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Introduction

The moduli space of instantons over a compact Riemannian 4-manifold
carries three natural symmetric tensors y; (positive definite), y,_; and y,; (positive
semidefinite) [10] (also see §1).

These tensors have been explicitly computed for 1-instantons over S* [2],
[51, [7], [10] and CP? [4], [8]; we know that y, y,_; and y; are smooth and
positive definite in these cases.

Let M be a compact oriented 1-connected Riemannian 4-manifold with
positive definite intersection form, and .# be the moduli space of 1-instantons
over M. In [6] D. Groisser and T. H. Parker investigated the Riemannian
geometry of 4 In particular they described the C°-asymptotic behavior of 3
on the collar of .#, using the collar map defined by S. K. Donaldson [1].

In this paper, we shall study the C°-asymptotic behavior of the symmetric
tensors y,_; and j; on a collar of .# As a corollary of our theorem, we see
that each of the symmetric tensors y,_; and y; defines a Riemannian metric on
some collar of .# with infinite volume.
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§1. Asymptotic behavior

We fix a smooth Riemannian metric g,, on M and a principal Sp(1)-bundle
P over M with the second Chern number c,(P) = —1. Also gp stands for the
associated bundle P x,4 sp(1).

Let 4 be a 1-instanton, that is, a self-dual connection on P. Assume that
A represents a smooth point of .4 Then the tangent space T;,,.# is identified
with {ve I'(M, T*M ® gp); Dfv =0, p_D,v = 0}. Here D, denotes the covari-
ant derivative, Df is its formal adjoint and p_: A\?T*M — A2 T*M denotes
the projection onto anti-self-dual 2-covectors. We denote by ( , ) the inner
product on /\ZT*M ® gp which is induced by g,, and twice the quaternionic
norm on sp(l)c H. Let F, be the curvature of 4 and let Q, denote the
orthogonal projection N\*T*M ® g, — {¢ € /\?T*M ® gp; (ad F,)*¢= 0} where
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(ad F,)* is the adjoint of ad F,: gp — /\?T*M ® gp (with respect to the inner
products on gp and A’T*M ® gp). In [10], the three symmetric bilinear forms
7y J =1, II and I-1I) on Tj,.# are defined as follows: for v, w € T 4.4,

n, w) = fM (v, W)y Yi-n(v, w) = JM (D4v, Dyw)wy ,

m, w) = '[M(QADA v, QD W)y, ,

where w,, is the Riemannian volume element with respect to g,. Here we
notice that 7; has conformal invariance, and that T. Matumoto shows that the
symmetric tensor y, on the moduli space of 1-instantons on S* gives a metric
with constant sectional curvature —5/32n? (see [10]).

The symmetric tensors y; and y,_; are always smooth since g,, is smooth.
On the other hand, we know only that y; is continuous if g, is analytic
on some neighborhood of any point of M. In fact, the measure of
{x € M; rank (ad F,), < 2} is zero because any Yang-Mills connection is locally
gauge equivalent to an analytic connection by the above assumption [11,
Cor. 14]. We take a convergent sequence {A4,} of irreducible self-dual
connections. Then Im(ad F,) is a subbundle of /N'T*M @ gp over
M\(,{x € M;rank(adF,), < 2}) for all n. Since (Q,D v, Q,Dw) =
{(Dv, Dyw) — Z;(u;, Dyv)(u;, Dyw)}, where {u;(x) with x € M} is an orthonormal
basis of Im (ad F,), = /\?T*M ® gp, we see that y, is continuous by Lebesgue’s
dominated convergence theorem.

Let x: M x (0, ;) = # be the collar map defined by S. K. Donaldson [1]
(also see [3], [9]), and consider the following three Riemannian metrics p;
(J =1 I-II and II) on M x (0, 4,):

t= 472 (gy + 2(dA)?), oy = (327%/5)(3gp/2 + (dA)?),
Hy = (32752/5)(91\4 + (d'l)z) .

The symmetric tensors k*y, can be compared with ;.
In case J = I, Groisser and Parker [6, Theorem II] proved that

limg o k*y = py .

The purpose of this paper is to prove the following.
THEOREM 1. For J =1 —1I and 1, we have lim;_q A*k*y; = y,.

