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Introduction

Katsylo and Bogomolov proved in [7, 1, 2] the rationality of the invariant
field of binary n-forms over the complex numbers field C for all integers n.
The purpose of this paper is to give a set of six generators explicitly along with
the classical terminology, i.e. by symbolic expressions (cf. [5, 6]), in the case of
binary octavics (n = 8) (Theorem B). For a general integer n, we show the
following:

THEOREM A. For each even integer n > 8 (see Remark 1.12 for odd inte-
gers n), there is a homogeneous invariant polynomial M of degree 12 such that the
invariant field of binary n-forms over C is generated by n — 2 (= transcendence
degree over C) rational functions whose denominators are certain powers of M.

One of the culminant of the classical invariant theory is [4], in which von
Gall shows that the set of 70 covariants (including 9 invariants) listed there, is a
complete minimal system of the graded ring of covariants of binary octavics.
About twenty years ago, Shioda[8] determined all the syzygy modules of the
graded ring of invariants of binary octavics, by means of the symbolic method,
generating functions and some technique due to Hubert. In contrast to the
in variant (co variant) rings, there had been, until now, little attempt to calculate
algebraically independent generators of the invariant fields of binary forms.
The author would like to indicate in the present article that one could apply
the classical symbolic method initiated by Gordan and others [5, 6] to express
the generators not only of the invariant rings, but also of the invariant fields of
binary forms.

It was shown in [7] that the field in question is isomorphic to the invariant
field under an action of a subgroup H of SL(2, C). Analizing this isomorphism,
we give in §1 a correspondence of H-invariant polynomials to the SL(2, C)-
invariant rational functions and prove Theorem A. The method used in §1 is a
variation of protomorphic functions in the classical invariant theory (Remark
1.13, cf. [3]). In §2 we apply the result of §1 in the case of binary octavics and
give a set of generators explicitly. After preparing four lemmas (from Lemma
2.7 to 2.10), the process of constructing the SL(2, C)-invariant rational functions
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from //-invariant polynomials is a formal computation and a routine of the
symbolic method.

Notation. In this paper the ground field is the complex numbers field C
For an integer n, we denote by V(n\ the representation space of the irreducible
representation pn of dimension n + 1 of SL(2, C\ or the affine space of dimen-
sion n + 1 over C, which has the regular action of SL(2, C) induced by ρn.
P(V(n)) is the projective space of dimension n over C associated to it. The
representation pn is defined as follows. For a basis {α0, . . . , an} of V(n\ let

( n\
j flίXS"'*! (the basic n-forms) ,

and

(αg, . . . , a°)(x0, xj" = (α0, . . . , an)(ax0 + cxl9 bx0 + dxrf ,

Then we define ρn(g) by

for 0 =
cd

For two binary forms

F = (a09 . . . , an)(x09 xrf, G = (60, . . . , bm)(xθ9 x^Γ ,

we denote by (F, G)Γ the r-th trans vection of F and G (cf. [5, 6]):

Λ d'F d'G

(0.2)
for 0 < r < min(n, m) .

Let

(F, G)r = (c0, ..., cπ+m_2r)(x0, x^^ 2'

Then the subspace of Z^Cα^ = K(n)(g) K(m) generated by {cjjϊo1"21' is
G-stable and equivalent to V(n + m — 2r).

§1. Proof of Theorem A

Let X be an algebraic variety over C which has a rational action of an
algebraic group G. For a subgroup H of G and an irreducible algebraic
subvariety 7 (not necessarily closed) of X, Katsylo in [7] defined Y to be a
(G, #)-section of X if
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(0) hyeY for any he H and y ε 7,
(1) the rational map G x Y -> X, (g, y) -> gy, is dominant,
(2) for a general point j; of 7, if # 6 G and gj; e 7, then g e H.

