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§ 0. Introduction

We consider the following nonlinear parabolic equation

(i) Tt=^(u*1 (ί>0? XERd)'

for a given real number α > 1, where Δ is the d -dimensional Laplacian. This
equation was introduced by Muskat as an (empirical) equation of the density u

of a gas flowing through a homogeneous porous medium and is called a porous
medium equation ([!]). Analogously to Kac's approach to a Boltzmann
equation [10] we introduce a Markov system of many particles as a simple
model of the gas. The porous medium equation (1) is derived from the
equation for the empirical density of the number of particles. We prove that a
macroscopic limit of the empirical density is a solution of (1). We also prove

Kac-McKean's propagation of chaos for the system as follows.

Let Sh = {(hzl9 •••, hzd): z l 5 •••, zdεZ} be a d -dimensional lattice of the

width h > 0, and τ > 0 be a unit time. We define a system of N-particles on Sh

with the following stochastic interaction. For each integer n > 0, let

γN,l YN>N^<?
Λn j •*• J Λn eύ/ι

denote the positions of ΛΓ-particles at time nτ. If the number of particles at a
position x(eSh) is m(> 1), then each particle at x jumps to one of the nearest

neighbor lattice points x ± (0, •••, 0, h, 0, •••, 0) (j = 1, •••, d) with probability

{m/ΛΓ}α~V2d and stops on x with probability 1 - {w/ΛΓ}""1 independently of
the other particles. Thus all ΛΓ-particles can move at the same time (for detail,

see (M.I), (M.2) and Remark (3) in §1).
We consider a macroscopic behaviour of this model. Let <5(x, y) be

Kronecker's ^-function (i.e.<5(x, y) = 0 for x φ y and δ(x, x) = 1) and define by

the empirical measure of the number of particles (on Sh) at time nτ. Suppose
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that, for each lattice point x = (x1? •••, xd)εSh, Uh(x) = [x1? xx + ft) x •••
x Lχd> xd + h) is a unit cell in a porous medium and each particle stays in one

unit cell during each time interval [rcτ, (n + l)τ). Then define by

(2) X»th(t, y) = h-d X»/τ}(x)9 (if ye Uh(x) for xeSh)

the empirical density of the number of particles (on Rd) at time t > 0. Here we
assume that N, τ and h satisfy the following relation

(3) c/log(logΛΓ) < τ = lft'c-D + 2
α

for a fixed constant c > 0. We denote by

(N, τ, ft) ̂ p (oo, 0, 0)

the limit of N9 τ and ft satisfying (3) as N tends to infinity and τ, ft tend to
zero. Under some initial conditions we will show that

I dt\ \X»h(t,x)-u(t,x)\2dx ,0
JO jRd

holds in probability as (N9 τ, ft) —> (oo, 0, 0) for each T> 0, where u = u(t, x) is

a unique weak solution of a Cauchy problem for (1) (see Theorem 1 in § 1).
Taking the limit in the same manner, we will show a propagation of chaos

for the sysem of the N-particles. Namely if the initial positions of the N-

particles are chaotic (= independently and identically distributed), then the

processes {Xfί/'ί]: t > 0} (ί = 1, -••, m) become chaotic as (N9 τ, ft) —-> (oo, 0, 0)

for each integer m > 1. Further each process {X[tfτ]: t > 0} converges in law to

a d-dimensional diffusion process ({X(t) = (Xι(t)9 ••-, Xd(t))}9 P) satisfying

(4) P(X(t) e dx) = u(t9 x) dx9 (t > 0, x 6 Rd)

and

P
(5) Xj(t) = Xj(0) + u(s9 X(s))(Λ-^2dBj(s\ (j = 1, - - , d)9

Jo

where {(B^t), •••, 5d(ί))} is a d-dimensional Brownian motion and w = w(ί, x) is
the same unique weak solution of (1) (see Theorem 2 in § 1).

The problems about N-particles of this kind were investigated originally by
Kac [10]. Extending Kac's master equation approach to a Boltzmann
equation, McKean [12] introduced an interacting random system of JV-particles

and proved the propagation of chaos by using Itό's calculus of stochastic
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differential equations. For some system of ΛΓ-particles with an interaction
(depending on the empirical measure), the propagation of chaos can be proved
by the convergence of the empirical measure (see e.g. [15], [16], [17], [18]).

Our first result (Theorem 1) states a convergence of the empirical density
(2) toward the unique weak solution u of (1). To prove this, we will show that
the empirical density X^h converges to a deterministic version uΐth as N
-> oo (see § 3), and uτ^h converges to u as τ, h -> 0 (see § 2). To prove the

propagation of chaos as (JV, τ, h) -^ (oo, 0, 0), in §4 we will estimate the rate of

convergence for the propagation of chaos as N -> oo with fixed τ, h > 0. In § 5

we will complete the proof of Theorem 2 by applying the random walk

approach to a Brownian motion (cf. [8], [9]). In §6 we note two
remarks. One is a note for the long time behaviour of the d-dimensional

diffusion process {X(t)} satisfying (4) and (5). That is the convergence of Xk

= {k~βX(kt): t > 0} to a self-similar diffusion process X^ with the exponent β

= (d(a - 1) + 2)"1. Another is a note for the order h = 0(τβ) in (3), which is

concerned with a self-similarity of a sequence of Markov measures.

