Holomorphic functions on the nilpotent subvariety of symmetric spaces

Ryoko Wada and Atsutaka Kowata

(Received January 19, 1990)

Introduction

Let g be a complex reductive Lie algebra and let $g_{\boldsymbol{R}}$ be a non compact real form of \mathfrak{g}. Let $\mathfrak{g}_{\boldsymbol{R}}=\mathfrak{f}_{\boldsymbol{R}} \oplus \mathfrak{p}_{\boldsymbol{R}}$ be a Cartan decomposition of $\mathfrak{g}_{\boldsymbol{R}}$ and let $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$ be the direct sum obtained by complexifying $\mathfrak{f}_{\boldsymbol{R}}$ and $\mathfrak{p}_{\boldsymbol{R}} . \quad G$ denotes the adjoint group of g and we put $K_{\theta}=\{a \in G ; \theta a=a \theta\}$, where $\theta: \mathrm{g} \rightarrow \mathrm{g}$ is a Lie algebra automrophism of order 2 defined by $\theta=1$ on $\mathfrak{f}, \theta=-1$ on \mathfrak{p}. K denotes the identity component of $K_{\theta} . \quad S$ denotes the symmetric algebra on \mathfrak{p} and we put J $=\left\{u \in S ; a u=u\right.$ for any $\left.a \in K_{\theta}\right\}$ and $J_{+}=\{u \in J ; \partial(u) 1=0\}$. J^{\prime} denotes the ring of K-invariant polynomials and we put $J^{\prime}{ }_{+}=\left\{f \in J^{\prime} ; f(0)=0\right\}$. $\mathcal{O}(p)$ deotes the space of holomorphic functions on \mathfrak{p}. We put $\mathcal{O}_{0}(\mathfrak{p})=\{F \in \mathcal{O}(\mathfrak{p})$; $\partial(u) F=0$ for any $\left.u \in J_{+}\right\}$and $\mathfrak{N}=\left\{x \in \mathfrak{p} ; h(x)=0\right.$ for any $\left.h \in J_{+}^{\prime}\right\}$. The space $\mathcal{O}(\mathfrak{R})$ of holomorphic functions on the analytic set \mathfrak{N} (cf. [2]) is equal to $\left.\mathcal{O}(\mathfrak{p})\right|_{\mathfrak{n}}$ by the Oka-Cartan Theorem.

Consider the restriction mapping $\mathscr{R}:\left.F \rightarrow F\right|_{\mathfrak{R}}$ of $\mathcal{O}_{0}(\mathfrak{p})$ to $\mathcal{O}(\mathfrak{P})$. In our previous paper [4] we showed that \mathscr{R} is a linear isomrophism of $\mathcal{O}_{0}(\mathfrak{p})$ onto $\mathcal{O}(\mathfrak{R})$ when $\mathfrak{g}=\mathfrak{s o}(d, 1)(d \geqslant 3)$. In this paper we will show that we obtain the same result for any complex reductive Lie algebra.

1. Preliminaries.

Let S^{\prime} be the ring of all polynomial functions on \mathfrak{p} and S_{n}^{\prime} be the homogeneous subspace of S^{\prime} of degree n for $n \in \boldsymbol{Z}_{+}=\{0,1, \cdots\}$. For $f \in S^{\prime}$ and $a \in K_{\theta}, a f \in S^{\prime}$ is given by $(a f)(x)=f\left(a^{-1} x\right)$. It is known that any element of J^{\prime} is invariant under K_{θ} (see [1] Proposition 10). It is also known that J^{\prime} has homogeneous generators P_{1}, \cdots, P_{r} such that $\left.P_{j}\right|_{\mathfrak{p}_{R}}$ is real valued $(j=1, \cdots, r)$, where $r=\operatorname{dim} \mathfrak{a}_{\boldsymbol{R}}$ and $\mathfrak{a}_{\boldsymbol{R}}$ is a maximal abelian subalgebra of $\mathfrak{p}_{\boldsymbol{R}} . \mathscr{H}$ $=\left\{f \in S^{\prime} ; \partial(u) f=0\right.$ for any $\left.u \in J_{+}\right\}$denotes the space of harmonic polynomials on \mathfrak{p}. The following lemma is known.

Lemma 1.1 ([1] Theorem 14 and Lemma 18). (i) If $f \in S^{\prime}$ and $f=0$ on \mathfrak{N}, then $f \in J_{+}^{\prime} S^{\prime}$, where $J_{+}^{\prime} S^{\prime}=\sum_{j=1}^{r} S^{\prime} P_{j}$.
(ii) For any $k \in Z_{+}$we have $S_{k}^{\prime}=\left(J_{+}^{\prime} S^{\prime}\right)_{k} \oplus \mathscr{H}_{k}$, where $\left(J_{+}^{\prime} S^{\prime}\right)_{k}=J_{+}^{\prime} S^{\prime} \cap S_{k}^{\prime}$.

