An oscillation criterion for Sturm-Liouville equations with Besicovitch almost-periodic coefficients

Fu-HsiangWong and Cheh-Chih Yeh
(Received July 5, 1990)

Let \boldsymbol{R} denote the real line. The class $\Omega \subset L_{l o c}^{1}(\boldsymbol{R})$ of Besicovitch almostperiodic functions is the closure of the set of all finite trigonometric polynomials with the Besicovitch seminorm $\|\cdot\|_{B}$:

$$
\|p\|_{B}:=\limsup _{t \rightarrow \infty} \frac{1}{2 t} \int_{-t}^{t}|p(s)| d s,
$$

where $p \in \Omega$. The mean value, $M\{p\}$, of $p \in \Omega$ always exists, is finite, and is uniform with respect to α for $\alpha \in \boldsymbol{R}$, where

$$
M\{p\}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} p(s+\alpha) d s
$$

for some $t_{0} \geq 0$ (see [1] and [2] for details).
Consider the second order nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)-\lambda p(t) f(x(t))=0, \tag{E}
\end{equation*}
$$

where $p \in \Omega, f \in C(\boldsymbol{R} ; \boldsymbol{R})$ and $\lambda \in \boldsymbol{R}-\{0\}$.
Equation (E) is oscillatory at $+\infty$ and $-\infty$ if every continuable solution of (E) has an infinity of zeros clustering only at $+\infty$ and $-\infty$, respectively.

Recently, A. Dzurnak and A. B. Mingarelli [3] proved the following very interesting result by using Levin's comparsion theorem [5].

Theorem A. Let $p \in \Omega$ and $M\{|p|\}>0$. If f is the identity mapping, then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \boldsymbol{R}-\{0\}$ if and only if $M\{p\}=0$.

The purpose of this note is to extend Theorem A to the nonlinear case by using the following nonlinear version of Levin's comparsion theorem which is due to Yeh [8].

Theorem B. Let
$\left(\mathrm{C}_{1}\right) f \in C^{1}(\boldsymbol{R}-\{0\})$ such that $x f(x)>0$ and $f^{\prime}(x)>0$ for all $x \neq 0$,
$\left(\mathrm{C}_{2}\right) f^{\prime}$ is decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$,
(C $\left.\mathrm{C}_{3}\right) \int_{0}^{x} \frac{d t}{f(t)}=\infty \quad$ for all $x \neq 0$,
$\left(\mathrm{C}_{4}\right) \quad \varphi_{1}$ and φ_{2} are locally Lebesgue integrable on $[a, \infty)$.
Suppose that x_{1} and x_{2} are non-trivial solution of

$$
\begin{equation*}
x^{\prime \prime}(t)+f(x(t)) \varphi_{1}(t)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime}(t)+f(x(t)) \varphi_{2}(t)=0 \tag{2}
\end{equation*}
$$

respectively, on the interval $[\alpha, \beta] \subseteq[a, \infty)$. If $x_{1}(t) \neq 0$ for all $t \in[\alpha, \beta], x_{1}(\alpha)$ $=x_{2}(\alpha)$ and the inequality
(C $\left.\mathrm{C}_{5}\right) \frac{-x_{1}^{\prime}(\alpha)}{f\left(x_{1}(\alpha)\right)}+\int_{\alpha}^{t} \varphi_{1}(s) d s>\left|\frac{-x_{2}^{\prime}(\alpha)}{f\left(x_{2}(\alpha)\right)}+\int_{\alpha}^{t} \varphi_{2}(s) d s\right|$
hold for all $t \in[\alpha, \beta]$, then we have the following results:
$\left(\mathrm{R}_{1}\right) \quad x_{2}(t) \neq 0 \quad$ for all $t \in[\alpha, \beta]$,
($\left.\mathbf{R}_{2}\right) \frac{-x_{1}^{\prime}(t)}{f\left(x_{1}(t)\right)}>\left|\frac{-x_{2}^{\prime}(t)}{f\left(x_{2}(t)\right)}\right| \quad$ for all $t \in[\alpha, \beta]$.
For other related results, we refer to Mingarelli and Halvorsen [4, 7], and Markus and Moore [6].