Hereafter in this paper J denotes I-II or II. By Theorem 1 we see that
the metric A%k*y, extends to 0.# = M x {0}, and k*y, is C°-asymptotic to
u;/A%. We can note that the sectional curvature of p;/A% converges to —5/32n



Asymptotic behavior of three Riemannian metrics on the moduli space 615

as 4 tends to zero, as so does that of y; when M = §* or CP? with standard
Riemannian metric [8], [10]. But we do not know that C!-asymptotic behavior
of y; when M is a general one.

§2. Proof of Theorem 1

To begin with we prepare some notation. For &¢>0 let B(g) =
{xeR* r=|x| <e}. We fix a coordinate neighborhood B = B(g,) around
my € M on which g, = J; + O(r?) holds. Let f be a smooth function on M
such that its support is contained in B and f(x) = b,;x, + *** + byx, + bor?/2A
on a neighborhood of my =0 B. We may assume that § depends smoothly
on the parameters (by, b,, by, by, by). Let X be the vector field on M defined
by df =gu(X, ). Let D,, F, and Q, stand for D,, F, and Q, with
[A] = x(m,, A), respectively. Let t,: B(p) —» B(ip) be the dilation by A and put
g, = t¥gy/A%. Then lim,,g; = go = (dx,)*> + - + (dx,)>. Let D, stand for
the standard instanton d + (1 + )" Im (x dX) on H = R* By virture of [3,
Theorem 8.31], we may assume that lim, o t¥D; = D, by rechoosing the repre-
sentative of [4,] if necessary.

Hereafter we take p > 1 and 0 < 1« 1 such that B(lp) = B, and all ¢,
i=1, 2, ..., appearing in the following denote constants independent of A, b
and p. Our estimates will rely on the following lemma.

LEMMA 2.

1) lim; o f |Fy 2wy = 87%(1 + 3p*)[(1 + p?)°.
M\B(ip)
(2 Let|b|>=0b%+ -+ b2. Then

limsup,_o 4 f |XIP(1F:)* + |F;*) o < ¢4 |b1?/p -
M\B(4p)

ProorF. (1) The proof is carried out by the computation on the curvature
form F, for the standard instanton in the following formula.

lim o J |FyPwy = 87 — lim, o J‘ |Fy2p
M\B(4p) B(4p)

= 8n% — j |Fy2wq .
B(p)

(2) First we consider the case that b, = 0, that is, f(x) = b;x; + *** + byX,
around 0. Then |X|><c,|b|>. Also we know that |F;| <c3A*7%r*™% on
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B(ry)\B(4p) for some r, >0 and 0 < 6 < 1 [6, §3 Fact B] (see also [1, Theorem
16] and [3, Theorem 9.8]). Since the support of X is compact, we have

AZJ IXPP(1F* + [Fal*)ou < cqlbl? J (@220 + @270r* =0 dr
M\B(4p) Ap
< Cs|b|2()»zp_4+26 + p—8+36) .

Hence we have the required estimate in this case.
Second if B(x) = byr?/24 around 0, then we have

AZI |X|2(|F1|2 + |F}.|3)wM < csbé(/lzp_”z" + p—6+36).
M\B(4p)

For the general case f(x) = b;x; + *** + byx, + byr?/2A around 0 we have
the required estimate, applying Schwarz’s inequality to the above estimates (cf.
[6,(3.12)]). O

Proor OF THEOREM 1. Following [3,§9] and [6,§3], we describe the
tangent vectors of . at k(mg, A) which is represented by D,. Since 4 is suffi-
ciently small, we can find a;, € I'(M, p_(/\’T*M) ® g;) so that p_D;(p_D;)*a, =
—p_D,(ixF;) [3, Theorem 7.19]. For this a, we set u, =(p_D;)*a, and
v, = 1ixF, + u;. Then p_D,(p_D,)*a; = —p_D,(ixF,) means that p_D,v, = 0.
On the other hand D}v, = D¥(:xF; + u;) = D¥(ixF,;) = *D,(df A *F,) = 0, since
a,e '(M, p_(/\>T*M)® gp) and df = gp(X, -), where * is the Hodge star
operator. Thus v, € T, 1#. The parameters of v, are given by (b’, by)
through X with b’ = (by, b,, b3, b,). Since the vector field X coincides with
X, » defined in [3, (9.15)] in a neighborhood of m,, we can show that Proposi-
tion 9.21 and Proposition 9.29 in [3] are valid also for X and a; instead of
X, and @, 4. It follows that kb = (1 + O(4))v, for b = b, 0; + -+ + by, +
by0; € Tio, (B x (0, 4p)) from this.

