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Introduction

Let (X,|']) be a Banach space and D a subset of X. A one-parameter
family S = {S(t):t > 0} of (possibly nonlinear) operators from D into itself is
called a (nonlinear) semigroup on D if it has the two properties below:

(S1) Fors,t>0and xe D, S(0)x = x and S(s + t)x = S(s)S(t)x.
(S2) For x e D, u(-) = S(-)x is continuous on [0, c0) with respect to t.

In order to advance a general theory of nonlinear semigroups, it is
necessary to restrict the continuity of the operators S(f). In this paper we
employ a lower semi-continuous functional ¢ :X — [0, 0] with D < D(¢) =
{xe X:¢p(x) <o} to subdivide the set D into the “level” sets D,=
{xeD:¢(x) <a}, « >0, and impose the following type of Lipschitz condition
in a local sense:

(L) For a >0 and 7 > 0 there exists w = w(a, 7) € R such that

|S(t)x — S(t)u| < e“'|x — u| for x,ue D, and t € [0, ] .

Condition (L) defines a fairly general class of semigroups on D and this
class is of our main interest in this paper. Here a semigroup S on D satisfying
condition (L) for some lower semi-continuous functional ¢ is said to belong to
the class S(D, ¢) in accordance with a choice of subsets D of X and functionals
@ on X.

The objective of this paper is threefold. First, we impose an exponential
type of growth condition on semigroups belonging to the class S(D, ¢) in terms
of nonnegative functions ¢(S(')x), x € D, and investigate basic properties of
such semigroups. Semigroups in the class S(D, ¢) arise as families of solution
operators to the initial-value problems for differential inclusions of the form

(DI) (d/dt)u(t) € Au(t), t>0;
(IC) u(0) = x,

where x is an initial-value given in D and A is a possibly multi-valued operator
in X. The initial-value problem (DI)-(IC) has been studied by many authors.
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Especially, under the assumption that A4 is quasi-dissipative in X, various types
of sufficient conditions on A ensuring the existence of solutions (in a generalized
sense) have been given and some of the basic results in this direction are found
in the papers by Komura [17], Kato [14, 15], Crandall and Liggett [7, 8],
Kenmochi and Oharu [16], Takahashi [34], Kobayashi [19, 20], Pierre [30, 31],
Walker [35], Martin [23, 24], Pazy [28, 297, Schechter [33] and Goldstein [13].
On the other hand, nonlinear analogues in a Hilbert space of the Hille-Yosida
theorem due to Komura [18], Crandall and Pazy [6] and Dorroh [12] were
extended to the case of “smooth” Banach spaces by Baillon [2] and then Reich
[32]. We here show that the results cited above can be extended to the case
where the nonlinear operator 4 in (DI) is locally quasi-dissipative in the sense
that

(LQD) D(A) = D, and for each a > 0 there exists w = w(ax) € R such that

[x—uy—v]l-<o|x—u|

for x, ue D(A)n D,, y € Ax and v € Au.

Condition (LQD) is proper for the class S(D, ¢) in the sense that under
condition (LQD) on A the semigroup consisting of the solution operators of
(DI) belongs to the class S(D, ¢) and, conversely, that the infinitesimal generator
(if it exists in the ordinary sense) of a semigroup belonging to the class S(D, ¢)
satisfies condition (LQD).

Secondly, we discuss the generation of semigroups in the class S(D, ¢)
under condition (LQD) and so-called range condition. These conditions to-
gether guarantee the existence of the discrete scheme

(e — b)) 100, — Xp—y) — 2z € AXy k=1,2,...,
(DS)

zeX, xo€D, O<to<ty< <t <,
so far as the norm of the partition 4 =(t,) and the error terms (z,) are
sufficiently small. Hence a modified version of the standard method of discre-
tization in time can be applied under the localized quasi-dissipativity condition
(LQD) and the aimed semigroup is obtained through the limits of solutions of
the discrete problem (DS) as the norm of 4 and the errors (z,) tend to zero. It
can then be verified that the semigroup provides mild solutions of the problem
(DI)—(IC) in the sense of Crandall [10] and Kobayasi, Kobayashi and Oharu
[21]. Owur results extend those of Chambers and Oharu [5] and Goldstein
[13], and it is expected that the generation results can be applied to a broad
class of nonlinear partial differential equations. In this connection we notice
that in the recent papers by Oharu and Takahashi [25,26] nonlinear semi-
groups associated with semilinear evolution equations are discussed from the
same point of view.
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Thirdly, we investigate the generators and the differentiability of semigroups
in the class S(D, ¢) under the additional assumption that X is reflexive and the
norm |-| is uniformly Giteaux differentiable. We shall introduce a notion of
generalized infinitesimal generator for semigroups in the class S(D, ¢) and show
that such infinitesimal generators have dense domains in D and satisfy condi-
tion (LQD) and the range condition. It turns out that in smooth reflexive
Banach spaces as mentioned above one can assert the existence of the generalized
infinitesimal generator for each semigroup S = {S(t)} in the class S(D, ¢)
satisfying the exponential growth condition with respect to ¢, and that one can
discuss the characterization of the set Lip(S) of all elements x in D such that
u(-) = S(-)x gives a strong solution of the problem (DI)—(IC). The restrictions
on the Banach space X were first proposed by Reich [32] and seem to be
optimal to obtain the infinitesimal generators of semigroups belonging to the
class S(D, @) as far as we employ the techniques developed by Baillon [2],
Reich [32], Bruck and Reich [4] and Kobayashi [20]. As treated in Miyadera
[25] there is a different method for treating the differentiability of nonlinear
contraction semigroups, although we do not go into the approach. We here
focus our attention on the study of semigroups in the class S(D, ¢) satisfying
the growth condition of exponential type and make an attempt to establish
a nonlinear analogue of the Hille-Yosida theorem for such semigroups under
the above-mentioned assumptions on X. We will see that it is quite delicate
to discuss the definite correspondence between a given semigroup in the class
&(D, ) and its infinitesimal generator. Consequently, we obtain a (self-
contained) general theory for semigroups of locally Lipschitzian operators
which includes the theory of quasi-contractive semigroups as a special case.

Section 1 introduces a class of nonlinear operators which are quasi-
dissipative in a local sense and then the associated class ®(D, ¢) of semigroups
locally Lipschitzian operators. In Section 2 two notions of generalized solutions
of the initial-value problem for (DI)—(IC) are introduced and their properties
are investigated. Section 3 deals with the generation of semigroups in the class
®(D, ) satisfying a growth condition of exponential type. In Section 4 in-
finitesimal generators in a generalized sense of semigroups in the class &(D, ¢)
are treated in some detail and the question of the differentiability of the
semigroups satisfying the exponential growth condition is discussed. Section 5
conserns the range conditions for the generalized infinitesimal generators.

1. A class of nonlinear operators and the associated semigroups

Let X be a real Banach space with norm |-|. The dual space of X
is denoted by X*. Given a subset C of X we write C for the norm closure
of C. The distance from the set C to xe X is denoted by d(C,x). An
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operator A in X means a (possibly multi-valued) operator with domain D(A)
and range R(A) in X. In this paper A is identified with its graph
{(x,y)e X x X :x€ D(A), ye Ax}. An operator A is said to be ¢-closed if
(%5 Yn) € A, X, = x, y,— y in X and lim sup,_,, ¢(x,) < co imply that (x, y) € A.
The identity operator on X is denoted by I.

For x, y € X we define [x, y], = A7'(|x + Ay| — |x|) for A€ R — {0},
(1.1) [x,y]s =infyso [x, yla=lim o [x,¥];  and  [x,y]- = —[x, —y]..

The functional [+, -],:X x X > R is upper semi-continuous and has the
following properties:

ProprosITION 1.1 ([9], [22]). For x, y, z€ X and o € R, we have

[x’ °CX+,V]+ =ot|x| + [X, y]+’ [x,la|y]+ = |a|[xa J’]+,
(12) [X, y]— - [x7 Z]+ < [x’ y— Z]— < [x’ }’]+ - [X, Z]+ )

[X,Y+Z]+S[x7}’]++[x, Z]+5 l[x,}’]+|5|,V|, [x9x]i =|X'

Let C = X. An operator A4 in X is said to be dissipative on C, if
[x—uy—v]_-<0 for (x, y), (u,v)e A with x, ue C.

If in particular C o D(A), we say simply that A4 is dissipative. If A is dissipative
and satisfies the range condition R(I — A4) = X for A >0, then A is said to
be m-dissipative. Let we R. Then the operator A — wl is dissipative if and
only if (1 —Aw)|x —u|<|(x —Ay) —(u — Av)| for A >0 and (x,y), (u,v)€ A.
Accordingly, if A — wl is dissipative and Aw <1 then the inverse operator
(I — AA)™" exists as a Lipschitzian operator which has a Lipschitz constant
(1 — Aw)™! and maps R(I — 1A4) onto D(A4). In what follows, we say that 4 is
quasi-dissipative on C if A — wl is dissipative on C for some w > 0.

Let D be a subset of X and let ¢ : X — [0, o] be a lower semi-continuous
functional on X such that D = D(¢) = {x € X : ¢(x) < o0}. We permit our-
selves the common abbreviation, an lLs.c. functional on X, in referring to
a lower semi-continuous functional on X. For each a > 0 the level set in D of
@ is defined as

(1.3) D,={xeD:op(x)<a}.

By Ind, we denote the indicator function of D. By means of Ind, the sets
D,, o > 0, can be characterized as follows.
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ProrosSITION 1.2. The functional ¢ + Indy, is l.s.c. on X if and only if the
level set D, is closed in X for each « > 0. Furthermore, D, is exactly the level
set {x € X : ¢(x) + Indp(x) < a} of ¢ + Ind}, for each a > 0.

Therefore, we may assume without loss of generality that D coincides with
the effective domain D(¢) and each D, is the usual level set {x € X : ¢(x) < a} of
o itself. Notice that in this case each D, is closed in X. Given a pair of
numbers «, B € [0, ©), a v f and a A B denote the maximum and the minimum
of the numbers o and B, respectively. Finally, N is the set of all positive
integers.

We then introduce a class of nonlinear operators in X that are locally
quasi-dissipative with respect to the functional ¢ : X — [0, o0].

DEerFINITION 1.1.  An operator 4 in X is said to belong to the class &(D, ¢),
if it satisfies the following condition:

(LQD) D(A) = D and for each a > 0 there exists w = w(x) € R such that
[x—uy—v]- <w|x—u| for x,ue D(A)nD,, ye Ax and v € Au .

Given an operator A belonging to &(D, ¢) we shall impose various conditions
on it; in such cases we call it an operator in the class &(D, ¢) for simplicity in
description.