§1. Formulation and results

Let us consider the following parabolic Cauchy problem

κ(0, x) = u0(x),

where φ is a given function satisfying the following conditions:

(1.2a) φeC([Q, oo) — > [0, <x>))nCl((0, oo)— *(0, oo)) and

φ'(x) > 0 for x > 0,

(1.2b) there exists a constant pe(0, 1] such that

and

We assume the following conditions for the initial function u0:

(1.3) UQ is a bounded probability density function on Rd satisfying
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\x\2u0(x)dx + V(w 0)< oc,
Rd

where

Sh = {(hzl9~ 9 hzd): zl9 9zdeZ}9 h > 0, and

Ih(x) = [xl9 Xi + ft] x -•• x [xd, xd + ft] for x = (*!,•••, *

We consider a Mβrfaw jyste/H of N -particles {XN

n = (X™, ••• , X?'N): n > 0}
whose transition rule is given as follows. For each ft > 0 and NεN, let

be a path space and X% = (ΛΓ^ ' 1 , --- , X"'N) be a function on ΩNh defined by
X%(co) = G)% and X% l(ω) = co™. For each τ > 0, let PN^h be a Markov
measure on ΩNh characterized by
(M. 1) (independency of individual transitions)

JW*?+ι =y\xN

n = x) = Π?=Λ,τ,*Mι = Λ l A ? = x)

for j = Cy l 5 ••• , yN), x6(SΛf and
(M.2) (transition rule of each particle)

- x(xϊ) dτh-2 Λ 1), (7 = 1, ... , d),

ix i- Λ

for all i=ί, ,N, n = 0, 1, , and x = (x1; •••, xN)e(S,y where fy

= (0, , 0, A , 0, , 0) and x(y) = 1 J .̂ t δ(xb y).

We note that all JV-particles can move simultaneously. We are concerned

with the empirical measure

^M = ̂ ΣΓ-ιW'>*). » = 0,1, ,

and the empirical density

(1.4) X»j,(t, x) = Λ-' ^ίίCxx/Λ]*, - , [

f>0,

where we take τ > 0 as the unit time of this system.
For φ satisfying (1.2a) and u0 satisfying (1.3), we choose the unit time τ, the
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width h of the lattice and the total number N of the particles such as

(1.5) CJlog(logN)<τ<C2h
2

for fixed constants C l 9 C2 > 0, where C2 < l/d&( || MO I I «) and fo(w) = φ'(u)-u
+ φ(w). We denote by

(N,τ,h)—: > (oo, 0,0)

the limit of AT, τ and h satisfying (1.5) as AT tends to infinity and τ and h tend to
zero.

DEFINITION. A function u = u(t, x) is called a weak solution of (1.1) if u

satisfies

/dΌ, T] x /?d)nL°°([0, Γ] x /?') for all T> 0,

at { u - f t + iφ(κ)tt Δ/}dx = 0 for all /eC?((0, oo) x #d) and
Jo jRd

ess lim^o \u(t, x) - u0(x)\dx = 0.
JR*

THEOREM 1 (convergence of empirical density). Assume (1.2a) and
(1.3). TTzew //z^r^ exists a unique weak solution u = u(t, x) of (1.1) satisfying

(1.6) 0 < κ(ί, x) < l l w o l l o o , (ί, x)e[0, oo) x /?d,

(1.7) w(ί, x)dx = 1, ί > 0,
jRd

(1.8) ί \x\2u(t,x)dx< ί |x|2

W o(x)rfx + dφ(||u0||Jί, ί>0
JR* jRd

(1.9) lim,e,_o suPo<r<r \u(t + ε, x + δ) - u(t, x)\dx = 0
|<5|-+0 JQ

for all T> 0 αwd compact set Q c /?d, wΛ^re ε belongs to R and δ belongs to
Rd. Further if we assume (1.2c) and

(A.1) lim(N)t,Λ)(_?)(QO,o,o)^1/t£^,/,[Σ-J''"<' *?M - "oWI^"] = 0

for any fixed K > 0 w/zere ΰ0(x) = UO(X)/CA and ch = ^]X6S(i Uoίx)/!1*, then

(1.10) lim(W>τf»)_t(00ι0.o)£N.τ,» * I^I»(t.*)-«(ί.*)l2^ =°
"•" LJo Jβ" J
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holds for each T> 0, where X*h is the empirical density (1.4).

THEOREM 2 (propagation of chaos). Assume (1.2) (= (1.20) ~ (1.2c)), (1.3)

fl«d (A. 1). Let m be a fixed positive integer and w0 be the one in Theorem 1. If

(A.2) supXl,...,XmeSJPN,τ,J*r = x l s ». , *r = xjfc-*" - ΠΓ-ι*o(*ι)l

- > 0 (έw (JV, τ, ft) - > (oo, 0, 0)),

then the m marginal process

converges in law to an md-dimensional process

(t),...,X(m\t)):t>0}, P)

as (N9 τ, ft) -—+ (oo, 0, 0) and the d-dimensional processes {X(i\t) =

(X(ι}(t), ~9 X
(d\t))\ t > 0} (i = 1, ••• , m) are independently and identically dis-

tributed diffusion processes satisfying

(1.11) P(X(i\t)edx) = u(t, x)dx, (t > 0, xεRd)

and

(1.12) X f ( t ) = X<f>(0) + Γ φ(u(s9 X ( i ) ( s ) ) ) ί / 2 dBf(s), (7 = 1, - , d),
Jo

{(B(l}(t), ••• , ̂ (ί))} (i = 1, ••• , m) are independent d-dimensional Brownian

motions. Here the function u = u(t, x) is the unique weak solution of (1.1).

REMARK. (1) If the initial positions of JV-particles are independently and

identically distributed with the density w0 (i.e. PΉ^^h(X^Λ = x l 5 ••• , X%'N = XN)

), then we have

h\h-dXN

Q(x) - ΰQ(x)\2dχ-\ < l/Nhd

and hence the assumption (A.I) is certainly satisfied.

(2) If we can take the limit of N9 τ and ft satisfying (1.5) and

for some constant c > 0, then we can prove Theorems 1 and 2 without the

assumption (1.2c).

(3) In case of φ(u) = u*~l (α > 1) and τ - d~lhd(Cί-l} + 2, τ and ft satisfy

(1.5) automatically and the transition rule (M.2) is independent of τ and ft: i.e.



Derivation of a porous medium equation 91

This is the simple case stated in §0.