When these conditions are satisfied we see that the inclusion Y -+ X induces a
birational map Y/H -> -Y/G, where Y/// (resp. A'/G) is an algebraic variety over
C whose function field is isomorphic to the invariant field C(Y)H (resp. C(X)G).
We note the existence of the (G, #)-section of X is equivalent to the following
condition:

(1.1) There is a G-equίvarίant rational map φ:X^G/H such that the fibre
φ~l[e~] of the class [e] of H, is irreducible.

When (1.1) is satisfied, the irreducible subvariety φ~l[e~] of X is a (G, /f)-section

of X.
We fix an even integer n > 8 and denote G = SL(2, C) from now on. Let

1 /C3 C5\ /Γ1

Then the subgroup H of SL(2, C) is isomorphic to the central extension of
Z/2Z by the symmetric group of degree 4 and Y is a (G, ff)-section of 7(4)
(cf. [7]). Let ψ: V(4) -> P(V(6)) be a G-equivariant rational map defined by

(1.2) <A(e 0,...,Q4) = (io: . . . : i 6 ),

where β = Σf= 0f . ja*o~'*ί and ((66)26)1 = Σf=o( Jί^o'^i Then we see

by direct calculations that the (G, #)-section Y is mapped to the one point
PO = (0 : 1 : 0 : 0 : 0: -1: 0) by ψ. Hence, in view of (1.1), the image of ψ is
birational to G/H and the class of H corresponds to the point P0.

We denote the orbit map π: G -» F(6) at the point P0 =
(0,1/6,0,0,0,-1/6,0) by

(1.3) A(0) = (π0,.. ,π 6),

and by π: G -» P(V(6)\ the composition of π and the natural projection F(6) ->
P(V(6)). Let φ:V(n)^>V(4) be the G-equivariant morphism defined by the
(n — 2)-th transvection:

(1.4) Φ(fl) = (60—6J ,

where / = Σ?=0KJβ^S'^ί and (/, A-2 = Σf=0( J6^o"^ί τhen we can

find an irreducible component Z of φ~1(Y) which is a (G, H)-section of
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P(6)([7]) Let G Z be the image of the morphism γ: G x Z -> V(n\ y(g, z) =
g-z and let U be the G-invariant open set V(n)\V(n)\G Z9 which is non-empty
because G Z is dense in V(ή) by the definition of the (G, jίί)-sections.

Now we consider the fibre product X of G and U over G/H:

X = { ( g , ά ) ε G x U \ π ( g ) =

Then the induced action of H x G on Jf is given by

Since Z is birational to the image of the morphism φ: X -> F(n) defined by
φ(g9 a) = g~la9 the generic point (b) = (i>0, . . . , bn) of Z is written by

(1.6) '(&o,.. Λ) = A,( δ ~β\(aθ9...9an).\-y α/
If we define the action of H x G on Z = </>(X) so as to the morphism

φ is H x G-equivariant, then (1.5) implies the G-invariance of the elements
bj(0 <j<n) and the action of H on {fy} is given by

(1.7) t(σbo,..., bn) = pn(σrlt(bQ9...,bn) for σ^

In fact

= A _
\ / α/

-Xb-
= P"-ya-δc

d _

Next we show the following.

(1.8) C[G]H = CCπ. π^O < /,; < 6)], where π, is the polynomial defined by (1.3) .

For the centralizer H+ of G at the point P0 = (0, 1/6, 0, 0, 0, - 1/6, 0) of F(6) is
the subgroup of H such that H/H+ is isomorphic to Z/2Z. Hence P0 is a
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G-stable point of F(6) and the image π(G) of π is closed in K(6). Therefore
G/H+ is isomorphic to π(G) by Zariski Main Theorem: C[G]H+ = C[π0, ..., π6].

The assertion (1.8) follows because H = <#+, £> and ζ transforms πt to — π f.
Let ί, π be the 6-forms corresponding to the rational maps ψ and π:

ί = (ί0, . . . , £6)(x0> *ι)6 , π = (π0, . . . , π6

Since X is the fibre product of G and (7 over G/H, we put

(1.9) t = λn i.e., ί£ = Aπ f (0 < i < 6) .