As will be seen in Section 3, semigroups generated by operators in the class
& (D, @) satisfy the local Lipschitz condition (L) as mentioned in Introduction.
This leads us to the following

DEerFINITION 1.2. Let ¢: X — [0, 0] be proper and lLs.c. and let D = D(p).
A semigroup S = {S(t): t > 0} on D is said to be belong to the class S(D, ), if
(L) for each a > 0 and each 7 > 0 there exists w € R such that

[S()x — S()u| < e®|x — u|

holds for x, ue D, and t€[0,7]. In case that we consider a semigroup S
which belongs to the class S(D, ¢) and satisfies some additional conditions on
it, we often call it a semigroup in the class S(D, ¢) for simplicity in description.

The most natural way to attempt to associate the initial-value problem
(DI)—(IC) involving an operator A in the class ®(D, ¢) is to compute the
operator

(1.4) A, x =lim,yo K™ (S(h)x — x)
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whose domain D(4,) is the set of x € D such that the limit exists in X, and then
hope that “solving” (DI)-(IC) with A replaced by an appropriate extension of
A, will return S. The operator A, is usually called the infinitesimal generator
of S in the theory of operator semigroups. For an arbitrary semigroup S in
the class S(D, ¢) in a general Banach space X, the domain D(4,) may be
empty in general as indicated by Crandall and Liggett [8]. Moreover, it is
observed by Webb [36] that the operator 4, need not be large enough to
satisfy the range condition and does not necessarily determine the semigroup S
even though D(A,) is dense in D. It is interesting to seek an optimal concept
of infinitesimal generator and find conditions on S, its domain D, the functional
¢ and the space X under consideration which together assure the existence of
such an infinitesimal generator. This can be accomplished if ¢ is convex on X
and if the Banach space X is reflexive and smooth in the following sense.

DeriNITION 1.3. The Banach space (X, ||) is said to have a Gateaux
differentiable norm whenever
(1.5) lim; o (Ix + Ay + |x — Ap|* — 2|x*)/22) = 0
holds for x, y € X. If formula (1.5) holds uniformly for bounded x in the sense
that for M > 0, y € X and ¢ > 0 one finds § > 0 such that
(I + Ap[* + [x — AyI2 = 2[x[*)24) < &

for A€(0,0] and x with |x| < M, then we say that (X, |-|) has a uniformly
Géteaux differentiable norm.

The class of reflexive Banach spaces with uniformly Géateaux differentiable
norms contains an important class of reflexive Banach spaces. See Diestel’s
book [11, p. 36].

ProPOSITION 1.3.  Any uniformly smooth Banach space has a uniformly
Gateaux differentiable norm.

In Section 4 and 5 we shall treat infinitesimal generators in a generalized
sense and discuss the differentiability of semigroups in the class S(D, ¢) in
reflexive Banach spaces with uniformly Géateaux differentiable norms.

2. Mild solutions and integral solutions

Throughout this section we fix a proper Ls.c. functional ¢:X — [0, c0]
with D = D(¢p) and define the family of level sets {D,:a« > 0} by (1.3). Let 4 be
an operator in the class ®(D, ¢) and consider the differential inclusion
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DI) (d/dt)u(t) € Au(t), t>0.

We here introduce two notions of generalized solutions of the differential
inclusion (DI) and investigate their properties in some detail. In what follows,
7 denotes an arbitrary but fixed positive number.

We begin by recalling the notion of strong solution of (DI).

DEerFINITION 2.1. A function u: [0, 7] - X is said to be a strong solution of
(DI) on [0, 7], if it is Lipschitz continuous over [0, 7], differentiable a.e. in (0, 1),
u(t) e D(A) and the strong derivative u’(t) belongs to the set Au(t) for a..
te(0, 7).

In case that X is a general Banach space, the inclusion (DI) does not
necessarily admit strong solutions even though the initial values lie in D(A).
We here adopt a notion of solution which refers directly to the approximation
method used to establish the existence of solutions, so-called method of dis-
cretization in time.

DEerFINITION 2.2. Let ¢ >0. A piecewise constant function v:[0,7] - X
is said to be an e¢-approximate solution of (DI) on [0, 1], if there exists a
partition {0 =t, <t, <-- <ty} of the interval [0,¢y] and a finite sequence
((x;, z;):i=1,..., N) with the three properties (¢.1), (¢.2), (¢.3) below:

(e.1) v(0) = xo, v(t) = x; for t € (t;—1, t;]1 N[O, 7] and

(t; — tim)) 72 (x; — x;_) — z; € AXx;, i=1,...,N,
(e.2) t,—ti,<¢&i=1,...,N, and T<ty<tT+e
(e:3) it =tz < ety

DEFINITION 2.3. A continuous function u: [0, t] = X is said to be a mild
solution of (DI) on [0, 7], provided that for each ¢ > 0 there is an e-approximate
solution v® of (DI) on [0, 7] such that |u(t) — vé(t)| < ¢ for t € [0, t]. If there is
a constant « € [0, o0) such that v%(t) e D, for ¢ >0 and t € [0, 7], then we say
that the mild solution is confined to D,.

Notice that if u is a mild solution on [0, 7] confined to D, then u(t) € D, for
te[0, 7] since D, is closed in X. A mild solution confined to some D, is
therefore a continuous uniform limit of approximate solutions confined to D,
and this notion represent a considerable generalization of the strong notion. A
strong solution confined to some D, is a mild solution confined to D,, but the
proof'is not entirely obvious. The following result is essentially proved in the
papers [15] and [20].



580 Yoshikazu KoBAYAsHI and Shinnosuke OHARU

ProposiTiON 2.1. If u:[0,7] > X is a strong solution of (DI) on [0, 7],
then it is a mild solution of (DI) on [0,7]. If in addition u(t) € D, for t € [0, 7]
and some o > 0, then the mild solution u is a mild solution confined to D,.

REMARK. In case that only the values u(t) lie in the level set D, for
te[0, 7], it seems that a mild solution of (DI) on [0, 7] is not necessarily
confined to D,. However we do not have any examples which illustrate this
situation.

We next introduce the notion of integral solution which plays an important
role in not only giving a framework of the theory of semigroups of locally
Lipschitzian operators which are generated by operators in the class ®&(D, ¢),
but also in establishing the uniqueness of mild solutions.

DerFINITION 2.4. A continuous function u:[0,7] > X is said to be an
integral solution (with respect to @) of (DI) on [0, 7], if for each f € [0, o) there
is w(p) € [0, o) such that the integral inequality

21)  Ju(@®) = x| —|u(s) — x| < f ([u(€) — x, y1+ + o(B)|u(&) — x]) d&
holds for s, t € [0, 1] with s <t and (x, y) € A with x € Dj.

The number w(f) appearing in (2.1) is determined by condition (LQD) and
corresponds to the Lipschitz constant stated in condition (L). Notice that (2.1)
holds for any number w € [w(f), ).

THEOREM 2.2 (Bénilan [3], Kobayasi-Kobayashi-Oharu [21]). Let « >0
and let u:[0,1] > X be a mild solution of (DI) on [0, t] confined to D,. Then
we have:

(a) The mild solution u is an integral solution of (DI) on [0, 1].

(b) If v is an integral solution of (DI) on [0, t], then there exists w =
w(a) € [0, o0) such that

2.2) [0(t) — u(®)] < e |v(0) — u(0)]  for te[0,1].

(¢) If v is a mild solution of (DI) on [0, 1] confined to D,, then v(t) = u(t)
on [0, 7] provided that v(0) = u(0).

ProOOF. Let {u®:¢> 0} be a family of approximate solutions in the sense
of Definition 2.2 and assume that u®(t) e D, and |u®(t) — u(t)| < ¢ for t € [0, 7]
and ¢>0. For each ¢ >0 one finds a partition {0 =1t§ <t{ < - <tf,} of
the interval [0, t3.,] and a finite sequence ((xf, z{):i = 1, ..., N(¢)) satisfying
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u®(0) = x§, u®(t) = xf forte(t;_,,t;1n [0, ],
yE=(tf—tf ) '(xf—xE,) —zfe Axf fori=1,...,N(e),
23 hi=ti—ti,<e fori=1,...,N(E), 1 <tyy<T+E¢,
199 hilz] < ety < et +¢).

We first prove (a). Let fe[0, ) and set y=a v B. Since A € (D, ¢),
there is w = w(y) € [0, ©) such that A — wl is dissipative on D,. Let (x,y)e 4
and xeD;. Then x, xfeD(A)nD, and the application of (1.2) implies
[xf —x, yi]- — [xf — %, y]+ < [x{ — x, yi — y]- < w|x{ — x|, and so
24 [xi — x, hiyi1- < ([x{ — x, y1+ + @|x] — x|)h] .

The term hfy? can be written as (x{ — x) — (xf_, — x) — hfz{, so that the left side
of (2.4) is estimated as
[xf — x, hiyi]- = Ix; — x| + [x{ — x, —(x{—y — x) — hiz{]-
> |xi — x| — |xi-y — x| — hi|z{],
where we have applied Proposition 1.1. Therefore,
2.5) Ixi — x| — |xi-y — x| < ([xf — x, y]+ + @|x{ — x| + |z{))hi
fori=1,..., N(e). Let0<j<k<N(). Adding up both sides of inequalities
(2.5) fromi=j+ 1to i =k, we have
g — x| = |xf — x| < Y hojuq ([xf — X, y]4 + o]xf — x| + |2} ])h .
This together with (2.3) implies
[uf(tg) — x| — |u(tf) — x|
(2.6) 5
< | (@) —xyls + o[u’(S) — x[) dS + e(r + &) .
5
Let 0<s<t<rtandlet tf <t tf >s and t; >t as ¢/0 in (2.6). Then, the
application of (1.2) and the upper-semicontinuity of the functional [-, -], to
(2.6) implies the integral inequality (2.1).

Next we demonstrate that (b) is valid. Let v:[0,7] > X be an integral
solution of (DI) on [0, t]. Then there is w = w(a) € [0, o) such that

2.7) lo(®) — x| — [o(s) — x| < J ([v(€) — x, y1+ + @|v(&) — x[) d¢

for s, t e [0,7] with s <t and (x,y)e 4 with xe D,. Let 0 <s<t <7 and set
x =xf{and y = y{in (2.7). Then we have
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2.8) (lv(®) — xi| = |v(s) — xhi = Lt ([v() — xi, hiyil+ + wlv(§) — x{| b)) d&
for i=1, ..., N(¢). Since hfy; is written as (x; — v(¢)) — (x;_; — v(§)) — h{z},
the application of (1.2) implies
[v(&) — xi, hiyile = —[0(&) — xi| + [0(§) — xi, —(xi-; — v(&)) — hiz],
< —10(€) — xi| + [0(8) — xi_s| + hilz{] .
Combining this with (2.8) gives

(lv(8) — xi| = lv(s) — x{|)h;
2.9)

sf (=10(8) — xi| + [0(8) — xi_1| + w|v(§) — x{| ki) d&

fori=1,..., N(e). Let1<j<k<N(). Adding up both sides of (2.9) from
i=j+ 1toi=kand using (2.3), we get

f (100 — w Q)] ~ 1o(s) — w Q) &

(2.10) SJ (—Iv(é) —ut ()] + [0(8) — u* (&)l

N

o) - w) dc> at.