§2. Difference approximation of parabolic equation

On the finite difference approach to the porous medium equation, several
difference schemes to (1) in §0 with d = 1 were studied precisely (see e.g.
Mimura, Nakaki and Tomoeda [13]). In this section we solve the Cauchy

problem (1.1) (d > 1) by the following difference approximation. For τ, h > 0

let us consider the difference equation

(2.1) K+1(x) - ΰn(x)}/τ = {(Δhφ(ύn)ύn}(x\ (xeSh, n > 0),

where φ is a given function satisfying (1.2a) and (Δh/)(x) = Yj=ι {f(x + hj)
— 2f(x) +f(x - hj)}/h2. For a function u0 satisfying (1.3), put

(2.2) MO W = w0 W/cΛ, (x 6 5Λ),

where ch = Σχesh

uo(χ)hd i§ a normalized constant. Then we have

(2.3) £X6Sh U0(x)hd = 1 and £xeSh \x\2u0(x)hd < oo .

Let C2 > 0 be a fixed constant satisfying C2<\/db(\\uQ\\^\ where b(u)
= φ'(u) u H- φ(u) (see (1.5)). Since ch -> 1 as h -> 0, there exists a constant h0

> 0 such that

(2.4) έ < c , < 2 and C2 < l/db(\\ΰ0U

hold for all Λe(0, Λ0). put

(2.5) B = {(τ, / ι ) : 0 < τ < C 2 / ι 2 , 0 < Λ < h 0 } .

For each (τ, /ί)eβ, let (wπ(x)} be a solution of (2.1)-(2.2) and w τ > Λ be a function
on [0, oo) x Rd defined by

(2.6) - 1 M{M [ ί/τ]+1

where [x]Λ = ([x^/ij/i, , \xjh~\h) for x = (x1? , xd) e Rd. Then we can

approximate the weak solution u of (1.1) by w τ Λ as follows.

PROPOSITION 1 (difference approximation). Assume (1.2a) and (1.3).
there exists a unique weak solution u = u(t, x) 0/(l.l) such that for each T> 0

ί<Γ |wτ?ft(ί, x) - ιι(ί,
jΛ d

(2.7) sup0sί<Γ |wτ?ft(ί, x) - ιι(ί, x)|rfx - > 0
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holds as τ and h tend to zero keeping (τ, h)εB and u satisfies (1.6) ~ (1.9) in
Theorem 1.

To prove this proposition we first show the stability of the sequence {ΰn(x)}
as follows.

LEMMA 2.1 (stability). Assume (1.2a). For each (τ,h)eB9 let ΰQ be a
bounded non-negative function on Sh satisfying (2.3) and b ( | | M o l l o o ) < 1/^C2, where
b(u) = φ'(u)u + φ(u). For this τ, A α«d MO, /e/ (MΠ(X): xeSΛ, π > 0} &e ίλe
solution of (2Λ) with the initial function ΰ0. Then we have

(2.8) 0^ *,(*)£ || So || oo,

(2.9) Σ^ ΛM^l.

(2.10) Σ~*J*I2 *»(*)*' < Σ*esJ*l2 M*)Λ' + dφ(\\ujjnτ

and

(2.1 1) ΣJ. ! Σ»sJ«B(x + Λj) - ^Wl*"- '

for all n = 0, l. .

PROOF. Put Φ(u) = φ(u) u. By (2.1), we have

(2.12) ΰn+1(x)

= ΰn(x) + τ-h-2^j=ί(Φ(ύn(x + hj) - 2Φ(ΰ.(x)) + Φ(ΰn(x - Λj))).

By (2.3) we have (2.9) for all π > 0. Put

tfj(x) = [Φ(ΰn(x + hj)) - Φ(ΰn(x))}/{ύn(x + h;) - ύπ(x)}

for n = 0, 1, ••• , xeS f t and ;' = 1, ••• , d, then (2.12) is rewritten as

(2. 13) «„ + ! (x) = [1 - «ΣJ.

where q = τh~2/2 < (2d fc(||M0||00))"1. We note that b(u) = Φ'(tι). If
0 < ΰn(x) < | |ύolL for all xeSh, then

for all xeSΛ. By (2.13) we have

min{Mπ(x), ΰa(x ± hj)} < ΰn+1(x) < max {wn(x), ΰn(x ± hj}
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which implies 0 < ΰn+1(x) < | | w 0 l l o o f°r &U xeSh. Therefore we get (2.8) for all
n > 0. By (2.12), (2.8) and (2.9) we have (2.10). Finally we show (2.11). Put

*5M = ύn(x + hj) - ΰn(x). Since

+ hk)'Φ + hk) + anj(x - hk) enj(x - hk)},

we have

Ld-lV^ \pn+ί(\'\\ < /7 d~1V \Pn(Ύ\\n Δ^xeSh\
ej W I S H LxeSh\

ej\x)\9

which implies (2.11). D

LEMMA 2.2 (compactness). Let V be a set of functions u: [0, oo) x Rd -> R

satisfying

/d lMl lLoo^o.^xR-) + SUPί>0 V l l ί , - ))) < 00

that

ί, x) = ιι(ί,
jRd

(ιι*/) (ί, x) = ιι(ί, y)/(x - y)dy : u e U

is equίcontinuous for each /eC^(/?d), where the notation V(/) is defined in

(1.3). If U is an infinite set, then there exist a function u^ : [0, oo) x Rd -> R and

a sequence {un} c U such that

inf {!!„(*, x): xeRd, n > 1} < wjί, x) < sup{wπ(ί, x): xεRd, n > 1}, ί > 0,

ί.

ill T> 0 and compact set Q c /?d, where

Γ
0<ί<Γj^

PROOF. Choose a function p e C J(/?d -> R) satisfying 0 < p(x) < 1,

= 1 and supp(p) c= [— 1, l]d. Put

for x = (xx, , xd) E Rd. Then {w*pn: u E U} is uniformly bounded and

equicontinuous for each neN. Hence we can choose a sequence {un} c U such
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that {un*pn:n>T} is a Cauchy sequence with respect to the norm

II HL°°([O,Γ]X[-Γ,Γ]<*) for each T>0. Since

H W * P Π - "Ik

fsr Pπ
jRά

V ( u ( t , ' ) ) - »0 (as rc->oo)

for any ueU, T> 0 and compact set β c /?d, we get the lemma by putting w

= l i m Λ ^ Q O M I I * . D

LEMMA 2.3 (existence). Assume (1.2a) 0«d (1.3). ΓA^w /λere exist a weak

solution u = u(t, x) of (1.1) satisfying (1.6) ~ (1.9) α«ί/ a sequence {(τΛ, Λn)} c β

π, /ιπ -> 0 α5 π ̂  oo

(2.14) lirn^,, sup0<ίsr |w t f l fΛn(ί, x) - w(ί, x)|έ/x = 0
jRd

Λo/ύίs for each T > 0.