Apply the 6-th trans vection to (1.9):

(ί, t)6 = λ2(π9 π)6

= Λ,2(π, π)6|g = (ιθ) because (π, π)6 is G-invariant ,
(1.10)

15π2π4 -

Summing up, we have the following equalities:

5 &JH = C[α5 A V> 5, fc0» - - , ^n]H x G because bt is G-invariant

= C[α,j5,y,<5,α0,...,αJH x G by (1.6)

= CΊX π/O < ij < 6), α0, . . . , αJG by (1.8)

= Cftί^ίO < U < 6), fl0, . . . , αJG by (1.9)

= C[tttj/(t9 ί)6(0 < ί, j < 6), α0, . . . , αJG by (1.10)

where M = (ί, ί)6 is a G-invariant polynomial of degree 12.

Hence, in order to complete the proof of Theorem A, we have only
to show that there are (n — 2) polynomials in C[h0, ..., bn~\H which gener-
ates C(bθ9 ..., bn)

H = C(aθ9 . . . , an)
G. This follows from the existence of an

/f-subspace W1 of dimension n — 2 of the vector space generated by b0, ..., bn

such that C(Wi) = C(ί?0, ..., bn) and that W^ contains an irreducible H-subspace
of dimension 3. We omit the detailes (cf. §2, [7]).

REMARK 1.12. In the case of an odd integer n > 5, Katsylo proved the

rationality using a (G, Λ/)-section, where N is the normalizer of a maximal torus
of G. By the above observation, we find a G-invariant polynomial M of degree
4 for which the same statement in Theorem A holds. In fact, M can be taken

as (q, q)2, where q = (/, /)2 and / is the basic n-forms.
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REMARK 1.13. As pointed out in the introduction, the above method is
not different in principle from protomorphic functions. Let U be the upper

triangular unipotent subgroup of G and let Y = {(α0, 0, a2,..., flπ)|fl; e C} be
the subvariety of V(n). Then we see easily that Y is a (17, {l})-section of V(n)
and the ^/-invariant a0 only appears as the donominator. Hence we get a

system of protomorphic functions as in [3].

§2. Proof of Theorem B

In this section we apply the result of §1 to the case of binary

octavics(n = 8.) First we give a set of generators of the H-invariant field
C(b0,..., b8)

H which is the function field of the (G, #)-section Z of 7(8).

2.1. Generators of C(b0, ...9b8)
H

Recall that the set {fct}f=0 is a basis of 7(8) on which the subgroup H of
G = SL(2, C) acts as defined in (0.1). The decomposition of the Jf-module 7(8)
into simple components is given by

7(8) = ε 0 Θ2 ® 03 0 (03 <g> ε~),

where ε(resp. ε~) is the identity (resp. the alternating) representation and θd is an
irreducible representation of H of dimension d. We denote θf = Θ3 and θj =

03 (x) ε. We set basis of the representations as follows:

(2.1)

We defined in (1.4) the G-equivariant morphism φ: 7(8)-> 7(4) as the 6-th

transvection (cf. (0.2)):
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where

β0 = 2(α0α6 - όα^s + 15α2α4 -

81 = 4(α0α7 - 5a1a6 + 9α2α5 -

β2 = 2(α0α8 - 2a^aΊ - 8α2α6 + 34α3α5 - 25α^) ,

β3 = 4(0^8 - 5α207 + 903α6 - 5α4α5) ,

Q4 = 2(α2α8 - 6a3aΊ -h 15α4α6 - 10α§) .

Since (fe) = (ί?0, ..., ί?8) is a generic point of Z (see (1.6)), we have Q1 (b) =
<23(b) = QQ(b) - Q4(b) = 0. Substituting (2.1) into them, we have

! = - 10c5c0 + (- (- Ilc3 + c6)c2

where F1? F2, F3 are integral quadratic forms on c3, c4, . . . , c8.