J

+e(t+e)+ow f
We now take any pair p, o € [0, 7] with p < ¢ and choose two sequences (t)

and (t) so that t; < t;, t; - p and t; > o in [0, 7] as ¢ | 0. Passing to the limit
as ¢} 0 in (2.10), we obtain the integral inequality

f" (1(0) — w(O)] — 0(s) — u(@)]) dC + f (16(&) — v(0)| — [0(&) — u(p)]) dé
swf qalv(é)—u(C)ldC)dé
Let h € [0, 7) and define F,: [0, T — h] — [0, o0) by

ﬂ@=h*f

t

2.11)

o ( f R dc) & forte[0,t—h].

Then (2.11) implies that F, satisfies the differential inequality F;(t) < wF(t)
for te (0,7 — h), and hence it follows that F,(f) < e®F,(0) for te[0,t — h].
Letting h | 0 and using the strong continuity of u and v on [0, 7], we obtain the
desired estimate (2.2).
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Finally, assertion (c) follows directly from (a) and (b). This completes the
proof of Theorem 2.2. O

DEerFINITION 2.5. Let u:[0, o) > X be continuous over [0, «0). We say
that u is a locally @-bounded global mild solution of (DI) on [0, o), if to each
T > 0 there corresponds a € [0, c0) such that the restriction of u to [0, t] gives
a mild solution of (DI) on [0, ] confined to D,. Further, u is called a global
integral solution of (DI) if for each t > 0 the restriction of u to [0, 1] is an
integral solution of (DI) on [0, 7] in the sense of Definition 2.4.

The next result is an immediate consequence of Theorem 2.2.

COROLLARY 2.3. Let u:[0, o0)— X be a global mild solution of (DI) which
is locally @-bounded on [0, o©). Let v:[0, o) = X be a global integral solution
of (DI). Then

(a) wu is a global integral solution of (DI);
and

(b) for every t € [0, o) there is w € [0, o0) such that

lu(t) — v(@) < e®'|u(0) —v(0)]  forte(0,7].

Suppose that for each x € D there is a unique global mild solution u(-; x)
of (DI) which is locally @-bounded on [0, c0) and satisfies u(0; x) = x. Then one
can define for each ¢t > 0 an operator S(t): D —» D by

(2.12) S(t)x = u(t; x) forxeD.

To assert that the family S = {S(¢): ¢ > 0} forms a semigroup belonging to the
class S(D, ¢), we need condition (C) below:

(C) For each a € [0, o0) and each 7 € [0, o0) there is f € [0, o0) such that
for x € D, the restriction of the associated global mild solution u(-; x) to [0, 7] is
confined to Dj.

- THEOREM 24. Let S = {S():t >0} be a family of self maps of D defined
by (2.12). Then S forms a semigroup on D. Assume further that condition (C)
holds. Then the semigroup S belongs to the class S(D, ¢).

Proor. By the definition of global mild solution of (DI) it is clear that
S(0)x = x for x e D and the X-valued function S(-)x is continuous on [0, c0).
Fix any x € D and any s > 0 and define

v(t) = u(t + s; x) for t € [0, o0).

Then v is a global mild solution of (DI), v(0) = u(s, x) € D, and v is locally
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@-bounded on [0, ). By Corollary 2.3 we have v(t) = u(t; u(s; x)), and this
means that S(¢ + s)x = S(t)S(s)x. Therefore S forms a semigroup on D. Next,
assume condition (C). Let a€[0, o), t€[0, c0) and let f be a nonnegative
number provided by (C). Then the function S(-)x restricted to [0, 7] gives
a mild solution of (DI) on [0, t] confined to D; provided that xe D,. Let
v:[0,7] - X be any integral solution of (DI) on [0,7]. Then Theorem 2.2
implies that |o() — S(®)x| < e®|v(0) — x| for xeD, te[0,7] and some
w € [0, 0). Taking any y € D, and setting v(t) = S(¢)y we obtain the Lipschitz
condition (L). This shows that S belongs to the class S(D, ¢). O

Given a semigroup S = {S(t):¢t > 0} on D, one can assign to each xeD a
D-valued function u(-; x) by (2.12). However condition (C) does not necessarily
hold for the family of functions {u(-; x): x € D}. In the next section we intro-
duce a growth condition of exponential type to define a specific but natural
class of semigroups on D for which condition (C) holds.

3. Generation of semigroups of class (D, ¢)

In this section we establish a generation theorem for semigroups in the
class S(D, o) satisfying a growth condition introduced as below.
Let a, b > 0 and define the linear function g by

3.1) gr)y=ar+b, re[0, o0).
We write n(-; «) for the solution of the initial-value problem
r@)=g@@), t>0; r0)=ael0, o).

The solution 7(-; @) can be explicitly represented as

t
(3.2) n(t; o) = owe™ + b f e®9 ds .

(4]
We observe that the one-parameter family I7 = {n(t; -): ¢t > 0} of the solution
operators forms an order-preserving affine semigroup on the real half-line
[0, o0) such that n(t; a) v n(t; f) = n(t; 2 v B) for t > 0 and a, f € [0, o0).

Given a semigroup S in the class S(D, ¢) we introduce the following

condition:

Q) o(S()x) < n(t; p(x)) for xe D and t € [0, 0).

We call condition (G) the exponential growth condition for S with respect to ¢.
A semigroup S on D does not necessarily satisfy the growth condition (G),

even if it provides mild solutions of some differential inclusion (DI) via the

relation (2.12) and the nonlinear operator A in (DI) belongs to the class
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®(D, ¢). In applications to partial differential equations the use of such func-
tionals ¢ corresponds to a priori estimates or energy estimates which assure the
global existence of the solutions as well as their asymptotic properties. In case
that a = b =0 in the growth condition (G), the functional ¢ may be called
a Lyapunov function for the nonlinear operator A. Appropriate functionals
@ are often derived in accordance with the nature of the equation under
consideration so that the mild solutions may satisfy a growth condition of
the type (G). See also the recent papers [26] and [27]. Quasicontractive
semigroups treated for instance in [7, 16, 19, 34] satisfy the exponential growth
condition with respect to the ls.c. functionals as mentioned below. Let 4 — ol
be dissipative on X and assume that A generates a semigroup S = {S(t)} on
D = D(A) in the sense of [7,16,19,34]. Then |S()x — S(t)y| < e®|x — y| for
x, yeD and t>0 and [S(t)z — z| < |||Az||| [, e ds for ze D(4) and t >0,
where |||Az||| = inf {|v]:ve Az}. Fix any z € D(A) and define

) = |x —z|, ifxeD,
= 400, otherwise .

Since [S(t)x —z| < |S(t)x — S(@®)z] + |S(t)z — z| < e®|x — z| + |||Az|||_|'§J e® ds, the
quasicontractive semigroup S satisfies (G) with a = w and b = ||| Az|||.

In what follows, we are mainly concerned with semigroups in the class
S(D, o) satisfying the exponential growth condition (G). Let 4 be an operator
in X belonging to the class (D, ¢). We consider the following condition (R)
which we call the range condition for the operator A in the sequel.

(R) For ¢ >0 and x € D there exist 6 € (0, ¢], x; € D(A) and z; € X which
satisfy |z;] < ¢ and the two relations below:

07 (x; — x) — z;€ Ax;
07 Ho(x5) — 9(x)) — & < g(o(x5)) -

The generation theorem is then stated as follows:

THEOREM 3.1. Let A € G(D, ¢) and suppose D = D(A) and the range con-
dition (R) holds. Then there exists a semigroup S = {S(t):t >0} in the class
&(D, o) satisfying the growth condition (G) such that for each x € D the function
u(-) = S(-)x gives a unique global mild solution of (DI) and u(:) is locally
@-bounded on [0, ).

Before giving the proof of this theorem we first recall the following result
which follows readily from the generation theorems due to Kobayashi [19],
Crandall and Evans [9] and Kobayasi, Kobayashi and Oharu [21].
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THEOREM 3.2. Let A be an operator in the class ®&(D, @) satisfying
DcD(A) t>0, a>0 and let xe D, Suppose that there exists a positive
number &,, and that for each ¢€(0,¢,) there is an ¢-approximate solution
u®:[0,t] » X such that u*(t)e D, for te[0,t]. If lim, q u°(0) = x, then there
exists a unique mild solution u of (DI) on [0, ] confined to D, and

lim, o (sup {|u(t) — u(t)|:te[0,7]})=0.
For each ¢ > 0 we write =,(¢; a) for the solution of the initial-value problem
(3.3) r'(t) = g.(r@®), t>0; r(0) =a,
where g, is defined by
g.r) =g +¢, re [0, ).

It is seen that the solution =,(¢; «) is represented as
t

(3.4 m(t; o) = ae® + (b + &) I e 9 ds
0

We prove Theorem 3.1 after preparing the following lemma which contains
fundamental estimates in the generation theory.

LEMMA 33. Let Ae ®&(D, ¢). Suppose that D < D(A) and the range
condition (R) holds. Let xo€D. Then for each ¢ > 0 there exists a sequence
(hys Xps Yu)oy in (0, €] x D(A) x X with the following properties:

(3.5) i h,= 400, V. € AX, , neN,
(36) |xn — Xp-1 — hnynl < Shn s ne N9
(3.7) o(x,) < me(hy; @(x,—1)), neN.

Proor. Let xe D and ¢ > 0. By the assumptions one finds a sequence
(Oks Xk Vi)iey in (0, &) x D(A) x X satisfying

16 (¢ — X) — il <&, Vi € Ax; ,
G e(x) — 0(x) < glp(x)) +¢2, and -0 as k—oo.

The sequence (J,) may be chosen so that it is bounded away from 0, although
we necessitate choosing a null sequence (J,) to get the second estimate of
(3.8) below. In view of (3.1) we have ¢(x;) < (1 — ad,) H(@(x) + &(b + £/2)) for
ke N, and so lim sup,_, @(x;) < ¢(x). Hence g(p(x,)) + &2 < g(p(x)) + ¢ for
k sufficiently large. From this it follows that

o) < @(x) + &(g(@(x)) + &) < (0 @(x))
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for k sufficiently large. Therefore, for each ¢ > 0 and each x € D there exist
0 €(0, €], x;€ D(A) and y; € Ax; such that

(3.8) 071 (xs —x)—ysl <&,  @(x;5) < m,(5; @(x)) .

Fix any ¢ > 0. Given x € D, we write d(x) for the supremum of the numbers
0 € (0, €] for which there exist x; and y; € Ax; satisfying (3.8).