PROOF. By (2.2), (2.4), (2.6) and (2.8) - (2.11), we get for (τ, Λ)eB

(2.15) 0 < wτ,Λ(ί, x) < | | w 0 | l o o < 2 | | M o l l o o ?

(2.16)

(2.17)

(2.18)

and

(2.19)

uτh(t,x)dx = l,

I |x|2Mτ,Λ(ί,
jRd

s, y)\

< d1/2Af\x -y\+ - s\,

where Af = max1S7-sd || df/dxj \\ „ and Bf = χjβ x || δ2//5x? || „. By Lemma 2.2,

there exist a function u satisfying (1.6), (1.9) and a sequence {(τπ, hn)} ^ B such

that τn, /ιπ -> 0 as n -> oo and

(2.20) lim^ co || 11,^-1111^(2 = 0

for each Γ>0 and compact set QaRd. By (2.16) and (2.17), the limiting

function u satisfies (1.7) and (1.8). For each/eCJ((0, oo) x Rd\ we have from

(2.1)
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where fn(x) =f(nτ, x). Therefore we have

Γdt( {M./t + iφ(W)W
Jo JRd

which implies that the function u = u(t, x) is a weak solution of (1.1). By (2.17)
and (1.8), the equality (2.20) holds with Rd in place of Q. Therefore we have

(2.14). D

On the uniqueness of the Cauchy problem (1.1), Brezis and Crandall [4]

proved the following

LEMMA 2.4 (Brezis-Crandall). Fix T> 0 and put H = [0, T] x Rd. Let
z e L1 (H) n L00 (H ) and w e L°° (H). Assume

zt- w = in

zw > 0 a. e. in H,

meas{(ί, x)eH: |w(ί, x)| > ε} < oo

for each s > 0, where meas A is the Lebesgue measure of A, and

Iim f i0 \z(t,
jRd

ess lim ί lo \z(t, x)\dx = 0.

z = 0 a.e. on H.

Put z = u — v and w = 2 x (φ(u) u — φ(v) - v} for weak solutions u and v of
(1.1), then by Lemma 2.4, u = v a.e. on [0, T] x Rd for each T> 0. If follows
that the weak solution of (1.1) is unique. By Lemma 2.3 we complete the proof
of Proposition 1.

§3. Convergence of empirical density

In the previous section, we have proved (1.6) ~ (1.9) in Theorem 1. In this
section we complete the proof of Theorem 1. We firstly prepare some
notations. For h > 0 and /, g : Sh -> R, put

ll/llw =

Let φ be a function satisfying (1.2). For r > 0 put
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= min{φ(|/(x)|) r, 1},

Kh,,(f; g)(x) = g(χ)

and

Then we have

for all functions e, /, g: Sh-^R. Put r = dτh~2. We note that the transition
rule (M. 2) is rewritten as

(3.1) PN Λ f t(JfK 1=x|^ = jc)

for x E SΛ, jt = (*!, , *N) e (SΛ)
N, where £(x) (3;) = δ(x, y) and Jc(x)

= ΣΓ= 1 5(χi» χ)/^ Let ^n'h be the σ-field on ΩNh generated by
{X": k < n}. By (3.1), for each /: Sh -> R and i = 1, ••• , N, the process

(3.2) {f(X» *) - ^Kh^h-dX»-J)(X^Y n > 0}

is a Λ^*-martingale on (ΩNίh, PN^h).

For each (τ, h)eB (see (2.5)) we note that r = dτh~2 < dC2. We will use
the following two inequalities later

(3.3) supo^dC>r[/]M/M ~ <Pr[0](*)0MI < C(φ)\f(x) - g(x)\,

(3.4) sup0sr,dC2 |φr[/](x) - φrM (x)|

for /, ^f : Sh -> [0, oo ) and xeSΛ, where

C(φ) = supx>0 {φ'(x)x/φ(x)}

and

x < 1φ'(x)x 1~pdC2 -f

The inequality (3.3) is obtained by the assumption (1.2a), (1.2c), and the
inequality (3.4) is obtained by (1.2a) ~ (1.2c) and the inequality

ΓJα

xp~ldx<-\b-a\p.
P

The following lemma is a basic lemma to prove Theorems 1 and 2.

LEMMA 3.1 (basic lemma). Assume (1.2a) and (1.2c). Let τ, /z, ΰ0 and ΰn be
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those of Lemma 2.1. Let μ be a finite Markov measure on ΩNh satisfying (M. 1)

and (M.2) with μ in place of PN,τ,h. Then we have

(\\h-dX»n - ΰn\\2

h)dμ < (Koγ(\\h-'X% - ΰo \\fh)dμ + 2\μ\(K0)
n/Nhd,

where K0 = 2 + 9C(φ)2 and \μ\ = μ(ΩN,h).

PROOF. Put r = dτh~2, then we note r < dC2 < l / f e ( l l w 0 | l o o ) > where b(u)

= φ'(u)u + φ(u). Further by (2.8) we have

J < l/φ(\\ΰn\\J and φr[SJ(x) = φ(ΰn(x))r.

Therefore, by (2.1), we have

(3.5) ΰn + ί ( x ) = Klr(ΰn',ΰn)(x)

for all n = 0, 1, ••• and xεSh. By (M.I) and (3.1) with μ in place of PN^h we

have

(3.6)

for all integers me [1, JV], 1 < σ(l) < < σ(m) < N, n>0 and

x l 9 ••• , xmeSh. Since the map g\-^K^r(f; g)(x) is linear for each function/: SΛ

-> [0, oo ), we get from (3.6) with m = 1

f <Λ-d^+1, f\h}dμ = ί(3-7)

By (3.6) with m = 2 or 1, we have

(3.8)

; δ(XN

n^))}9 f\h}dμ.