Let P,=1if J=I-I and P,=Q, if J=1I. In view of [3, Proof of
Proposition 9.29], we have

limsupl_.oj |Du; 2wy < 7 .
M
Therefore
lim,_,, A2x*y,(b, b) = lim,_,, 42 j |P,D;1xF,|*wyy
M

First we will estimate this integral on B(dp). Let Y be a vector field on
B(p) defined by g,(Y, *) = by dx, + -+ + bydx, + bydr*/2. Then we have
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lim,_o A% J |P,D;1x F, *wy
B(4p)
=1 2
= lim,_,, f |T¥ Pt Dty i Fyl o,
B(p)

= J 48{(4b3(1 — r*)* + (|b)* — B3)(4 + 29)r*)/(1 + r*)®}w,
B(p)

= (167%/5)(2b3 + (IbI* — B3)(q + 2)) — (167%/5){2(15p® — 5p* + 5p* + 1)b}
+ (g + 2)(Ib|*> — B)(10p* + 5p% + 1)}/(1 + p?)°,

where g =1if J=1I-I1 and g =0if J =II. Hence Theorem 1 follows immedi-
ately from the next lemma.

LEMMA 3. limsup;.q A2 [p g, | Datx Fal2@u < cglb?/p.

Proor. We denote by V,, the Levi-Civita connection with respect
to gy, and we set V=V, ®1 +1®D,. Then |D,iF;|<|F(X® F)| <
co(IVuXI|F;| + | X|IVF,)). The proof of Lemma 2 (2) implies that

limsup;_, 4 J IV X 1?1 F3)% op < c10lb1%/p
M\B(4p)

Let Z be a vector field on M such that g,(Z, ) = d|F;|*/2 = (F;,VF;). Then

we have |PF,|? = —divZ + (F,,V*VF,;). Using Bochner-Weitzenbock for-

mula (cf. [9, Appendix II]), we see that |(F,,V*VF))| <c,,(IF;*+ |F;®)

because D, is a Yang-Mills connection. In view of Lemma 2 (2), it is enough

to show the following

LEMMA 4. limsup;.o |42 [ysap | X1? divZ oyl < cq,|bI?/p.

ProOF. Let S(¢) = {x e R*; |x| =¢} for ¢>0. Using g;, we define, as
usual, a norm | |, on APT*B(p) ® t¥gp, a volume element w; on B(p) and a
contraction ( , ), with respect to g,.

If B(x) = byx; + -** + byx, around 0, then | X|* < c,|b|®. Applying Stokes’
formula, we have

A2 j divZ wy = A* J 1,00 = j (d|T¥F,;12/2, ,); .
M\B(4p) S(Ap) S(p)

As A — 0, this integral converges to

I (dIFol3/2, wo)o = T68n%p*/(1 + p?)° .
S(p)
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Now we deal with the case B(x) = r?/24. Let a = 84%|X|? and let a vector
field W satisfy gy (W, *) =da. Since izdo = Ly|F;|?/2, we have (izdo)w, =
d(|F;2twp)/2 — |Fy* Ly @y/2. Also we see that odivZ wy = d(aizw,,) —
(1zdx)w,,. Hence

J adivZ wy = f |dr?13(@d| Tt )3, @3);
M\B(ip) S(p)

- J iffFlli(dldrzlﬁ, ;); + J IFAIZLWwM .
S(p) M\B(4p)

Now we note that

f |dr?|3(d| Fol3, wo)o = 3072n2p°/1 + p*)°,
S(p)

J |Fol3(dldr®(3, wo)o = 7687°p*/(1 + p?)*.
S(p)
Since Ly w,, is bounded, we have the required estimate by Lemma 2 (1). O
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