Let x, € D. Then by induction one can construct a sequence (h,, x,, V,),
in (0, €] x D(4) x X in such a way that

6(xn—l)/2<hn’ |h;l(xn_xn—l)_yn| <e,
(3.9)
(P(x,,) < ns(hn; n(xn—l ))

for ne N. It is now sufficient to show that £, h, = +o0. To this end, we
assume X2, h, = 7 < oo and derive a contradiction. By (3.9) we have

o(x,) < nz(Z;={+1 hj; o(x,))

(3.10)
< (301 his 0u(T; @(x0)) < (5 (o))

for /=0, 1, .... This shows that x,e D, for ne N, where o = n,(t; ¢(xy)).
For the number « there exists w € [0, o) such that 4 — wl is dissipative on
D,. Also, h,—»0 as n— oo by the hypothesis on the sequence (h,). Hence
h,w < 1/2 for n > N and some N sufficiently large. Therefore it follows that
|x,, — x,| is bounded above by

exp a((t, — t7) + (tm — L)) [(tn — tw) |ye| + &(ts — t,) + &(tm — t/)]

for N <¢ <m<n, where t, = X¥_ h;. For the detailed proof of this estimate
we refer to Kobayashi [19, p. 647], Pierre [30, Paragraph II], [31, p. 194],
Kobayasi, Kobayashi and Oharu [21, Lemma 3.4]. It should be noted that
the above estimate plays a central role in the basic convergence results such as
Theorem 3.2, which state that if an approximate difference scheme of the type
(DS) as stated in the Introduction can be solved then their solutions will
converge. Since

hm Supm,n—*ao Ixm - xnl < 28(1'. - tl) CXp (40)(1 - t{)) s

we see that the sequence (x,)%, is Cauchy in X. Set x, =lim,_., x,. Using
the first inequality in (3.10) and the lower semicontinuity of ¢, we have x, € D
and

(p(xoo) < hm infn—»oo (P(x,,) < na(z;o=(+l hp (p(x{))

Hence it follows from (3.8) that there exist J € (0, &/2), x; € D(4) and y; € Ax;
such that



588 Yoshikazu KoBAYASHI and Shinnosuke OHARU

(3.11) [67 (x; — X) — ¥s| <¢/2  and o(x5) < m.(5; o(xy,)) -
Choose k € N so that k > N (hence h,w < 1/2 by the choice of N),
612 bl <6/2, > by <g/2,
Y Zker bjtlysl = 0e/4  and  |x, — x| = de/4.
The estimates (3.11) and (3.12) together imply 6 + 2, ., h; < &/2 + ¢/2 = ¢,
%5 — Xk — (0 + D Rkrs B)Ysl < 1X5 — Xoo — 05| + 1%k — X0 + D 5Zi41 Blysl
< 08/2 + Se/d + Se/d = 66 < (0 + 3. ks )
and
P(xs) < (65 P(x)) < 105 (X s By ()

S + D2kt his 0(x0)) 5

where the last inequality follows from the representation (3.4) of =,(';«). On
the other hand, we see from the definition of d(x,) that

84 Y s hy < 8(x,).

However (3.9) implies that (x;)/2 < h,,; < 6/2. Hence d(x,) < and we
would have 6 + £2,,, h; < d. This is a contradiction. Thus it is concluded
that X2, h, = +00, and the proof of Lemma 3.3 is complete. O

We are now ready to prove the Generation Theorem.

ProOF OF THEOREM 3.1. Let xe D and ¢ (0,1). By Lemma 3.3 one finds
a sequence (hf, x{, y{)i=; in (0, €] x D(A) x X such that x§ = x,

=1 hi = +o0, Vi € Ax{ forieN,
(3.13) |xf — xi_, — hiyf| < eh{ forieN,
o(x;) < m(hf; o(xi_,)) forieN.

Put t§ =0 and t; = X, hf for ne N. We define a function u°(-): [0, c0) > X
by putting u®(0) = x§ = x and

u®(t) = xf forte(tf_,,tf]andieN.

For each t€(0, 0) the restriction of u® to the interval [0, t] gives an
g-approximate solution of (DI) on [0,7]. Since u®(0)=xeD and
out)) < n(t + & ¢(x)) for te[0,1] by (3.13), it follows from Theorem 3.2
that u®(t) converges as ¢ |0 uniformly for t e [0, 7], and that the limit func-
tion on [0, 7] is a unique mild solution of (DI) on [0, t] confined to D,,
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where a(7) = m(t + ¢; @(x)). Since t was arbitrary in (0, o0), a function
u(-; x): [0, 0) » X is defined by

u(t; x) = lim, o u®(t; x) for t € [0, o0)
and it satisfies
o(u(t; X)) < lim inf, o 7,(t + & 9(x)) = 7(t; 9(x)  for t € [0, c0) .

Therefore u is a global mild solution of (DI) which is locally ¢-bounded on
[0, o) and is uniquely determined by the initial-value x by Theorem 3.2. For
each t € [0, o0) we define an operator S(t): D — D by (2.12), namely,

S()x = u(t; x) forxeD.

Then the one-parameter family S = {S(¢): t > 0} forms a semigroup in the class
S(D, @) satisfying the growth condition (G). This completes the proof of
Theorem 3.1. O

REMARK. We have presented a generation theorem for semigroups in
the class S(D, ¢) under the range condition (R) and the exponential growth
condition (G). As far as the generation of semigroups belonging the class
S(D, ¢) is concerned, it is possible to think of more general conditions than (R)
and more general growth condition than (G). For semilinear autonomous
evolution equations, generation theorems can be obtained under different types
of conditions which are called explicit, semi-implicit and implicit substangential
conditions. See Oharu and Takahashi [27, Section 5].

4. Infinitesimal generators of semigroups belonging to the class S(D, ¢)

This section is devoted to the study of infinitesimal generators of semi-
groups in the class S(D, ¢). The principal result of this section is established
under the assumption that (X, |-|) is reflexive and has a uniformly Giteaux
differentiable norm, D is convex in X, and that ¢ is convex on X. Let
S ={S(t):t >0} belong to the class S(D, ¢) and define for each h >0 an
operator A,: D — X by

4.1) Ayx = h™1(S(h)x — x) forxeD.
We then introduce two notions of “infinitesimal” generators of S.

DEFINITION 4.1. Given a semigroup S = {S(¢):t > 0} in the class S(D, ¢)
the right infinitesimal generator A, is defined as follows: v € D(4,) and we A v

if and only if ve D and there exist t € [0, o) and x € D such that v = S(t)x
and w equals the right-hand strong derivative (d*/dt)S(t)x. Likewise, the left
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infinitesimal generator A_ is defined in the following way: ve D(A_) and
we A_v if and only if ve D and there exist t € (0, o0) and x e D such that
v = S(t)x and w is equal to the left-hand strong derivative (d~/dt)S(¢)x.

The domain D(A.) is the set of all elements S(t)x such that the strong limit
as h| 0 of h™1(S(t + h)x — S(t)x) exists, and hence it is the set of elements x € D
such that the strong limit lim,, h™!(S(h)x — x) exists. The domain D(A4_) is
the set of elements S(¢)x such that lim,,, h~(S(t)x — S(¢ — h)x) exists. The
domains D(A,) and D(A_) may be empty. G. Webb showed in [35] that in
a space of continuous functions with supremum norm there is a semigroup S of
nonlinear contractions which is associated with a semilinear evolution equation
and has the property that D(A_) = ¢ but D(A,) is dense in the domain of S.

The right infinitesimal generator A, is necessarily single-valued and what
so called the infinitesimal generator of S in the usual sense, while the left
infinitesimal generator A_ is multi-valued in general. Let ve D(4,) and let
v = S(t)x = S(s)y for some s, t € [0, 0) and some x, ye D. Then there exists
we[0,0) such that [S(t+ h)x — S(s + h)y| < e“*|S(t)x — S(s)y] =0 for
he(0,1]. Hence h™(S(t + h)x — S(t)x) = h™*(S(s + h)y — S(s)y) for he (0, 1)
and (d*/d)S(&)xle=, = (d*/dE)S()yls=, where (d*/dE)S(£)yls=, denotes the
value of the right-hand derivarive of S(¢)y at the point s and so on. This
shows that A, is necessarily single-valued. If veD(A_) and v = S(t)x =
= S(s)y for some s, te[0, oc0) and some x, ye D, it is possible that the left-hand
derivative  (d*/d&)S(¢)x|.=, differs from the left-hand  derivative
(d*/dé)yls=s. Accordingly, the left infinitesimal generator A_ should be
understood as a multi-valued operator in general.

The situation may be illustrated by the following example:

ExaMPLE. Let X = R and D = [0, o0). The space X is regarded as a 1-
dimensional Hilbert space. On the closed convex set D we define a semigroup
S={S(t):t=>0} by S@)x=(x—t) VO for t >0 and xeD. For each veD let
v = S(s)x = S(t)y for some x, yeD and some s,t>0. Assume that 0 < x
<y. Then O0<s<t If 0<s<x, then y—t=x—-s>0 and so
(d*/d&)S(E)xlg=s = (d*/dE)S(E)yls=, = —1. If s>x, then v=0 and
t>y. Therefore in this case (d*/d&)S(&)x|;=; = (d*/dE)S(E)yls=, =0. If in
particular x <s <t =y, then (d~/d&)S({)yl.-, = — 1, while v = S(o)x = 0 for x
<o <y and (d”/d{)S(&)x|.-;=0. From this we see that the right and left
infinitesimal generators A, and A_ of S are the operators defined, respectively,
by

A, x=0 for x=0, A, x=—1 for x>0,

A x={-10} for x=0 and A_x=—-1 for x>0
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In this case, A, c A_ an A_ is a multi-valued dissipative operator in X
satisfying the range condition (R). In fact, for x=0 put x; =0 for 4
>0. Then x; —A4_x; =0—A{—1,0}30. For x>0,let 0 <A< x and x;
=x—A>0. Then x; —14_x,=x—A+1=x

As indicated by Webb’s example, it should be noted that both A, and A _
need not be large enough to satisfy the range condition and does not necessarily
determine the original semigroup S. We then introduce an extended notion of
infinitesimal generator.

DEerINITION 4.2. Let f be a positive nondecreasing function on (0, co) such
that f(«) > o for « > 0. For the function f a family {4, ,:a > 0} of possibly
multi-valued operators in X is defined as follows: For each a >0, veD(4,,)
and (v, w)e A, , if and only if veD, and there is a function v(-):(0, c0) = D,
satisfying

() lim, ov(h) =v and lim, ,A4,0(h)=w in X,

(i) lim supy o @(v(h)) < f().

REMARK. Let {A;,:a>0} be a family of operators in X defined for
positive nondecreasing function f on (0, o) as in Definition 4.2. Then one can
replace the function f by any positive nondecreasing function g such that g > f
on (0, o). If we take such a function g in Definition 4.2, it may be possible to
extend the family {4,,} to a larger family {4,,} such that 4,, = 4,, for «
> 0. Accordingly, in what follows, we assume that the function f'is fixed to the
family {4, ,}.