In these relations the determinant formed by the coefficients of c0, c l 9

c2 is non-zero. Hence the remaining six elements c3, c4, ..., c8 generate

C(c0, . . . , c8) = C(ft0? » &s) The action of H on them is given by

-1

— i

Now we set six polynomials as follows:

(2.2)

where

^2 = V (~C3, C4, C 5) ^6, C7, C 8) ,

J3 = V (4c4c5, -c\ + ̂ ,

J4 = (A19 A29 A3)
 f(c6, c7, cβ),
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(2.3)

V = (c\ + c\){(c\ -

^i = -Csfci + c?) +

A 2 = -2c4(cf + cf),

c3c5)} ,

2cJ) ,

- 2c3(c3c5

Then we see by the following that these polynomials are //-invariant.

(1) The polynomial ring C[/2,/3,/4] is equal to the //-invariant ring
C[c3, c4, c5]

H. Note that Πf=2deg /, = 4! = |//|/2 and -(identity) acts trivially

on 7(8).
(2) In J2 and J3s F is a basis of the alternating representation ε~ of //.

(3) { — c3,c4, c5} and { — 4c4c5, — c\ + c§,4c3c4} are basis of the contra-

gradient representation of θ$ which is equivalent to ΘJ.

(4) {Al9A2,A3} is a basis of the contragradient representation of 0J
which is equivalent to 0$ .

Since the determinant

-c3 4c4c5 A

c5 4c3c5 A

formed from J2, J3, J4 is non-zero, the six polynomials (2.2) generate the
//-invariant field C(c3, . . . , cs)

H = C(bθ9 ...,b8)
H.

2.2. (7-invariant rational functions corresponding to (2.2)

/
In this subsection we give the symbolic expressions of the //-invariant

polynomials (2.2).

We use the following notations in the rest of the paper:

(2.4)

/ = (έi0, . . , as)(x0, xj8: the basic 8-form ,

Q = (/> f)β , t = (β, (β, Q)2)i , θ = (/, ί)6 ,

D = (0, fl)2 , 7 = ((ί, ί)2, t)ι , A = *δ ~ βy (=

p = αx0 + yxi , q = βx0 + ^Xi .

Then by the definition (1.6), b j i s expressed by the transvection:

(2.5) bj = (- !)'(/, p V^e for 0 <; < 8 .

By (2.5) we get the following relations.
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LEMMA 2.7. With the notation of (2.1) and (2.4), we have

λc3 = (θ, q2)2 , λc4 = -(0, pq)2 , λc5 = (0, p2)2 .

PROOF. Since t = λπ = λpq(p4 — q4) by (1.9), we have

λc3 = λ(b, - b5) = λ{-(f, pqΊ)8 + (/, pVU by (2.5)

= ((/> 06,<72)2 = (M2)2

The rests are proved similarly. Q.E.D.

In the construction we use the following classical formula.

LEMMA 2.8 (Gordon series [5, 6]). For n-forms Fl9 F2 and m-forms Hl9 H2

(n > m\ we have

(Flt F2)π(/f1; H2)m = XΓ=o A,((ίΊ, Hiλ, (F2, «2)«λ,+m-2i .

w/iere

nm

Apart from the explicit non-zero constants λi9 the representation theoretic

meaning of the above formula is as follows. Both of V(ri) ® V(n) and V(m) ®

V(m) contain K(0) with multiplicity one and their tensor product corresponds

to the left hand side. On the other hand, since

V(n) ® V(m) =V(n + m)®V(n + m-2)®--®V(n-m)9

(V(ri)® V(m)}® {V(n}® V(m)} contains 7(0) with multiplicity m + 1, which

corresponds to ((Fί9 H^)h (F2, H2)i)n+m_2i (0 < i < m) of the right hand side.

The following two equalities follows easily from the definition (0.2), so we

shall omit the proof.

LEMMA 2.9. (1) (pV, pkqh)r = μΛrpi+k-rqj+h-r.

