN is given by (5), and rewrite (10) in the form

(1 1) [z(ί)]N - z(t) = λNaΰNΓN f * sN-lf(s, y(s), y'(s)) ds , ί > 0 .
Jo

To solve (11) for z(ί), we note that the function φ defined by φ(ζ) = ζN — ζ
is strictly increasing for ζ > N~1/(N~l\ and in fact φ is a bijective map from
(N-W"-1*, oo) onto (-(ΛΓ- l)N-NI(N"l\ oo) such that (̂1) = 0. Therefore ^
has a uniquely defined inverse function Φ from(— (TV — i)jv~N / ( N~υ, oo)onto

(ΛΓ~1/(N~υ, oo) with Φ(0) = 1. Moreover, standard inversion theorems show
that Φ is analytic, strictly increasing, and concave; in particular
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1

N(N -

on dom Φ. It can also be seen easily that

(14) Φ(η) < 2(1 + η)1/N for η > 0 .

For the right side of (11) belonging to dom Φ, i.e., exceeding
-(N - l)JV~N/(JV~υ, for all t > 0, it follows that (11) is equivalent to

Γ v v f' v ι
z(ί) = Φ λNocN

Nt N SN lf(s,y(s),y'(
L Jo

or

/(ί) = αNίΦ LjVαj;"r" Γ s^/ί*, y(s), y'(s)) d s ] , t > 0 .(15)

Equation (15) extends to t = 0 by continuity since LΉόpitaPs rule yields

'(s)) ds = N~lf(0, c9 0)\
Jo

for any C1-function y satisfying the initial conditions (9). Integration of (15)
leads to the following integro-differential equation, appropriate for the initial

value problem (8), (9):

(16) y(t) = c + αN sΦ λN^Ns~N r»~lf(r, y(r\ y'(r)) drlds, t > 0 .
Jo L Jo J

As soon as a positive solution y e C *(/?+) of (16) has been demonstrated, as will
be done in §3, it will follow by differentiation and application of the mapping φ
that y solves the initial value problem (8), (9), and hence that u(x) = y(\x\) is a

positive radial entire solution of (1).

3. Proofs of theorems

To construct a solution yeC1(R+) of (16) under the hypotheses of
Theorem 1, we choose λ0 > 0 such that

(17) Nλ0F(2aN) < a" ,

and fix c e (0, 2αN) arbitrarily. Let C1 denote the Frechet space of all C1-
functions in R+, with the topology of uniform convergence of functions and
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their first derivatives on compact subintervals of R+. Consider the closed

convex set

(18) 9 = {y e C1: c < y(t) < c + 2αjvί
2, 0 < y'(t) < 4αjvί, t > 0}

and the mapping #": 9 -> C1 defined by

= c + αN

Jo
(19) (^y)(t) = c + α# I sΦ[w(s)] ds , t > 0,

where

-N V ΓS *-,(20) w(s) = λN(x,N s r /(r, >^(r), ^'(r)) dr, ye^.
Jo

If y e ,̂ then for all s > 0, |/l| < /10,

dr

(21)
NF(2aN) < N'1

μ|JVα^s-N I S rN-x|/(r, 2αN(l + r2), 4αNr
Jo

showing that & is well-defined on .̂ Also, if y € ̂ , (12), (14), and (17) yield

0 < αNΦ[w(s)] < α^AΓ1) < 2αN(l + ΛΓ1)1/" < 4αN , s > 0 ,

and hence

c < (#»(ί) < c + 2αNί2 , ί > 0 .

Furthermore

(22) 0 < (#»'(t) < αNίΦ[w(ί)] < 4αNί , ί > 0 ,

showing that y maps ^ into itself.

To prove the continuity of y in the C1 -topology, let {yn} be a sequence in

^ converging to y e ̂  in this topology, and define

= λNtfΓ" f ' r^/ίr,
Jo

wn(ί) = λNa,N t rN lf(r, yn(r\ y'n(r)) dr, ί > 0 .
Jo

Then by (20) and (22), for |λ| < λθ9 t > 0,

and

The continuity of Φ therefore implies that (^yn)
f(t) -> (^y)'(t) as n -> oo uni-
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formly on every compact subinterval of /?+. Likewise, from (19),
(^y)(t) uniformly on such subintervals, establishing the continuity of 3F in C1.

To prove that &W has compact closure in C1 via Ascoli's theorem, we
note that #> e C2(R+) for all y e <%, and

ί, }>«, /(ί)) - ΛΓr" Γ r*-y(r, y(r), /(r)) drl ,

f > 0 .

Then (12), (13), and (21) imply the uniform bound

I < ofoΦίΛΓ1) + Σ^Nαj^Φ'ί-ΛΓ1) , ί > 0 ,

from which '̂̂  = {(#»' : y e ̂ } is locally equicontinuous in R+. Similarly
is locally equicontinuous, and the local uniform boundedness of tFty and
is easily verified. Hence ϊFty is relatively compact in the C1 -topology by

Ascoli's theorem.
We can then apply the Schauder-Tychonov fixed point theorem to con-

clude that there exists an element y e QJ such that 3Fy — y, i.e., y(ί) satisfies (16),
yielding a positive entire solution u(x) = y(\x\) of equation (1) in RN. The fact
that y(t) satisfies (2) follows from the inequalities

(23) c + ±ΛNN-wN-lh2 < y(t) < c + 2αNί2 , t > 0 .

The right inequality (23) is obvious from (18), and the left inequality is a
consequence of the fact

Φ(η) > N~II(N-V for η > -(N - l)N~N/(N-1} .

Since any c e (0, 2αN] will serve as an initial value y(0) = c in (9), there exists an
infinitude of positive radial entire solutions of equation (1). This completes the
proof of Theorem 1.

PROOF OF THEOREM 2. For arbitrary (fixed) λ > 0, (f2) and (f3) imply the
existence of a constant β > aN such that

(24) λNF(2c) < CN for all c > β .

For such a number c, consider the following analogue of (18):

(25) 9 = {y 6 C1 : c < y(t) < c(l + 2ί2), 0 < y'(t) < 4cί, t > 0} .

Since / has only nonnegative values by hypothesis, the mapping 3F defined
by (19) is well-defined on .̂ Furthermore, exactly as indicated below (20), if
y e ,̂ 5 > 0, then
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0 < αjvΦOφ)] < α*Φ[>/F(2c)]

]1/N < 4c

in view of (24), implying that 3F maps ^ into itself. The remainder of the
proof is virtually the same as that for Theorem 1, and will be deleted.

PROOF OF THEOREM 3. For fixed λ e /?, hypotheses (f4) and (f5) show that
there exists a number c0 e R such that \λ\NH(c) < α$ for all c < c0. Almost
identical procedure to that used for Theorem 1 then yields a fixed point y of the
mapping !F defined by (19) in the set (18). Since c0 could be negative, the
entire solution u(x) = y(\x\) of (1) obtained in this fashion could be negative
near x = 0, but it is still easy to verify that u(x) grows like a positive constant
multiple of |x|2 as |x| -> oo. The details will be left to the reader.
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