PROPOSITION 4.1. For 0 < a < f, we have the inclusion A, , = Ay ;.

Proor. Let 0 <a<§p, and (v, w)e A,,. Since f() < f(B), ve D, and
one finds a function v(-): (0, ) - D, in such a way that conditions (i) and (ii)
with f(a) replaced by f(f) are satisfied. In condition (ii) of Definition 4.2 we

may replace the number f(x) by f(B). Therefore ve D(A; ;) and we A, pv.
This means that A, , c A, ;. 0

The above fact leads us to the following

DEerINITION 4.3. By the generalized infinitesimal generator A (with respect
to f) of a semigroup S = {S(¢):t>0} in the class S(D, ¢) we mean the
operator defined by

A = Ua>0 Af,a )

where {4 ,:a > 0} is a family of operators defined for a positive nondecreasing
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function f on (0, o) such that f(«x) > « for a > 0.

The relation between the generalized infinitesimal generators and the right
and left infinitesimal generators may be described as follows:

PROPOSITION 4.2. Let S = {S(¢):t > 0} be a semigroup in the class S(D, @)
satisfying the growth condition (G). Then we have:

(a D(A,) = D(A)and A ve Av for ve D(A,).

(b) For each v e D the nonnegative function @(S(:)v) is right continuous on
[0, 0). If in addition @(S(:)v) is left-continuous on all of (0, ) for v e D, then
A_vc Av for ve D(A_). Therefore, in this case, A, U A_ = A in the sense of
graphs of operators.

(c) If, in particular, ¢ is the indicator function Ind, of D, then

A =liminf, 4 4,
in the sense of graphs of operators.

Proor. To see (a), assume that D(4,)# . Let ve D(A,) and put
v(h) =v for h>0. Then ve D, for some a >0, p(v(h)) = @((v) < a < f(«), and
lim, o Ayv(h) = A,v. This shows that ve D(A,,) and A,ve A, ,v = Av. Next,
to prove (b), let ve D. Then ¢(v) < lim inf, |, @(S(h)v) < lim,y, n(h, @(v)) = @(v)
by the lower semicontinuity of ¢ and (3.2). This means that lim,y, ¢(S(h)v) =
¢(v), and hence that ¢(S(-)v) is right continuous on [0, c0) by the semigroup
property of S. Assume then that D(4_) # &. Let ve D(A_)nD,, v = S(t)x
for some te(0,0) and xe D, and let w=(d”/dt)S(t)x. Since @(S(-)x) is
left-continuous at ¢ by assumption, one finds A, € (0, t) such that ¢(S(t — h)x) <
o(S(@t)x) + fla) —a < f(o) for he(0,h;). We then put v(h) = S(t — h)x for
he(,h,) and v(h)=v(h,) for hel[h,, ©). Then v(h)—-v and A,v(h)—
(d”/dy)S()x =w in X as h|0 and ¢(v(h)) < f(x) for h> 0. Hence ve D(A;,)
and we A, ,v = Av. This shows that 4, U A_ < A4 in the sense of graphs of
operators. Finally we demonstrate the last assertion (c). If ¢ is the indicator
function of D, then ¢(x) = 0 for x e D. From this it follows that 4, , = A for
o> 0. This fact together with Definitions 4.2 and 4.3 implies the assertion (c).
This completes the proof. O

We then investigate some of basic properties of the generated infinitesimal
generators of semigroups in the class S(D, ¢).

PROPOSITION 4.3. Let S = {S(¢)} belong to the class S(D, ¢). Let A be the
infinitesimal generator A of S with respect to t. Then A is an operator in the
class G(D, ).
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Proor. By definition D(A) = D. Let a € [0, o), f = f(«) and let 7 > 0.
Then there exists w = w(f, 1) € [0, o) such that
4.2) |S()x — S(u| < e®|x — u|

for x, ue Dy and te[0,7]. Take any pair x, u in D(A)nD, and a pair
y, v satisfying y € Ax and v € Au, respectively. Then one finds two Dg-valued
functions x(-) and u(-) on (0, o) such that

x(h) > x, Ayxh) >y, u(h)-u and Au(h)—>vin X as h |0,
lim sup,yo @(x(h)) < fl@)  and  lim sup,yo @u(h) < f(o).

Hence a number h(x) can be chosen in (0,7) so that x(h), u(h)e Dy, for
he(0, h(o)). Therefore the application of (4.2) implies that for h e (0, h(«)) and
A>0

[Ge(h) — u(h)) — A(Ayx(h) — Apu(h))|
= (1 + A/h)(x(h) — x(h)) — (A/h)(S(h)x(h) — S(R)u(h))|
> (1 + A/h)|x(h) — u(h)| — (4/h)|S(h)x(h) — S(h)u(h)|
> (1 + W/h(A — e®)x(h) — u(h)] .
Letting h ] 0, we have |(x — u) — A(y — v)] = (1 — wl)|x — u|, or
A7 lx —ul = 1x —u) = Ay —v))) < @]z — u].

Passing to the limit as 4 ] 0, we obtain [x — u, y — v]_ < w|x — u|. This shows
that A satisfies (LQD) and 4 € G(D, ¢), thereby completing the proof. d

In the previous proposition we considered semigroups in the class S(D, ¢).
We here show that the growth condition (G) for a semigroup in the class
S(D, @) restricts the constants @ in the Lipschitz condition (L) (stated in
Definition 1.2) in terms of the functions #(‘; a), « > 0.

PROPOSITION 4.4. Let S = {S(t)} be a semigroup in the class S(D, ¢) and
suppose S satisfies the growth condition (G). Then there is a nondecreasing
right-continuous function w : [0, co) — [0, c0) such that for t >0 and x, ue D

t

|S(t)x — S(H)u] < |x — u| exp (J o(n(s, p(x) v ou)) ds) .

0

Proor. For t € [0, o) and o € [0, o) we write L(t; o) for the number

inf {¢ € [0, 00) : |S(t)x — S()u| < |x — ule’ for x, ue D,} .
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Let 1 > 0. Then by condition (L) one finds a positive number w(a, ) such
that L(t;a) <tw(a,7) for te[0,7]. Hence for each ae[0, 0) we get
lim,;, L(t; ) = 0 and

4.4) o(x) =liminf o L(t; 2)/t < 0,

so that (4.4) defines a nondecreasing function w(-):[0, 0) — [0, ©). As seen
from the argument below, we may assume that w(-) is right-continuous on
[0, c0). Let s, t€[0, ) and x, ue D,. Since ¢(S(s)x) v @(S(s)u) < =n(s; o), we
have

IS(t + 5)x — S(t + s)u| = |S()S(s)x — SEt)S(s)ul
< |S(s)x — S(s)u| exp (L(z; n(s; «)))
< |x — u| exp (L(s; &) + L(t; n(s; )
for x, ue D,. From this and the definition of L(t + s; «) we obtain
4.5) L(t + s; a) < L(s; a) + L(t; n(s; o))

Fix any t € (0, o0) and any « > 0. For h e (0, t) we can write t = nh + r for
some n € NV and some r € [0, h). Hence (4.5) and (2.14) together imply

L(t; a) = L(nh + r; a)
S L(r;0) + Ypey L(h; n((k — 1)h + r: ) < L(r, @) + nL(h; n(t; ) .
From this it follows that
L(t; o)/t < L(r; @)/t + nL(h; n(t; 2))/t = L(r; @)/t + ((¢ — r)/t)L(h; n(t; 2))/h .
Noting that » | 0 and L(r; o) = 0 as h | 0, we see that
4.6) L(t; o)/t < w(n(t; @) or L(t; o) < to(n(t; ) .

Next, for ne N we write h = t/n for brevity in notation. Then (4.5), (3.2) and
(4.6) together yield

L(t; ®) = L(nh; a) < Y #=4 L(h; n(kh; @)
< h Y r2h o(n(h; n(kh; @) = h Y i=b w(n(kh + h; @)

<Ykt f

kh

t+h

w(n(s; a)) ds = j w(n(s; ) ds .

(k+1)h
h

Let x, ue D and « = ¢(x) v ¢(u). Then we get

t+h

[S(t)x — S(t)u] <|x — u| exp (f w(n(s; a)) ds)

h
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for h =t/n. Letting n —» oo gives the desired estimate (4.3). Finally, the func-
tion w can be redefined as a right-continuous function if necessary. This
concludes the proof of Proposition 4.4. O

Let S = {S(t)} be a semigroup in the class S(D, ¢) satisfying the growth
condition (G) and suppose that the generalized infinitesimal generator A4 of
S in the sense of Definition 4.3 has a nonempty domain. Then it is expected
that S is a family of solution operators (perhaps in a generalized sense) of the
differential inclusion

(DE) (d/dt)u(t) € Au(t), t>0.

Indeed, we have the following result:

THEOREM 4.5. Let S = {S(t)} be a semigroup in the class S(D, @) satisfying
the growth condition (G) and possessing the generalized infinitesimal generator
A. Suppose that D(A) # &. Then for each x € D the function u(-) = S(-)x is
a global integral solution of (DI).

Prior to proving the theorem we observe that the function u(-) = S(:)x
becomes a strong solution of (DI) under additional assumptions. Let x € D,,
>0, f=mn(r;2) and o = w(P). Then u(t)e D; for te[0,7]. Suppose then
that A — wl is maximal dissipative on D, and u(-) is Lipschitz continuous on
[0, z]. If the function u is weakly right-differentiable at ¢ € (0, 7), then we infer
from (2.1) and (1.1) that

[u(t) — x, A7 (u(t + h) — u(®)]+ < B (lu@ + h) — x| — |u(t) — x|)

t+h
<h™ J (W) — X, y1, + @lu(®) — x|) d¢

for xe D(A)nD,, ye Ax and he (0,7 —t). Letting h |0 and applying Proposi-
tion 1.1, we have

[u(t) — x, Dju(t) — y]- < olu(t) — x|,

where D}u(t) denotes the weak right-derivative of u(-) at t. The maximal
dissipativity of A — wl on D, then implies that u(t) € D(A) and D, u(t) € Au(t).
If in particular u(-) is weakly differentiable a.e. on [0, 7], then the weak
derivative D, u(-) is Bochner integrable over [0, 7] and hence u(-) becomes
a strong solution of (DI).

To prove Theorem 4.5, we need the following lemma.