(2) (01', θj\ = 0 for any odd integer r,

(θ*, θj)2r = v Πr θi+j~2r , where

k-s
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Since the action of H on {p, q} is the same as on {α, β} and {γ,δ} of

(1.5), it is known classically that the //-invariant ring C[p, q]H is equal to
i AS9 A6A12], where

A8 = -1%(A6A6)2/A2 = p8 + 14pV +

Λ/Λ = p12 - 33pV(P4

with a relation 108>l£ — >4| + y4f 2 = 0. Recall that we have put t = λA6 in

(1.9).

LEMMA 2.10. (1) (t, t)6 = A6λ2β. (2) (t, t)2 = -A2λ2As/lS. (3) ((ί, ί)2, t^

PROOF. (1) follows from (1.10). By Lemma 2.9(1), we have (psq, p5q)2 =

-JV/18, (M5,M5)=-^V/18 and (P

5q, pq5)2 = (pq5, P5q)2 =
Hence (ίί)2 is equal to

and (2) is proved. (3) is proved similarly. Q.E.D.

Now we shall give the symbolic expressions of the //-invariant polynomials
(2.2) by use of Lemmas 2.7, 2.8, 2.9 and 2.10. The G-invariants corresponding
to /2, /3, /4 are as follows.

LEMMA 2.11. (1) λ2I2 = J2D/2. (2) λ*I3 = (03, ί)6

(3) A4/4 = -18(04,(ii

PROOF. (1) We have

λ2I2 = λ2(c3c5 - c2) = (0, q2)2(θ, P

2)2 - (0,

= ((^ β)2, (^
2, P2)2)o/3 - ((0, 0)2, (pq,

Since (p2, ̂ 2)2 = A2 and (/?<?, p^)2 = —A2/2 by Lemma 2.9(1), we get the desired
equalities: λ2I2 = (Π/3)(3J2/2) = J2D/2.

(2) We have

A3/3 = λ*c4(c2 - c2) = -(0, pq)2{(θ9 q2)2 - (0, p2)2}

= (03,p54-/><?

5)6.

Since t = λpq(p4 — q4), the assertion (2) holds.
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(3) We eliminate c4 in /4 by I2 = c3cs — c4;

/* = (4 + cj) + 2(c3c5 - /2)(7c3cs - /2)

= (c4 + cj + 14c|ci) - 16c3c5/2 + 2/| .

Hence

(*) A4/4 = (04, 48 + p8)8 + 14(02, q4)4(02, p4)4 - 16(0, q2)2(θ, P

2)2λ
2I2 + 2(Λ2/2)

2 .

We calculate (θ2, q4)4(02, p4)4 and (θ, q2)2(θ, p2)2:

(θ2, <?4)4(0
2, P4)4 = (04, «V)β + 12((02, 02)2(q4, p4)2)4/7 + ((θ2, Θ2)4, (q\ p4)4)0/5

= (θ4, «V)8 + 12(D02A Δ2p2q2)4/Ί + (2D2/3, ̂ 4)0/5

The last equality follows from Lemma 2.9: (θ2, Θ2)2 = D6>2/3, (θ2, 02)4 = 2Π2/3,

(q\p*)2 = Λ2p2q2,(q*,p4)4 = A*. Similarly

(θ, q2)2(θ, P2)2 = (02, <Z2p2)4 + ((θ, θ)2, (q2, p2)2)0

= (θ2, q2p2)* + DΛ2 .

Substituting them and A2/2 = J2Π/2 into (*), we get

!4/4 = (04, q8 + p8)8

- 16{(02, ίV

= (04, q' + p* + 14pV)8 - 3J4Π2/10

= - 18(04, (tt)2)aμ
2λ2 - 3zf4Π2/10 by Lemma 2.10 (2) . Q.E.D.

Next we calculate V in (2.3).

LEMMA 2.12. A6V = 108(06,./)12/Λ3λ3.

PROOF. We eliminate c| in V by I2 = c3cs — c2.:

V = (c2 + c|){(c2 - c2)2 - 16(c3c5 - /2)(2c3c5 - /2)}

(*) = (c| + c2) {(c4 - 34c2c2 + ct) + 16/2(3c3c5 - /2)}

= {(c| + ci - 33c2c2(ci + c2)} + 16/2(c| + C2)(3c3c5 - /2) .