By the definition of K£r9 we have

(3.9) ΣXtshKΪΛh-dXN

nl δ(XW)(x){l - Ktr

h-'Xfi W{2 -
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Therefore using (3.7) with /= ΰn, (3.8) with /= 1, (3.9) and (3.5), we have

ί\\

ί,(h-'Xΐ; h-"XN

n) - Kl,(ΰn ΰn)\\2

h)dμ

Using the inequalities (ΣΓ=ιlχ;l)2 ^mT$=i\xi\2 and (3.3), we finally have

ί" II 2 , dμ < {2 + 9C(φ)2} \\h~-1 X" - ΰn\\fh}dμ + 2\μ\/Nh",

as was to be proved. D

PROOF OF THEOREM 1. By Lemma 3.1 with μ = PN_τιh, we have

(3.10) E^Uh-'XZ-uJfo

< (K0)" £„,,,„ [|| /!-"*£ - ύoll 2,] + 2(KJ/Nh<>,

where K0 = 2 + 9C(φ)2. By (1.4), (2.6) and (3.10), we get

Λ[T/t]τ f

(3.11) £„,,,„[ Λ \^(t,x)-uτΛ([t/τ]τ,x)\2dx]
JO JRd

2/Nh")τ.

By the assumption (A.I), the right hand side of (3.11) converges to zero as

( J V , τ , Λ ) ̂ (oo,

Theorem 1. D

( J V , τ , Λ ) ^(oo,0,0) for all Γ>0. By Proposition 1 we have (1.10) in

§ 4. Propagation of chaos as N -> oo

In this section we consider the propagation of chaos for the Markov
system of JV -particles {(A^ 1, ••• , X"'N): n>0} on (ΩN^ PN^h) as N tends to
infinity with fixed (τ, h)eB (see (2.5)). Let w0(x) and ΰn(x) be those of Lemma
2.1. By Lemma 3.1 and (2.8), if h~dX%(x) converges to ΰ0(x) as ΛΓ-> oo, then
the empirical density h~dX^(x) converges to ΰn(x)(< | | M O | | C O ) and so

φ(h-dXN

n(x))dτh~2 Λ 1 -^φ(ΰn(χ))dτh-2.

This means the convergence of the transition probability of each particle (see
(M.2) in §1). Therefore each process {X*'l:n>Q} converges in law to the
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following Markov chain {Yn} on (Ωh, Pτh).
Let Ωh = { y = (y0, yl9 •••): yneSh} be a path space and 7Π be a function on

ί2Λ defined by Yn(y) = yn. Let Pτh be a Markov measure on Ωh satisfying

(4.1) Pτ,h(Yn + l = x ± Λ,| rB = x) = φfeW)τ/ι-2/2, (j = 1, - , d),

Λ.*(Γ» + ι = x |y» = x) = 1 - φfeM^τ/Γ2

and

(4.2) Pτ,Λ(Y0 = x) = *o(x)hd

for all n = 0, 1, ••• and xeSh. By (2.1) and the Markov property of Pτ>h, we

have

(4.3) Pτ,Λ(7π = x) = ΰn(x)hd

for all n = 0, 1, ••• and xeSh. We prepare the following Proposition 2, which
estimate the rate of convergence for the propagation of chaos as N -> oo, for the
proof of Theorem 2 in the next section.

PROPOSITION 2. Assume (1.2). Let w0(x), τ and h be those of Lemma
2.1. Then for each integers 1 < m < N, ^ > 0, n0 = 0< ••• < ne and functions

/ί:/?d->[0, 1] (ι = 1, , w, fc = 0, », ^), w^ have

(4.4) |£N,τ,Λ[Π^oΠΓ=ι/U^)] - ΠΓ=ι^[Π^o/ί(ϊ»k)]l

^l/όWjI^.τ.*^1 = Xi, - , *2'm = Xj - ΠΓ=1 {*oMhd}\

where K = (K0)\ y = p/2, K0 = 2 + 9C(φ)2 and C(φ\ D(φ) are positive
constants defined in (3.4), (3.5).

To prove this proposition, we prepare the following

LEMMA 4.1. Assume (1.2). Let τ, Λ, ϋn and μ are those of Lemma 3.1 with

vn in place of ΰn. Let VQ(X), ••• , v% (x) be non-negative bounded functions on
Sh. Let t i(x) (i = 1, •••, m) be the sequence defined by the following linear

difference equation

with the initial function V*Q. Then we have

— Y ϊ — Πm ί;/ (\}l— xm) 1 l i = l \vQ\xi)'

Y
'-ϋ. \\Ldu] h-d?
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where \μ\ =

PROOF. By the same argument as (3.5), (4.5) is rewritten as

(4.7) U+ι(x)tf = Kt,(VnlWHx)

= Σσ e {o,±Λ l ..... ±hd} tfrfe; σ)(x) vl

n(x + σ)hd

for xeSh, n > 0, where r = dτh~2,

αr(/; 0)(x) = 1 - φr[/] (x) and αr(/; ± h,)(x) = φr[/] (x ±

Then we have

fΠΓ=l *?>-„; δ(XZ *

x Iμ^'1 = X! + σ l 9 ». , ̂ '- = xm + σj - ΠΓ=ιK(^ + ^hd}\

= Σχι,...^ι^(^pl = ̂  - » ̂ iM = ^J - Πr=ι KWΛ d } i .
On the other hand, using trianglar inequalities successively, we have from (3.4)

- vn

By (3.6) and (4.7) ~ (4.9) we have

Z+\ = XL , Xn^ = * J - ΠΓ= i K + 1

n'1 = *ι, -, ̂  " = xJ - ΠΓ=ι {»ί

as was to be proved. D

PROOF OF PROPOSITION 2. The idea of this proof is based on Uchiyama

[18]. Put
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- Πr=ι £..»
and

To prove (4.4) we show that

(4.10) F.ZF.^ + G,

for all £ = 1, 2, ••• . Let μ be a finite Markov measure on ΩNΛ satisfying (M.I)
and (M.2) with the initial distribution