LemMMA 4.6. Let a€[0,0), 1€[0,0), he(0,7) and let ne N satisfy
nhe[0,t]. Then for any pair x, u € D, we have
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1S(nh)x — u] — |x — ul
< h Y5, ([S(kh)x — u, Ayul, + 7" (exp (ho(n(t; @) — D|S((k — Dh)x — ul)) .
PrROOF. Let x,ueD, and ke {l,...,n}. Then
@(S((k — Dh)x) < n((k — Dh; o(x)) < nl(t — b; 9(x)) < n(r — h; ),
and so Proposition 4.4 yields
S(kh)x — S(hyu| = |S®)S((k — 1)k)x — S(h)ul
< |S((k — 1)h)x — u| exp (hwo(r(h; n(t — h; a)))
< IS((k — D)h)x — u| exp (h(n(z; a))) .
From this it follows that
[S(kh)x — u, Ayul,h = [S(kh)x — u, S(hyu — u]_
> |S(kh)x — u| — |S(kh)x — u — (S(h)u — )|
= |S(kh)x — u| — |S(kh)x — S(h)u|
> |S(kh)x — u| — |S((k — 1)h)x — u| exp (hoo(r; o))
= |S(kh)x — u] — |S((k — 1)h)x — u|

@.7)

+ (1 — exp (ho(w; @)))|S((k — 1)h)x — u] .

Adding up both sides of the inequalities (4.7) from k = 1 to k = n, we obtain the
desired estimate. O

PrOOF OF THEOREM 4.5. Let xeD, 1>0 and a€[0, ©) We first
observe that ¢(S(s)x) < n(s, (x)) < n(t; p(x)) for se[0,7]. Choose f so that
B = f(@) v n(t; ¢(x)). Then S(s)x € Dy for s€[0,7]. We now take any pair
u, v satisfying ue D(A)n D, and ve Au. Then, according to Definition 4.3,
there exists a D-valued function u(-) on (0, o) such that ¢(u(h)) < p for
he (0, ), u(h) >u and A,u(h)—>v as h|0. Let he(0,1], se€(0,7], ne N and
let nh e [0,7]. Then by Lemma 4.6 we have

|S(nh)S(s)x — u(h)| — |S(s)x — u(h)l
(4.8) < h Yiey ([S(kM)S(s)x — u(h), Ayu(h)].
+ h7!(exp (ho(n(z; B))) — DIS((n — DA)S(5)x — u()]) .
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We next take any pair s, t with 0 <s < ¢ <1t and choose a positive integer
valued function n(h) on (0, 0) so that n(h)h >t —s as h|0Q. Substituting
n = n(h) into (4.8) and passing to the limit as h |0, we obtain the integral
inequality

[S()x — u] — |S(s)x — u| = |S(t — $)S(s)x — u| — |S(s)x — u|

< f T ([S@)S@s)x — u, o],

0

+ o(n(t; B))IS(0)S(s)x — ul) do

= Jt ([S(@)x — u, v], + w(n(r; B))|S(0)x — ul) do .

This shows that S(-)x is a global integral solution of (DI) and concludes the
proof of Theorem 4.5. O

If in Theorem 4.5 the generalized infinitesimal generator 4 has a sufficiently
large domain, then we obtain a result converse to Theorem 3.1.

COROLLARY 4.7. Let S = {S(t)} be a semigroup in the class S(D, ¢) satis-
fying the growth condition (G) and A the generalized infinitesimal generator of
S. If D(A) > D and A satisfies the range condition (R), then for each x € D the
Sunction u(-) = S(*)x becomes a global mild solution of (DI) satisfying (G).

Proor. Under the assumption, Theorem 3.1 can be applied to conclude
that there is a semigroup S; = {S;(#)} of the class &(D, ¢) such that for xe D
the function S(-)x gives a global mild solution of (DI) confined to D. On the
other hand, Theorem 4.5 states that for x € D the function u(-) = S(-)x is a
global integral solution of (DI). Hence, by Theorem 2.2, S(t)x = S,(t)x for
xeD and te[0, ). This shows that for each x € D the function S(-)x is
a global mild solution of (DE) confined to D. This completes the proof. a

The very strong conditions imposed on A4 in Corollary 4.7 are automatically
satisfied if we assume that X is reflexive, the norm |-| is uniformly Géateaux
differentiable, and that ¢ is convex on X. This is the main result of this
section and the assertion is stated as below.

THEOREM 4.8. Let (X, |'|) be a reflexive Banach space with a uniformly
Gateaux differentiable norm and suppose that ¢ is convex on X. Let S = {S(t)}
be a semigroup on D satisfying the growth condition (G). Let A be the generalized
infinitesimal generator of S. Then D(A) > D and A satisfies the range condition
of the following form:
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(Ro) To each x € D there corresponds a positive number A(x) such that for
each 1 € (0, A(x)] there is x,; € D(A) satisfying

ANy —x)edx;  and  A7(e(x;) — 9(x) < g(0(x,)) ,
where g is the affine function defined by (2.13).

We notice that for an operator A4 in the class G(D, ¢) the range condition
(R,) is much stronger than (R). In this paper condition (R,) is called the strict
range condition. The proof is given after discussing the ranges of the approxi-
mate operators A, which are defined by the formula (4.1) and will play an
important role in the next section. Combining Theorem 4.8 with Corollary 4.7,
we obtain the following result.

THEOREM 4.9. Let (X, |'|) be a reflexive Banach space with a uniformly
Gadteaux differentiable norm and suppose that ¢ is convex on X. Let S = {S(t)}
be a semigroup on D satisfying the growth condition (G). Then the generalized
infinitesimal generator A of S in the sense of Definition 4.3 has the domain
D(A) with D_(_A) > D and satisfies the strict range condition (R,). Furthermore,
for each x € D the function u(-) = S(-)x gives a global mild solution of (DI)

satisfying (G).

The above result together with Theorem 3.1 implies a nonlinear version of
the Hille-Yosida theorem. In order to discuss the differentiability of a semi-
group S = {S(¢)} in the class S(D, ¢), so called Lipschitz domain of S plays
an important role.

DErFINITION 4.4. Let S = {S(f)} be a semigroup belonging to the class
S(D, ¢). The Lipschitz domain of S is the set of all elements x in D such that
S(-)x is Lipschitz continuous on bounded subintervals of [0, co) with respect to
t, and we write Lip(S) for the Lipschitz domain.

ProrosITION 4.10. Let S = {S(t)} be a semigroup in the class &(D, ¢)
satisfying the growth condition (G) and Lip(S) the associated Lipschitz domain.
Let A,, A_ and A be the right-, left, and generalized infinitesimal generator of S
in the sense of Definition 4.3, respectively. Put Ao = A, N A_. Then we have:

(@) Lip(S)= {xeD:liminf, o h'|S(h)x — x| < 00} and the Lipschitz do-
main Lip(S) is invariant under S(t) for t > 0.

(b) D(A) = Lip(S). If in particular X has the Radon-Nikodym property,
then Lip(S) < D(—A.Q and for each x € Lip(S), (d/dt)S(t)x = A,S(t)x for a.e. t > 0.

Proor. To prove the first half of Assertion (a), let x e Lip(S). Then
there is A4;€[0, 0) such that |[S(h)x —x|<A;h for he[0,1]. Hence
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lim sup, ;o h™!|S(h)x — x| < 4, < 0. Conversely, let x € D, t > 0, and assume
that liminfy o h7'|S(h)x — x| = 4, < 0. Let B =n(t; (x)) and y = w(B),
where w(-) denotes a nondecreasing right-continuous function constructed in
Proposition 44. Then S(t)x € D; and |S(t)x — S(s)x| < e”*9|S(t — s)x — x| for
0<s<t<rt Also, there is a null sequence (h)2, in (0,7) such that

[S(hy)x — x| < (A3 + Dh; for i=1, 2, .... Combining these estimates we see
that |S(t)x — S(s)x| < e’ (A, + 1)[t —s| for s, te[0,7]. This shows that
x € Lip(S). The latter half of Assertion (a) is clear from the definition of
Lip(S). To show the first half of Assertion (b), let « >0, 7> 0 and (v, w) € A4, ,.
Then there is a function o(-):(0, ©)— Ds, such that lim,y, v(h) =0,
lim, o A,v(h) =w and lim sup,y, @(v(h)) < f(2). Let y = w(n(r; f(«))). Then
for t € [0, 7] and n e N we have

IS(t)v — v| < |S(B)v(t/n) — v(t/n)| + (e” + 1)]v(t/n) — v]|
< (k=1 |S(kt/n)v(t/n) — S((k — Dt/n)v(t/n)]) + (e + 1)|v(t/n) — v]
< te”| Aypv(t/n)| + (e + 1)|o(t/n) — | .

Passing to the limit as n— oo, we get |S(¢t)v — v| < te¥|w|. This shows that
ve Lip(S). The proof of the latter half of Assertion (b) is rather elementary.
Assume that X has the Radon-Nikodym property, and that v e Lip(S). Then
S(-)v is Lipschitz continuous on bounded subintervals of [0, o), and so it is
norm-differentiable a.e. on [0, c0). Since (d/dt)S(t)v = A, S(t)v = A_S(t)v for
a.e. t € [0, o0), it follows that (d/dt)S(t)v = A,S(t)v and v € D(A,).

From Theorem 4.9 and Proposition 4.10 we obtain the following result on
the differentiability of semigroups in the class S(D, ¢) provided that (X, || is
a smooth reflexive space.

COROLLARY 4.11. Let (X, |-|) be a reflexive Banach space with a uniformly
Gdteaux differentiable norm and suppose that ¢ is convex on X. Let S = {S(t)}
be a semigroup in the class S(D, @) satisfying the growth condition (G). Then
the generalized infinitesimal generator A of S is densely defined in D and for
each x € Lip(S) the X-valued function S(-)x is Lipschitz continuous on bounded
subintervals of [0, c0) and satisfies

(d/dt)S(t)x € AS(t)x  for ae. t>0.

As shown in Theorem 3.1, an operator A in the class ®&(D, ¢) satisfying
D(A) o D and the range condition (R) generates a semigroup S of class S(D, ¢)
satisfying (G). It is a delicate but deep problem to investigate the relationship
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between the operator A and the generalized infinitesimal generator of the
semigroups S so obtained. For earlier results in this direction we refer to for
instance [5; Section 4] and [16; Section 5]. However it is possible to treat
the generalized infinitesimal generators from a different point of view, and we
shall discuss this problem in a subsequent paper entitled “Some remarks on
semigroups of locally Lipschitzian operators”.

5. Range condition for the generalized infinitesimal generators

Here we give the proof of Theorem 4.8 and show that a semigroup in the
class S(D, @) has a generalized infinitesimal generator satisfying the strict range
condition provided that the growth condition (G) holds, ¢ (and hence D) is
convex and that (X, |-]) is a reflexive “smooth” Banach space.

In what follows, we assume without further mention that ¢ is convex on X,
and that (X,|-]) is a reflexive Banach space with uniformly Gateaux differ-
entiable norm. The main objective here is to prove the following theorem.