In order to treat with our main result, we need the following.
Lemma 1. Let $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$ hold. Assume that
$\left(\mathrm{C}_{6}\right) \quad p:\left[t_{0}, \infty\right) \rightarrow \boldsymbol{R}$ is locally Lebesgue integrable and has a mean value $\boldsymbol{M}\{p\}$, where $t_{0} \geq 0$,
($\left.\mathrm{C}_{7}\right) \quad M\{p\}=0$,
(C_{8}) $f^{\prime}(x) \geq k$ for some $k>0$ and for all $x \neq 0$.
If $x(t) \neq 0$ is a solution of the differential equation
(E_{3})

$$
x^{\prime \prime}(t)-p(t) f(x(t))=0
$$

on $\left[t_{0}, \infty\right)$, then $\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} f^{\prime}(x(s))\left\{\frac{x^{\prime}(s)}{f(x(s))}\right\}^{2} d s=0$.
Proof. Define

$$
z(t):=\frac{-x^{\prime}(t)}{f(x(t))} \quad \text { for all } t \in\left[t_{0}, \infty\right)
$$

It follows from $\left(\mathrm{E}_{3}\right)$ that $z(t)$ is a solution of
(E_{4})

$$
z^{\prime}(t)-f^{\prime}(x(t)) z^{2}(t)+p(t)=0
$$

on $\left[t_{0}, \infty\right)$. Since $f^{\prime}(x(t)) z^{2}(t) \geq 0$ on $\left[t_{0}, \infty\right)$, it suffices to show that

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} f^{\prime}(x(s)) z^{2}(s) d s=0
$$

Assume, on the contrary, that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} f^{\prime}(x(s)) z^{2}(s) d s>0 \tag{1}
\end{equation*}
$$

Integrating (E_{4}) from t_{0} to t and dividing it by t, we have

$$
\begin{equation*}
\frac{z(t)}{t}=\frac{z\left(t_{0}\right)}{t}-\frac{1}{t} \int_{t_{0}}^{t} p(s) d s+\frac{1}{t} \int_{t_{0}}^{t} f^{\prime}(x(s)) z^{2}(s) d s \tag{2}
\end{equation*}
$$

for all $t>t_{0}$. It follows from (1), (2) and (C_{7}) that there exist a positive constant m and an increasing sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ of $\left(t_{0}, \infty\right)$ with $\lim _{n \rightarrow \infty} t_{n}=\infty$ such that

$$
\begin{equation*}
\frac{z\left(t_{n}\right)}{t_{n}}>m^{2} \quad \text { for all } n \text { large enough. } \tag{3}
\end{equation*}
$$

It follows from $\left(\mathrm{C}_{7}\right)$ that there exists t^{*} large enough such that

$$
\begin{equation*}
\left|\int_{t_{0}}^{t} p(s) d s\right|<\frac{m^{2} t}{4} \quad \text { for all } t \geq t^{*} \tag{4}
\end{equation*}
$$

Using (4), we have

$$
\begin{equation*}
\int_{t_{n}}^{t} p(s) d s=\int_{t_{0}}^{t} p(s) d s-\int_{t_{0}}^{t_{n}} p(s) d s<\frac{m^{2} t}{4}+\frac{m^{2} t_{n}}{4} \tag{5}
\end{equation*}
$$

for all $t \geqslant t_{n} \geq t^{*}$. It follows from (3) and (5) that

$$
\begin{align*}
& z\left(t_{n}\right)-\int_{t_{n}}^{t} p(s) d s>z\left(t_{n}\right)-\frac{m^{2} t_{n}}{4}-\frac{m^{2} t}{4} \\
& \quad \geq z\left(t_{n}\right)-\frac{m^{2} t_{n}}{4}-\frac{m^{2}\left(3 t_{n}\right)}{4}>m^{2} t_{n}-m^{2} t_{n}=0 \tag{6}
\end{align*}
$$

for all $t \in\left[t_{n}, 3 t_{n}\right] \subset\left[t^{*}, \infty\right)$. Since $f \in C^{1}\left(\left[t_{n}, 3 t_{n}\right]\right)$ for all n such that $\left[t_{n}, 3 t_{n}\right]$ $\subset\left[t^{*}, \infty\right)$, for such n, the equation

$$
\begin{equation*}
x_{n}^{\prime \prime}(t)-\frac{f\left(x_{n}(t)\right) m^{2}}{4}=0 \tag{5}
\end{equation*}
$$

has a unique solution $x_{n}(t)$ on $\left[t_{n}, 3 t_{n}\right]$ satisfies $x_{n}\left(t_{n}\right)$ and

$$
\frac{-x_{n}^{\prime}\left(t_{n}\right)}{f\left(x_{n}\left(t_{n}\right)\right.}=z\left(t_{n}\right)-\frac{m^{2} t_{n}}{2}
$$