ί-oΉΓ-ι^^ *;)

for x = (x l f - , ̂ )e(SΛf. Then |μ| - μ ,̂,) < 1. Put

and

where ΰn(x) is the solution of (2.1) with the initial function ΰQ(x). Let
ϋn(x) (resp. ^(x)) be the solution of (2.1) (resp. (4.5)) with the initial function
VQ(X) (resp. VQ(X)). By the Markov property and the uniqueness of the solution
of (4.5), we have

£*.,.» απu or- i/ίraj Πr= i s(χ* xΐ 'n

and

ΠΓ^^cίΠ^o/Ki j}^^ n;] = πr=ι(/ί w^
where n = ne — nί_1. By Lemma 4.1 and Lemma 3.1, we have

= xi. .W = *J - ΠΓ=ι K
= *ι. - . χom = ̂  - ΠΓ=ι K

which implies (4.10) and therefore (4.4). Thus Proposition 2 has been
proved. D
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§5. Proof of Theorem 2

In this section we prove Theorem 2 as a limit theorem of probability

measures by applying the random walk approach to a Brownian motion. For
each integer m ( > 1), let Wm be the metric space of all continuous functions

w : [0, QO ) -> Rdm with the distance d(w, w) = ££L 1 2~" {sup0<ί<2n | w(ί)

- w(ί)| Λ 1} and J^m be the σ-field generated by all cylinder sets in Wm. Let
0>(Wm) be the space of all probability measures on (Wm, J*m) with the topology
of weak convergence. Let X"τ\

m be the VΓm-valued random variable on (ΩN Λ,
PN,τ,h) such that X"\m is the polygonal function whose value at a point t > 0 is
given by

(5.1) X^m(t) = (X^(t\-^X^(t)),

where

X»f(t) = X^ + ((ί/τ) - [f/T]){*$] + 1 - *$,}.

Let Pjv|m,tfa be the probability measure on (Wm, ^m) such that Pjv|m,τ,fcC^)
= PN^h(X?τ\

meA) for all Ae^m. Let Bm be the set of (N, τ, Λ) satisfying '(1.5)

with N > m and (τ, /i)e£ (see (2.5)).

LEMMA 5A(tightness). For each sequence {(NV9 τv, /ιv)} c= Bm satisfying Nv

oo #«£/ τv, Λ v -> 0 «^ v -> oo, /A^ family of the probability measures

{PNv\m,τv,hv' V = 1, 2, ••-}

fifAί i/i ^(l^m).

PROOF. We write Nv = N, τv = τ and Λ v = A. For each M > 0, put

and

βv,M = IPN.τ.Jl^o Ί2 < M> for all i = 1, - , m) - {Cv,M}

Then, by (A.2) and (1.3), we have

lirn,^ εvjvf = 0 and lirn,^ CV,M = u0(x)dx = C^^
J\x\2<M2/m

for each M > 0. Therefore we have

(5.2) lim sup^, PNtτth(\X$m(0)\ > M) < 1 - {C^M}>»,

which converges to zero as M-»oo.
Next we show the equicontinuity of the trajectory. By (3.2) with/(x) = |x
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- XΪ'Ί4 or f(x) = \x- Xk''\2, we have for n > k > 0 and i = 1, ••• , m

(5.3) E^IW-ATY]

= £»,,,, [ΣΓ4^[fc-d*fl (*?•') {(8 + 44IAT - A?''!2 + 2dΛ2}]

and

(5.4) J

where r = dτh~2 and

For each f > s > 0, put

T — (F
-1 — \^N,τ,HL\Λ[t/τ] ~ Λ [s/τ]\

then by (5.3), (5.4), (3.4), (3.10), (A.I), (1.5) and Holder's inequality we have

I2 < ξj + ξ2 + (2 + d)φ(l|ΰ0IIJ2(ί - 5)2d

for some negligible constants ξ ί 9 ξ2 > 0. It follows that

(5.5) lim sup^E^Π*^ - X^l4] < (4 + 2d)φ(\\u0\\J2(t - s)2d.

By the definition (5.1) we have for each T, ε > 0

ί) - ^Jw(5)|2 > ε2)
|f-s|<<5

|ί-s|<ί

ΣΓ-i Zy-o^.^imax^.^lA-y-' - ̂ '|2 > ε'2),

where ε' = {(ε2/m) - 8Λ2}1/2, k, = liδβτ], n} = [(; + 2)(5/2τ] and J = [2Γ/5]

— 1. By the martingale inequality and (5.5) we have

(5.6) lim supv^ P^.Λmax.^o.r, | X»f(t) - Λ*j"(s) | > ε)
|f-s|<ί

< lim sup^.ΣΓ-i Σί-o8"4£WΛ»[|A :;' - *7;T]

^2

ίί | 0 (as δ [ 0 )



104 Masaaki INOUE

for each T> 0 and ε > 0. Then the tightness of the family {PNv\m,τv,hv} follows
from (5.2) and (5.6). D

By Lemma 5.1 there exist a probability measure P on W™ and a sequence

{(NV9 τv, hv)} c= Bm such that PNv\m,τv,hv converges to P weakly as v-> oo and
Nv -> oo, τv -> 0, hv -> 0. For each t > 0 and i = 1, ••• , m, let JT(ί)(ί) be the
function on M^1 defined by X(i)(t, w) = w(ί)(t) for every w