THEOREM 5.1. Let S = {S(t)} be a semigroup in the class S(D, ¢) satisfying
the growth condition (G). For each h > 0 let A,:D — X be the operator defined
by (4.1) and let g, : [0, c0) > R be defined by

(5.1) gu@) = h(n(h;0) —a)  for a € [0, ).

Then for each x € D there exist 1y = Ay(x) € (0, 00) and hy = hy(x) € (0, 00) with
the two properties below:
(@) For each A€ (0, Ay) and each h € (0, hy) there is x, , € D satisfying

A X n — X) = ApXg and Ao (xa0) — (%) < gu(@(x2,4)) -

(b) The limit lim, o x; , = x; exists and lim, , x; = x.

Before proving this theorem we complete the proof of Theorem 4.8 by
assuming Theorem 5.1.

ProoF OF THEOREM 4.8. Assume that Theorem 5.1 is already established.

Let x e D. Then one finds numbers 4, and h, in (0, c0) with the properties (a)

and (b) stated in Theorem 5.1. Let f be a positive nondecreasing function satis-

fying f(«) > « on (0, o0) and assume that A is the generalized infinitesimal gener-

ator of S in the sense of definition 4.3. Fix any B> (1 — aly) (@(x) + bi,),

4€(0,4), he(0,hy) and let x;, be the element in D as mentioned in
Assertion (a). Then ¢(x; ;) < B, ,, where

h

eh=9 ds) .

(5.2) Bin=01—2ih"(e™ - 1))‘1((p(x) + Abh7! f

0
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This fact and Assertion (b) together imply the estimates
@(x;) < lim infy, 5 @(x; ,) < lim sup, o @(x; ,) < (1 — ad) ™ (p(x) + bA)
and
@(x) < liminf, 1§ @(x;) < lim sup, o @(x;) < O(x).
Therefore lim, , ¢(x;) = ¢(x) and
lim sup; o (lim sup, 4o @(x1,4) — @(x5))
< lim sup, o (lim sup,yo @(x;,4) — @(x) < @(x) — @(x) = 0.

This shows that there is a sufficiently small positive number A(x) such that

(5.3) lim supyyo @(x2,5) — @(xz) < f(B)— B for A€ (0, Ax)).

Also, we have lim,yox;,=x;, and lim,yq A,X; ,=lim, o A7 (x;, — x) =
A7Y(x, — x). Combining these formulae and (5.3), we infer from Definition 4.2
that x; € D(4, 5) and A7'(x; — x) € Ax;. Since ¢(x;) < (1 — ad) ™ (o(x) + bl), it
follows that A7} (¢(x;) — @(x)) < g(e(x;)). This shows that A satisfies the strict
range condition (R,). Recalling that x; € D(A) and lim,, x; = x, we see that
x € D(A). Since x was arbitrary in D, it is concluded that D(4) > D. This
completes the proof of Theorem 4.8. O

REMARK. In the above argument, Assertions (a) and (b) in Theorem 5.1
are essential. That is, Theorem 4.8 is valid without any restrictions on the
Banach space (X, |-|) if Theorem 5.1 holds for general Banach spaces. In fact,
the first assertion (a) is obtained for any Banach space, although it is not
possible to obtain the second assertion (b) via the method employed in this
section. It is known that if the semigroup S is associated with a class of
semilinear evolution equations of the form.

(d/dt)u(t) = Au(t) + Bu(t), t>0,

then Theorem 5.1 is valid for arbitrary Banach spaces. See the recent works of
Oharu and Takahashi [26, 27] for the semilinear Hille-Yosida theory in general
Banach spaces.

In what follows, we give the proof of Theorem S5.1. Without further
mention we put all of the conditions imposed in Theorem 5.1. Fix any x € D,
any 7€ (0, 0) and take any a with @(x) <a. Put w* = w(rn(r; «)) and take
A* € (0, o0) so small that

(5.4) Mo* <1, o<1, Agla) < a— o(x).
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Also, choose h* € (0, o0) in such a way that

*h et — 1)< 1, *hle -1 <1,
(5.5)
Ahi(mhya) —a) <a— @(x)  for he (0, h*).
Therefore we have

Ah7iet — 1)< 1, Al - 1) <1,

(5.6)
Ah7 Y (m(h; ) — ) > o — (x), for 1€ (0, A*) and h e (0, h*).

We now take any Ae(0,A*) and any he (0, h*) and define an operator
K:D - X by

Kz=@A+hhx+A+h7'AS(h)z forzeD.
Since ¢ is convex on X, we have
®(Kz) < (A + B heo(x) + (A + h) "' Ap(S(h)z)
<A+ h)7tho(x) + (A + h)™'An(h; ¢(2))
<A+ 7tho(x) + A+ b tAn(h; o) < a

for z € D,, where we have used (5.6) in the last inequality. This means that K
maps D, into itself. To show that K is a strict contraction on D,, we observe
that (A + h)"Ae"*** < 1 by (5.6). For any pair y, z € D,, we have

|Ky — Kz| = (2 + h)7'4|S(h)y — S(h)z|
< (/1 + h)—llehm(n(h;a))ly _ Zl < (l + h)—llle}m,aly _ Zl ,

so that K is a strict contraction on D,. Since D, is closed in X, the contracting
mapping principle implies that there is x; ,e D, satisfying x;,=Kx;, or
A7 (X, — X) = AyX; 5. On the other hand, the number §; , defined by (5.2)
satisfies the relations

j-_l(ﬁi.,h - o(x) = gh(ﬂ},,h) s

(5.7)
B = (4 + B 'ho(x) + (A + h) " An(h; B,.,) -

Using (2.14), (5.6) and (5.7), we infer that B, , € [0, «] and it is a unique fixed
point in the interval [0, ] of the mapping k : [0, c0) — [0, o0) defined by

k(B) = (A + h)ho(x) + (A + h)~*An(h; ) for € [0, o0).
Now ¢(x;, ,) satisfies the inequality

@(x2,n) <A+ B ho(x) + (2 + B~ An(h; o(x;.0))
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since x; , is a fixed point of K and ¢ is convex on X. Hence ¢(x; ,) < B, , and
we have 17 (p(x;,,) — @(x)) < gu(@(x;,,)). Thus it is concluded that Assertion
(a) of Theorem 5.1 is valid for any number 4, € (0, A*) and any h, € (0, h*).

It now remains to show that Assertion (b) is obtained for the family of
elements {x; ,:4 € (0, Ao(x)], h € (0, hy(x)]} for some numbers 1y(x) € (0, A*) and
ho(x) € (0, h*). To this end we need the following lemma.

LEmMMA 5.2. lim sup; o (lim sup,yq |x;,, — x|) = 0.

ProOF. We have already seen that x, x;,eD, for Ae€(0,A*) and
he (0, h*). Let he(0, h*), ne N and nh € [0, c0). Furthermore let T and w* be

the numbers appearing in (5.4). Then Lemma 4.6 yields
[S(nh)x — x4l — 1% — X5 4]
(5.8) .
<h Z:=1 ([S(kh)x — x; p, Apxzpls + h_l(ehm — D|S((k — D)h)x — x; ).

With regard to this inequality we have the three estimates below:

[S(kh)x — x; y ApXznls < A7H(IS(kR)Xx — X, + AApx; 4l — |S(kh)x — x; 4])
= A71(|S(kh)x — x| — |S(kh)x — x; ,)
< ATNQ2IS(kh)x — x| — |x — x;.40) »
[S((k — D)h)x — x; 4] < [|S((k — Dh)x — x| + |x — x; 4|
and
[S(nh)x — x; 4l — [x — x; 4] = —|S(nh)x — x|,
where we have used (1.1) in the first estimate. Applying these estimates to (5.8),
we obtain
n(l — Ah7 ("™ — 1))|x — x,,,| < Ah7Y|S(nh)x — x| + 2 Y r_; |S(kh)x — x|
+ Ay ey k™ = 1)|S((k — Dh)x — x|,
and so
(1 = Ak~ (e — 1) |x — x4
< Anh)7|S(nh)x — x| + 2(nh)™ Y i, |S(kh)x — x|h .
+ A(mh)™ Yo b7 (€™ — 1)|S((k — Dh)x — x|h.

Taking any t €(0, 7] and letting h |0 and nh1t in the above estimate, we get
the integral inequality
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(1 — Aw*) lim sup, o [X — Xz 4]

t t
< At7YS(t)x — x| + 2t7! f |S(s)x — x| ds + Aw*t™! j IS(s)x — x| ds.
0 0

Therefore, passing to the limit as A | 0, we have
t
lim sup; o (lim sup, o |x — x;,]) < 2t7° j |S(s)x — x| ds .
0

Consequently, we obtain the desired assertion of the lemma by letting ¢ |0 in
the above inequality. O

In view of Lemma 5.2, it is sufficient for the proof of (b) to show the
following lemma.

LEMMA 5.3. There is A(x) € (0, A*] such that the limit x; = lim,, X, , exists
for each 4 € (0, A(x)].

The proof of this lemma is considerably technical, although it requires a
new idea based on the so-called asymptotic center and actually this is the
central part of the proof of Theorem 5.1.

For A€ (0, A*¥] we write B, = (1 — al) ' (o(x) + Ab). Let ¢(x) < o as before.
Then by Lemma 5.2 we have

lim, o (B + [lim sup,yo 1%, 5 — xI? + |8 — 0(¥)1*]1"?) = o(x) < «.
Hence one can choose A(x) € (0, A*] so small that
By + [lim supy, o 1, — xI* + |8, — 0(x)* ] < « for A€ (0, A(x)] .

Furthermore, we write h(x) for the number h* appearing in (5.5). Then the
desired assertion of Lemma 5.3 is obtained for the number A(x) and assertion
(b) of Theorem 5.1 is valid for the numbers A, = A(x) and h, = h(x). Therefore
the rest of this section is devoted to the proof of Lemma 5.3.

Fix any A€(0, A(x)] and take any null sequence (h(n))>, in (0, h(x)).
Then, in view of (5.7), we have two bounded sequences (x; ) in D and (B; nw)
in [0,]. We treat Banach limits of these bounded sequences. Fix any func-
tional L € (¢£*)* such that given a bounded sequence (£,)%, € /* the value of L
at (£,) becomes a Banach limit. In order to emphasize the Banach limit, we
write the value {(¢,), L) as LIM,,, &, in the following.

We now define a function @: X x R— R by

P((y, B)) = LIM, .o, (1X3,n0 — YI* + [Bi,nem — BI?)
= LIM, o, (Ix3,s0 — ¥I*) + B — BI?
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for (y, f) € X x R, where the norm of X x R is defined by
I, B> = 1yI> + 1B

The functional @ is convex and continuous on X x R. Since the norm of
X is uniformly Giteaux differentiable, it is easily seen that & is Géteaux
differentiable on X x R. Moreover, @(y, f) - +oo whenever |(y, B)| = +oo.