Suppose $F \in \mathcal{O}(\mathfrak{p})$. Let $F=\sum_{k=0}^{\infty} F_{k}$ be the development of F by the series of homogeneous polynomial F_{k} of degree k. Then $\sum F_{k}$ converges to F uniformly on each compact set in \mathfrak{p} and F_{k} is given by the following formula:

$$
\begin{equation*}
F_{k}(x)=\frac{1}{2 \pi i} \oint_{|t|=\rho} \frac{F(t x)}{t^{k+1}} d t \quad \text { for } x \in \mathfrak{p} \tag{1.1}
\end{equation*}
$$

where $\rho>0$ and the right hand side of (1.1) does not depend on ρ.
Let d be a positive integer and $d \geqslant 2$. $\mathcal{O}\left(C^{d}\right)$ denotes the space of entire functions on $\boldsymbol{C}^{d} . \quad P\left(\boldsymbol{C}^{d}\right)$ denotes the space of the polynomials on \boldsymbol{C}^{d} and $H_{k}\left(\boldsymbol{C}^{d}\right)$ denotes the space of the homogeneous polynomials of degree k on \boldsymbol{C}^{d}. For α $=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in Z_{+}^{d}$, we put $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{d}^{\alpha_{d}}$ and $\alpha!=\alpha_{1}!\cdots \alpha_{d}!$, where z $=\left(z_{1}, \ldots, z_{d}\right) \in \boldsymbol{C}^{d}$. For $z \in \boldsymbol{C}^{d}$, we define

$$
\left\langle z^{\alpha}, z^{\beta}\right\rangle= \begin{cases}0 & (\alpha \neq \beta) \\ \alpha! & (\alpha=\beta)\end{cases}
$$

Then we can extend $\langle, \quad\rangle$ to the inner product on $P\left(C^{d}\right)$. For $f \in P\left(C^{d}\right)$, we define $\|f\|=\langle f, f\rangle^{1 / 2}$.

Let $P_{1}, P_{2}, \ldots, P_{s}$ be arbitrary homogeneous polynomials on C^{d} with real coefficients. We put $\mathscr{H}_{k}\left(C^{d}\right)=\left\{F \in H_{k}\left(C^{d}\right) ; P_{j}(D) F=0\right.$ for $\left.j=1,2, \ldots, s\right\}$ and $J_{k}^{\prime}\left(\boldsymbol{C}^{d}\right)=\left\{\sum_{j=1}^{s} \phi_{j} P_{j} \in H_{k}\left(\boldsymbol{C}^{d}\right) ; \phi_{1}, \ldots, \phi_{s}\right.$ are some homogeneous polynomials on $\left.\boldsymbol{C}^{d}\right\}$. The following lemma is known.

Lemma 1.2 ([3] Remark and Lemma 1). (i) For any $k \in \boldsymbol{Z}_{+}$it is valid that $H_{k}\left(\boldsymbol{C}^{d}\right)=\mathscr{H}_{k}\left(\boldsymbol{C}^{d}\right) \oplus J_{k}\left(\boldsymbol{C}^{d}\right)$ and that $\mathscr{H}_{k}\left(\boldsymbol{C}^{d}\right) \perp J_{k}\left(\boldsymbol{C}^{d}\right)$ with respect to the inner product 〈 , >.
(ii) Let $F \in \mathcal{O}\left(\boldsymbol{C}^{d}\right)$ and $F=\sum_{k=0}^{\infty} F_{k}\left(F_{k} \in H_{k}\left(C^{d}\right)\right)$. Then we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|F_{n}\right\| / \sqrt{n!}\right)^{1 / n}=0 \tag{1.2}
\end{equation*}
$$

Conversely, if we have a sequence $\left\{F_{k} \in H_{k}\left(\boldsymbol{C}^{d}\right) ; k \in \boldsymbol{Z}_{+}\right\}$which satisfies (1.2), then $\sum F_{k}$ converges to some $F \in \mathcal{O}\left(\boldsymbol{C}^{d}\right)$ uniformly on each compact set in \boldsymbol{C}^{d}.

2. Statement of the result and its proof.

The purpose of this paper is to prove the following
Theorem 2.1. The restriction mapping $\left.F \rightarrow F\right|_{\mathfrak{M}}$ defines the following bijection:

$$
\begin{equation*}
\mathscr{R}: \mathcal{O}_{0}(\mathfrak{p}) \xrightarrow{\sim} \mathcal{O}(\mathfrak{P}) . \tag{2.1}
\end{equation*}
$$