= {(w(1)(ί), ••• , w(m)(ί)): ί > 0} G Wm. For each f 0 = 0 < ••• < f , and τ > 0, put
nfc = [ίfc/τ] (k = 0, •••, ^). By Proposition 2, (A.I) and (A.2) we see that, for

each/ΐeC0(/?d -> [0, 1]) (ί = 1, ••• , w, k = 0, ••• , ^), each of the following terms

and

converges to zero as (AT, τ, h) 7j-^(°o> 0, 0). By the weak convergence of the

probability measures {P^v|m,τv,Λv

 : v ^ ̂ }, we have

which implies

, JSf^Jedw! x - x dwJ = ΠΓ=

To prove that the d-dimensional processes X(ί} (i = 1, ••• , m) are identically
distributed, we will show that distribution of X(i) is characterized by the
following nonlinear martingale problem (cf. Funaki [6]). Let W= W1 be the
space of all continuous functions w: [0, oo)-> Rd and ̂  = ̂ l be the σ-field
generated by all cyclinder sets in W. Let P{ be a probability measure on
(W, 3?) defined by P^A) = P({(wl9 ••• , wj: w^A}) for all Ae^. Let J^j0 be
the σ-field in W generated by {X(ί)(s): 0 < s < t} and all Prnull sets. Then we
have the following

LEMMA 5.2 (martingale problem). For each ze{ l , ••-, m} and t > 0, we get

(5.7) Pi(X(ί}(t) e dx) = w(ί, x) dx, (x e /?d)

u = w(ί, x) is the unique weak solution o/(l.l). Further for /eCf([0, oo)
x Rd -»R) the process

(5.8) {/(t, *«(£)) - f L(u /) (s, Jf»(s)) ds: t > 0
(. Jo

is an ^V^-martingale on (W, &(i\ Pt ), where
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Δ is the d-dίmensional Laplacίan with respect to the variable xeRd.

PROOF. Firstly we show (5.7). Fix geC0(Rd^> [0, 1]) and t > 0. By

(A.I), (A.2), (4.3) and Proposition 2 with m = £ = 1 and n = [ί/τ], we have

-" - a0(x)\

-XN

0 - U0||<
2

A)]

which vanishes as (N, τ, Λ) -^-^ (oo, 0, 0). By the weak convergence of the

probability measures {PNv\m,Iv,hv}
 and Proposition 1 we have

f
J

= g(χ)u(t, χ)dx,
JΛ"

which implies (5.7). Next we show the martingale property. For geCb(Rd

-» R) and t > s > 0, we show

(5.9) £

= ££[{/(s, X(ί)(s)) + ί'L(u;

By (3.2) we have for n > fe > 0

, Jf?'1) + Σ" "4

where r = rfτ/j~2. Put n = [t/τ] and fc = [s/τ]. By (3.4) and Theorem 1 we

have

— , 0 (as (N, τ, Λ) -̂ p (oo, 0, 0)).

Suppose N = JVV, τ = τv and ft = Λ v. By the weak convergence of {PNv|m,tv,hv}

we have
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ί
which implies (5.9). By the same method as above, we get the same equation
as (5.9) with g^X^s^ — g^X^Sp)) in place of g(X®(s)) for all integer p > 1,
non-negative numbers sΐ < ••• < sp = s < t and functions #ι, •••, gpeCb(Rd

-> /?). Hence we have

f
as was to be proved. D

To prove the uniqueness (in the law sense) of the nonlinear martingale
problem (5.7)-(5.8), we show the following

LEMMA 5.3 (Markov property). The process X(i} = { X ( i ) ( ή } on (W, &,
PΪ' > ^^) is a Markov process with the generator

(5.10) {^ί = iφ( W (ί,x))Δ:ί>0}.

PROOF. To prove the Markov property of X(i\ we will show

(5.11) ^[/(^(0(io))^o(^(i)(so))-^.(^(0(^))]

^for each integer £ > 1, real numbers ί0 > 50 > -•• > st > 0 and functions
fεC%(Rd-+R\ gθ9-9gίeL1(Rd^[09 1]). For each t > 0, let υ&dx) and
v2(t, dx) be measures on Rd defined by

ί
jR

υ,(t, dx) =
jRd

and

f(x)υ2(t, dx) = EtlEt
ί

JR

By (5.7) we see that v^t, dx) and υ2(t, dx) have densities v^t, x) and υ2(t9 x)
satisfying

0 < Vi(t9 x), v2(t, x) < u(t + s0, x),
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where u(t, x) is the unique weak solution of (1.1). It follows from (5.8) that v1

= t>ι(ί, x) and v2 = v2(t, x) satisfy the following linear differential equation

-^(ί, x) = iΔ(u(f + s0, x)v(t, x))
ot

in the distribution sense. By the definition of vl and υ2 we have 1 (̂0, x)

= v2(Q, x). Put z(ί, x) = v^t, x) - t;2(ί, x) and w(ί, x) = 2~ 1 φ(w(ί + s0,
x))z(ί, x). Then, by Lemma 2.4, z(f, x) = 0 a.e. on [0, T] x /?d for all Γ

> 0. Hence we have Vι(t0 - s0, x) = i^o — so> *) a e xe/?d, which implies
(5.11). Thus the Markov property has been proved. By (5.8) with /(ί, x)

= f(x)eC£(Rd), the generator of the process X(i) is

= xl

as was to be proved. D

By the martingale representation theorem (see e.g. Ikeda and Watanabe

[7] p. 90), the d-dimensional diffusion process (X(i>(t) = (Xψ(t), , X$(t))}
satisfies the stochastic differential equation (1.12).

Finally we note that the limit of the probability measures {PN|m,τ,Λ} as N
tends to infinity and τ, h tend to zero satisfying (1.5) is unique in 0>(Wm\
because if there exists a probability measure P on (Wm, ^m) as a limit of the
probability measures {PN\mtΐth} along some subsequence of Bm, then the
distribution

is determined by the same generator (5.10) and therefore coincides with the
distribution

Y ! X ••• x ΛvJ.

Thus we complete the proof of Theorem 2.