We here think of the use of an analogue of the asymptotic center of
bounded sequence in X x R. Referring to Ekeland [1], Section 5.2, we consider
the epigraph of ¢ which we here denote by

E(@)={(»,B)eX x R:9(y) < B}.

The set E(¢) is closed and convex in X x R. Also, the growth condition (G)
and the Lipschitz condition stated in Remark after Proposition 4.4 can be
rewritten, respectively, in the following forms:

(G') For (y, B) € E(p) and ¢ > 0, (S(2)y, n(t; B)) € E(g).

(L) For (y, p), (z,7) € E(p) and t > 0,

t

IS()x — S(®)y] < |x — yl exp (J

0o

o(n(s;a v B)) ds) .

Since the Banach space X x R is reflexive and &(y, f) — o as |(y, B)| = oo, the
functional @ attains its minimum in X x R. Namely, there is (x; o, B;.0) € E(¢)
satisfying

(5.9) D(x3,0, Ba,0) = inf {®(y, B): (v, B) € E(9)} -

Now it is clear that the sequence (%2, hny> Ba,nmy) is bounded in X x R and
lies in E(p). We then demonstrate that @(x, o, ;) =0. If this would be
accomplished, then

lim inf, , , (1% 4y — Xa0l2 + |Ba,himy — Biol*) =0

and it would be asserted that there is a subsequence converging to Xx, .
Therefore, if it would be verified that there is a unique limit point of the
sequence (X, u,), then Lemma 5.3 would be proved.

Noting that

1Br.0 — Bil? < D(x5,0, Bi0) < D(x, ¢(x)) < lim supy o |x;,, — xI* + B — 9(x)|?,
we have
Bro < By + [im sup,yo x5 — x>+ 18— e(x)*1"? < a

and hence ¢(x;,) < fro <o Let se[0,7) and choose he (0, h(x)] so that
s+ he[0,1]. We are going to show that for every z € D, f € [0, o) and every
6 > 0 the inequality
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(1 —Aav o®)t Jl' ®(S(s)z, n(s; B)) ds
4]

(5.10) < (2097 f t (P(S(9)z + 0(S(s)z — x), n(s; B) + O(n(s; B) — 9(x)))
0o

— D(8()z, n(s; B)) ds + A(20) 7 (D(z, B) — P(S()z, n(t; B)))

holds; from this one can deduce the desired identity @(x; o, B 0) =0 as
mentioned below. Let ze D,. Then by Assertion (a) we have

Xip=0@A+h7Thx + (A + h)7AS(h)x,
and so
Ix;.0 — [(A + h)"thx + (A + h)"*AS(s + h)z]|
= (A + h)'AIS(h)x;, — S(s + B)z| < (A + h)A|x; , — S(s)z|e*”
<A+ Rm7Ax, — SOz + (A + B — 1)|x, , — S(5)z]
=(1—@A@+hmTh)Ix,, — S6)z| + (A + WA — 1)|x,,, — S(5)z] -
The above inequality can be transformed into
((A+m)7h— (A + h)7TAE™” — 1)Ix; 4 — S(s)z]
< |xon— 8z — |z — [(A + B)*hx + (A + h) ™ AS(s + h)z|
= x4 — S@)z| — |x3, — S(s + h)z — (A + h)*h(x — S(s + h)z)|.
From this we obtain the estimate
0<(1—4in7'(e"" = 1)|x;, — S(s)z|
<A+ W (x50 — S(9)z] — |x;5 — S(s + Bz — (A + B) " h(x — S(s + h)2)]),

where we have used (5.6) in the first inequality. Multiplying both sides of the
above inequality by |x, , — S(s)z| and using the relation

1%, — 8()z| = x5, — S(s + h)z — (A + h)"*h(x — S(s + h)z)|
(which follows from the above inequality), we have
(1 — AR~ — D)Ix, — S(s)z
<A+ B (|xg 0 — S)z|* — x5, — S(s + h)z — (A + b)"*h(x — S(s + h)z)[?)
=+ hh(Ix;, — S(s + h)z|> — |x;,, — S(s + h)z
— (A + B h(x — S(s + h)2))?).



Semigroups of locally Lipschitzian operators in Banach spaces 607

Let t€(0,7), he (0, h(x)] and let ¢t + he [0,7]. Integrating the above inequality
over [0, t] with respect to s, we get

(1 — Ah7Y(er™ — 1))t! J |x;.5 — S(s)z|? ds
(4]

<A+ hHh)? Jt (Ix2.0 — S(s + h)z|?
0
— X0 — S(s + h)z — (A + B)"*h(x — S(s + h)z)|*) ds

+ @A+ hh)? <JI (Ix1,n — S(s)z|* ds — j‘ |35 — S(s + h)z|? ds)
0 0

t+h

= (A + h)(h)™? J (1%3,n — S(s)z|?

h

— %20 — S(8)z — (A + h)"*h(x — S(s)2)|?) ds

+ (A + h)(ht)™? (‘r (Ix1,n — S(s)z|? ds — J

t

t+h

|x5,5 — S(s)z|? ds> .

We here recall (1.1) to assert that for any 6 > 0 the above inequality can be
replaced by the following

t
(1 — Ak~ (e — 1))e? f 1%, — S(s)z|? ds
o

t+h

¢1y <™ f (IX3,n — S(8)z + O(x — S(5)2)|* — |x;, — S()z|*) ds

h

t+h

+ (A + h)(ht)! <Jh 1%, — S(s)x|* ds — j
0

t

1%, — S(s)z|? ds) .

Furthermore, we infer from (5.7) and the same argument as above that for

Be[0, o), te(0,1), he(0,h(x)] with t + he[0,7] and 6 > 0 the inequality
below is valid:

(1 — Ah7Y(e" — 1)1 J' |Biw — (s, B)I* ds
0

t+h

(512 <@ f (1Bs,n = m(s; B) + 8(@(x) — m(s; B))I* — |Bin — mls; B)I?) ds

h

t+h

h
+ @A+ k)™ <L |Bsn — m(s; B)I* ds — f

t

|Bin — (s; ﬁ)|2 ds) .
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Letting h = h(n) in (5.11) and (5.12) and taking the Banach limits we obtain the
desired estimate (5.9) for the function @(S(-)z, n(-; f)). Since (x; ¢, Bi.0) € E(@)
and @(S(t)x;,0) < n(t; Bi,0)) < m(t; By, o) it follows that (S(2)x;, 0, 7(t; B;,0)) € E(9)
and

D(x3,05 Ba,0) < P(S(8)xy,0, 7(t; B,0)) for t € [0, 00).
Therefore, setting (z, f) = (x;,0, f1,0) in (5.10) gives

(1—Aav o¥)™ Jt D(S(5)x3,05 7(s; Bs,0)) ds

0
<) f [D(S()x1,0 + O(S(5)Xx3,0 — ), 7(s; By,0) + O(s; Ba0) — @(x)))
0

— D(S(5)x;,0, T(S; B10))] ds .
Letting ¢ | 0 in the above inequality, we have
1 —Aa v 0*)D(x,,0, Bro)
SO P(x,0 + 00x1,0 — X), Bro + 0(Bio — @(x)) — P(x;,0, Bivo)) »
Finally, passing to the limit as 6 | 0, we obtain
(5:13) (1 —Aa v o*)P(x;,0, Bio) < P'(x5,05 Ba,05 X1,0 = X, Bro — @(x))

where @'(x, B; z, y) denotes the Gateaux derivative at (x, f) in the direction of
(z, 7). Hence the right-hand side of (5.13) is equal to the limit

limgy o 071(D(x;,0, Br,0) — P(X1,0 + O(x — x;,0), Bio + O(e(x) — Bi.0))) -

Since (x;,0, B1,0), (%, 9(x)) € E(p) and E(g) is convex, we infer that (x; o, f;.0) +
0(x — x3,0, (x) — B1,0) € E(p) for 6 €(0,1). Since (x; ¢, B;,0) is the minimum
point of the functional @ in the sense of (5.9), this fact implies that the above
limit is nonpositive. From this and (5.13) it follows that @(x; ¢, f; o) = 0, and
that there must exist a subsequence of (x,, 4,) Which converges to x; .

Finally, we demonstrate that the set of limit points of the sequence (x; 4(,)
is a singleton set, namely, the element x; , is a unique limit point of (x; u)-
Take any pair of null sequences (h(n)) and (h'(n)) in (0, h(x)) and suppose that
the sequences (x; ) and (x; ,,) converge to some x, o and u; o, respectively.
Since x, , €D, for he (0, h(x)), we see that both x; , and u; , belong to D,.
Letting h = h(n) in (5.10) and passing to the limit as n — co, we have

t
(1 — ¥ f X120 — S(s)z|? ds
0
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(5.14) <6y ft('xl,o = 8(9)z + 0(x — S(5)2)|* — [x;,0 — S(s)z[*) ds
0

+ 7 MIx4,0 = xI7 = |x5,0 — S@)2%) .

The term |x;,— S(9)z| on the right-hand side can be written as
|X3,0 — z — (4/t)'AA,z|. Hence the application of (1.1) to the second term
on the right-hand side of (5.14) implies that the right-hand side is bounded
above by

0n)! J: (1x2,0 — S(9)z + 0(x — S(5)2)1> — |x;,0 — S(s)z?) ds
+ 07 (Ix20 — 2z + 044,217 — |x; 0 — 2|?).

for 6 >0. We then put t = h’(n) and z = x, ;, in the above estimate to get
lA,Z = x;_,,,«(n) — X and

h'(n)
(1 = Ao*) (W ()™ J |X1,0 = S()%4,wml” ds
0

)
< (6h'(m))™ fo (12,0 — S(8)x 5, pegm + O(x — S(S)xa.h'<n))|2

= %30 — S(s)x;.,h'(n)|2) ds
+ 071 (1%2,0 = Xawm + 0 s mm — X = X210 = Xz wml?)
for 6 > 0. Passing to the limit as n — oo, we obtain
(1 — Aw*)|x3,0 — u1,0|2
(5.15) <07 (Ix4,0 — a0 + O0x — 1 0)1> = 1X5,0 — ts,00%)
+ 07 (Ix5,0 — a0 + 00xz,0 — WI* — x50 — ua0l%)

for 6 > 0. We here apply the Géiteaux differentiability of the norm |-|. The
right-hand side of (5.15) tends to

[%3,0 — Uz, ol ([x1,0 — Uz,00 X — Uz 014 + [X1,0 — a0 U0 — x],)=0,

and it follows that (1 — Aw*)|x; ¢ —u, ol =0. This means that any sequence
(x4, nm) converges to x, o as h(n) - 0.

For each x e D we write Ay(x) for the number A(x)e (0, A*] obtained in
Lemma 5.3 and hy(x) for the number h* determined by (5.5). Then both
assertions (a) and (b) stated in Theorem 5.1 are thus obtained, and this com-
pletes the proof of Theorem 5.1.
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