Proof. Suppose $\operatorname{dim} \mathfrak{p}=d$ and $f \in \mathcal{O}(\mathfrak{P})$. Then there exists some $F \in \mathcal{O}(\mathfrak{p})$ such that $F=f$ on \mathfrak{N} because $\mathcal{O}(\mathfrak{N})=\mathcal{O}\left(\boldsymbol{C}^{d}\right)_{\mathfrak{N}}$. If we put $F=\sum_{n=0}^{\infty} F_{n}\left(F_{n} \in S_{n}^{\prime}\right)$, there exist $H_{n} \in \mathscr{H}_{n}$ and $G_{n} \in\left(J_{+}^{\prime} S^{\prime}\right)_{n}$ which satisfy $F_{n}=H_{n}+G_{n}$ for any $n \in Z_{+}$ by Lemma 1.1 (ii). Let $B_{\mathfrak{p}}$ be a K_{θ}-invariant nondegenerate symmetric bilinear form on \mathfrak{p} such that $\left.B_{\mathfrak{p}}\right|_{\mathfrak{p}_{R}}$ is positive definite and $\left\{e_{1}, \cdots, e_{d}\right\} \subset \mathfrak{p}_{\boldsymbol{R}}$ be a basis of \mathfrak{p} such that $B_{p}\left(e_{i}, e_{j}\right)=\delta_{i, j}(1 \leqslant i, j \leqslant d)$ (see [1] p.799). Now we define the mapping $\varphi: \mathfrak{p} \rightarrow C^{d}$ by $\varphi\left(\sum_{j=1}^{d} x_{j} e_{j}\right)=\left(x_{1}, \cdots, x_{d}\right) \quad\left(x_{j} \in \boldsymbol{C}, j=1, \cdots, d\right)$. Let P_{1}, \cdots, P_{r} be homogeneous generators of J^{\prime} such that $\left.P_{j}\right|_{p_{R}}$ are real valued $(1 \leqslant j \leqslant d)$. Then $\widetilde{P}_{j}=P_{j} \circ \varphi^{-1}$ is a homogeneous polynomial on C^{d} with real coefficients. Since $H_{n}{ }^{\circ} \varphi^{-1} \in \mathscr{H}_{n}\left(\boldsymbol{C}^{d}\right)$ and $G_{n}{ }^{\circ} \varphi^{-1} \in J_{n}\left(C^{d}\right)$ with respect to $\widetilde{P}_{1}, \cdots, \widetilde{P}_{r}$, we get $\left\|F_{n} \circ \varphi^{-1}\right\| \geqslant\left\|H_{n} \circ \varphi^{-1}\right\|$ from Lemma 1.2 (i) and this and Lemma 1.2 (ii) imply that $\sum H_{n}{ }^{\circ} \varphi^{-1}$ converges to some $\tilde{H} \in \mathcal{O}\left(\boldsymbol{C}^{d}\right)$ uniformly on each compact set in C^{d}. If we put $\tilde{H} \circ \varphi=H, \sum H_{n}$ converges to H on each compact set in \mathfrak{p} and therefore $\partial(u) H=\sum_{n=0}^{\infty} \partial(u) H_{n}=0$ for any $u \in J_{+}$. Hence H belongs to $\mathcal{O}_{0}(\mathfrak{p})$. We can see that $\mathscr{R} H=f$ because $F_{n}=H_{n}$ and $f=F$ on \mathfrak{N}. So \mathscr{R} is surjective.

Next, suppose $F \in \mathcal{O}_{0}(\mathfrak{p})$ and $\mathscr{R} F=0$. If we put $F=\sum_{n=0}^{\infty} F_{n}\left(F_{n} \in H_{n}(\mathfrak{p})\right.$, $n \in Z_{+}$) and u_{1}, \cdots, u_{r} are homogeneous generators of J, then $\partial\left(u_{j}\right) F$ $=\sum_{n=0}^{\infty} \partial\left(u_{j}\right) F_{n}=0$ for $j=1,2, \cdots, r$. Therefore $\partial\left(u_{j}\right) F_{n}=0$ because $\partial\left(u_{j}\right) F_{n}$ is a homogeneous polynomial. Hence we have $F_{n} \in \mathscr{H}_{n}$ for any $n \in \boldsymbol{Z}_{+}$. Furthermore, from (1.1) we can see that $F_{n}=0$ on \mathfrak{N} because $F=0$ on \mathfrak{N} and $t \mathfrak{N} \subset \mathfrak{N}$ for any $t \in C$. So Lemma 1.1 implies that $F_{n} \in \mathscr{H}_{n} \cap\left(J^{\prime}{ }_{+} S^{\prime}\right)_{n}=\{0\}$. Therefore we obtain $F \equiv 0$ and \mathscr{R} is injective.
q.e.d.

References

[1] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
[2] R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Math., 25, Springer-Verlag, 1966.
[3] H. S. Shapiro, Fischer's decomposition, revisited, preprint.
[4] R. Wada and M. Morimoto, A uniqueness set for the differential operator $\Delta_{z}+\lambda^{2}$, Tokyo J. Math., 10 (1987), 93-105.

Department of Mathematics,
Faculty of integrated arts and sciences,
Hiroshima University
and
Department of Mathematics,
Faculty of Science,
Hiroshima University