The following equalities hold by use of Lemmas 2.7, 2.8, 2.9 and 2.10:
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= (04, q6p2)8 + 3J2D(02, <Z4)4/7 .

3

5 = (04, q2p6)s + 3J2Π(02, p4)4/7 -

= (θ6, βV)i2 + 8Λ2Π(04, q6p\/n + 4Λ4Π2(02, <Z4)4/21 .

c*5 = (θ6, <?V)i2 + 8Λ2Π(04, <?2P6)8/11 + 4Λ4Π2(02, P4)4/21 .

Hence we have

|) - 33c2c2(cl + cf)} = (θ6, q12 + p12 - 33q*P

4(q4 + P

4))12

and

1616/2(c
2 + C2)(3c3c5 - I2)

+ c2) -

p4

, P4

, P4

Substituting them into (*), we get

A6V = (θ6, qί2 + p12 -

Hence we have the desired result by Lemma 2.10(3). Q.E.D.

LEMMA 2.13. (1) AJ2/V = 18((0,/)ls (ί, ί)2)8/^^2 (2) Λ/V
,/)3, t)6/3A3. (3) -J4 = -54(fθ3,j)14/λ6A2

4((/, 03)4, t)6/3314.

PRCXJF. Since the calculations of (2) and (3) are similar to that of (1), we
shall prove only the assertion (1). By the definition (2.2), the left hand side of
(1) is equal to

/l(-C 3C 6+C 4C 7 + C5C8)

= -(9, «2)2(*ι + ™5) - (0' P9)2(b0 - b8) + (θ, P

2)2(7b3 + bη)

(*) = (θ, q2Uf, pq3(7p* + q*))s ~ (θ, pq)2(f, q8 ~ P8)8

= (θf, ^10)10 + βαήOi, Ξ8)s/5 + 7((θ/)2, Ξ6)6/9 ,
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where

Ξ10-2k = (q2, PqW + q\ ~ (pq, q* ~ Λ ~ (P\ P W + lq*))k

is a co variant of order 10 — 2k for k = 0, 1, 2. It is easy to see that Ξlo = 0.

By Lemma 2.9(1) we have (β2,pV)ι = -5JpV/8, fa2, P47)ι = ~V/8,
, 8 = ̂ g8/2 etc. and hence

Ξ8 = (q2, ip5q3 + P47)ι + (w, 48 - P8)ι - (p2, p7

β̂ = (^2, 7p5^f3 + M

7)2 + (M, ̂ 8 - p8)2 - (p2, p7^ + 7p V)2

= 7- 1042pV/28 - 7 10J2pV/28 = 0.

Hence the assertion follows from the substitution of them into (*). Q.E.D.

By the identity (1) in Lemma 2.10, we eliminate λ in the relations obtained
in Lemmas 2.11, 2.12 and 2.13. Then we have finally

THEOREM B. The invariant field of binary octavics over C is generated by
the following six algebraically independent rational functions /2, . . . , J4:

I2 = (ΘΘ)2/M , /3 = (03, t)6/M2 , 74 = (04, (tt)2)s/M3 ,

J2=((θf)ι(tt)2)s(θ6J)i2/M6,

J3 = {36(02/,7)i2/M7 + 14((θ2,/)3ί)6/9M}(θ6,j)i2/M5 ,

, 03)4ί)6/297M2 ,

/ = α 8 (ίte basic /orm), β = (j(f)6 (deg2,ord4), ί = ((6020!

(deg 6, ord 6), θ = (/, ί)6 (deg 7, ord 2), M = (ίί)6 (deg 12, invariant) j = ((ίί)2ί)ι
(deg 18, ord 12).

REMARK. The denominator M = (ίί)6 in Theorem B coincides with the

discriminant of the binary quartic Q = (ff)6. Hence, in the notation in [8], the
denominator M = (ίί)6 is equal to

But it seems to be so complicated to express the numerators in Theorem B by
the nine fundamental invariant polynomials listed in [8].
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