§ 6. Remarks

A) Self-similar diffusion process. Let MO be a continuous function on Rd

satisfying the condition (1.3). Fix α > 1. Let X = {X(t)} be a d-dimensional
diffusion process satisfying (4) and (5) in § 0 with the initial density w(0, x)
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= w0(x). Put β = (rf(α - !) + 2Γ1 and JTk(ί) = k~β X(ki) for fe > 0. Then the
process Xk = {Xk(t)} converges in law to a d-dimensional diffusion process X^

= {^αo(ί)} satisfying (4) and (5) with w(α) in place of u and JfJO) - 0 (e/?d)
with probability 1, where u(a} is Barenblatt's function ([2]) described by

ιι(β)(ί, x) = L-V^αi - |x|2(

J = κ;X"β+1, L= ic'M2', K = α/]8(α - 1),

and {x}+ = maxjx, 0}.
α — i/ \<x — i

The function w(α) satisfies the d-dimensional porous medium equation

in the domain {(ί, x)e(0, oo) x Rd: \x\ < (Jt)β} and

w,α)(f, x)dx= 1, (ί>0).I v '
J Rd

The limiting diffusion process X^ is self-similar with the exponent β i.e.

Xoo(kt) ~ k^ooW f°r all fc, ί > 0. This limit theorem follows from the analytic
results for the weak solution u of (1) (see Friedman-Kamin [5] and Veron [19]).

B) Self-similar sequence of Markov measures. In case of φ(u) = ua~1

(α > 1), the transition rule (M.2) is independent of τ, h if and only if τ
= ahd(Λ~1)+2 for some constant a > 0. If PN^h(X^ = ••• = X%>N = 0) = 1 for

all N, τ and Λ, then

holds for all τ - ahd(Λ~1) + \ h > 0, N > 1, α > 0 and Ae#(flN f l), where

= {Λω = (Λω0, Λω^ •••): ω = (ω0, ωl9~ )eA} and Λωn = (ΛωJ, - - • , hω%)
for ωw = (ωi, , ω^JeίSi)^ In this sense the sequence of the Markov
measures

may be called self -similar. In the case (φ(w) = u*'1, X^1 = 0), if each process

{X[tfτ] : ί > 0} on (ΩNth9 PN^9h) converges in law as N -> oo and τ, h -> 0 satisfying
τ = α/ιd(α~1) + 2, then the limiting process is self-similar with the exponent β

= (d(a — 1) + 2)"1. We think that the limiting process is the same process X^

= X^tt) as above.



Derivation of a porous medium equation 109

ACKNOWLEDGMENT. I would like to express my hearty thanks to
Professor Haruo Totoki for his valuable suggestions and kind encourgements in
preparing the manuscript, Professor Kόhei Uchiyama for his helpful advice for
the proof of the propagation of chaos, and Professor Hirotake Yaguchi for his
very careful comments on the present work.

References

[ 1 ] D. G. Aronson, The porous medium equation. In Nonlinear Diffusion Problems (A.

Fasano, M. Primicerio eds.), Lecture Notes in Math. (CIME Foundation Series), Springer-

Verlag, 1224 (1986), 1-46.

[ 2 ] G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous

medium. Akad. Nauk. SSSR. prikl. Mat. Mekh., 16 (1952), 67-78.

[3] P. Billingsley, Convergence of Probability Measures. New York: Wiley and Sons, 1968.

[4] H. Brezis an M. G. Crandall, Uniqueness of solutions of the initial-value problem for ut

- Δφ(ιι) = 0. J. Math. Pures Appl., 58 (1979), 153-163.

[ 5 ] A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous

medium. Trans. Amer. Math. Soc, 262 (1980), 551-563.

[ 6 ] T. Funaki, A certain class of diffusion processes associated with nonlinear parabolic

equations. Z. Wahrscheinlickkeitstheorie view. Gebiete, 67 (1984), 331-348.

[ 7 ] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes.

Amsterdam-Tokyo, North-Holland/Kodansha, 1981.

[ 8 ] M. Inoue, A Markov process associated with a porous medium equation. Proc. Japan

Acad., 60, Ser. A, No. 5 (1984), 157-160.

[ 9 ] M. Inoue, Construction of diffusion processes associated with a porous medium equation.

Hiroshima Math. J., 19 (1989), 281-297.

[10] M. Kac, Foundation of kinetic theory. Proc. Third Berkeley Sympos. on Math. Statist, and

Probab. Univ. Calif. Press. 3 (1956), 171-197.

[11] H. P. McKean, A class of Markov process associated with nonlinear parabolic equations.

Proc. National Academy Sci. U.S.A., 56 (1966), 1907-1911.

[12] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations. Lecture

Series in Differential Equations. Catholic Univ. Washington D.C. (1967), 41-57.

[13] M, Mimura, T. Nakaki and K. Tomoeda, A numerical approach to interface curves for

some nonlinear diffusion equations. Japan J. Appl. Math., 1 (1984), 93-139.

[14] M. Muskat, The Flow of Homogeneous Fluids through Porous Media. New York: McGraw-

Hill 1937; 2nd printing, Edwards, 1946.

[15] K. Oelschlager, A law of large numbers for moderately interacting diffusion processes. Z.

Wahrscheinlichkeitstheorie view. Gebiete, 69 (1985), 279-322.

[16] H. Tanaka, Some probabilistic problems in the spatially homogeneous Boltzmann

equation. In Proc. IFIP-WG 7/1 Working Conference on Theory and Applications of

Random Fields held in Banagalore, Lecture Notes in Control and Information Sciences

Sprinder-Verlag, 49, (1982), 258-267.

[17] H. Tanaka, Limit theorems for certain diffusion processes with interaction. In Stochastic

Analysis (K. Itό ed.), Tokyo, Kinokuniya Co. Ltd., Amsterdam-Oxford-NewYork, Noth-

Holland Pub. Co., (1984), 469-*88.



110 Masaaki INOUE

[18] K. Uchiyama, Fluctuation in population dynamics. In Stochastic Method in Biology.
Spriger Lecture Note in Biomath., 70, (1987), 222-229.

[19] L. Veron, Effets regularisants de semi-groupes non lineaires dans des espaces de Banach.
Ann. Fac. Sci. Toulouse, 1 (1979), 171-200.

Yuge College of Mercantile Marine
(Yuge, Ehime Prefecture, Japan)