It follows from (5) and (6) that

$$
\begin{aligned}
& \frac{-x^{\prime}\left(t_{n}\right)}{f\left(x\left(t_{n}\right)\right)}-\int_{t_{n}}^{t} p(s) d s=z\left(t_{n}\right)-\int_{t_{n}}^{t} p(s) d s \\
& \quad>z\left(t_{n}\right)-\frac{m^{2} t_{n}}{4}-\frac{m^{2} t}{4}=\left\{z\left(t_{n}\right)-\frac{m^{2} t_{n}}{2}\right\}-\left\{\frac{m^{2} t}{4}-\frac{m^{2} t_{n}}{4}\right\} \\
& \quad=\frac{-x_{n}^{\prime}\left(t_{n}\right)}{f\left(x_{n}\left(t_{n}\right)\right)}-\int_{t_{n}}^{t} \frac{m^{2}}{4} d s \geq 0 \quad \text { on }\left[t_{n}, 3 t_{n}\right] \subset\left[t^{*}, \infty\right) .
\end{aligned}
$$

Using Theorem B, we have

$$
\begin{equation*}
\frac{-x^{\prime}(t)}{f(x(t))}>\left|\frac{-x_{n}^{\prime}(t)}{f\left(x_{n}(t)\right)}\right| \quad \text { on }\left[t_{n}, 3 t_{n}\right] \subset\left[t^{*}, \infty\right) \tag{7}
\end{equation*}
$$

Now, define

$$
z_{n}(t):=\frac{-x_{n}^{\prime}(t)}{f\left(x_{n}(t)\right)} \quad \text { on }\left[t_{n}, 3 t_{n}\right] \subset\left[t^{*}, \infty\right)
$$

It is clear that $z_{n}(t)$ is a solution of the differential equation

$$
\begin{equation*}
z_{6}^{\prime}(t)-f^{\prime}\left(x_{n}(t)\right) z_{n}^{2}(t)+\frac{m^{2}}{4}=0 \tag{6}
\end{equation*}
$$

on $\left[t_{n}, 3 t_{n}\right] \subseteq\left[t^{*}, \infty\right)$ with $z_{n}\left(t_{n}\right)=z\left(t_{n}\right)-\frac{m^{2} t_{n}}{2}$. Let

$$
r_{n}:=\frac{1}{z_{n}\left(t_{n}\right)-\frac{m}{2 \sqrt{k}}}
$$

and

$$
w_{n}(t):=\frac{m}{2 \sqrt{k}}+\frac{1}{k\left(t_{n}-t\right)+r_{n}}
$$

on $\left[t_{n}, t_{n}+\frac{r_{n}}{k}\right) \subseteq\left[t^{*}, \infty\right)$, where n is large enough such that $z_{n}\left(t_{n}\right)>\frac{m}{2 \sqrt{k}}$. It is clear that $w_{n}\left(t_{n}\right)=z_{n}\left(t_{n}\right)$ and

$$
w_{n}^{\prime}(t)-\mathrm{kw}_{n}^{2}(t)+\frac{m^{2}}{4}<0 \leq z_{n}^{\prime}(t)-k z_{n}^{2}(t)+\frac{m^{2}}{4}
$$

for all $t \in\left[t_{n}, 3 t_{n}\right] \cap\left[t_{n}, t_{n}+\frac{r_{n}}{k}\right) \subseteq\left[t^{*}, \infty\right)$. A simple comparsion argument shows that

$$
w_{n}(t) \leq z_{n}(t) \quad \text { on }\left[t_{n}, 3 t_{n}\right] \cap\left[t_{n}, t_{n}+\frac{r_{n}}{k}\right) \subseteq\left[t^{*}, \infty\right) .
$$

It follows from $z_{n}\left(t_{n}\right)=z\left(t_{n}\right)-\frac{m^{2} t_{n}}{2}>\frac{m^{2} t_{n}}{2}$ that $t_{n}+\frac{r_{n}}{k} \in\left[t_{n}, 3 t_{n}\right]$ for n large enough. By the definitin of $w_{n}(t)$, we see that

$$
\lim _{t \rightarrow\left(t_{n}+\frac{r_{n}}{k}\right)^{-}} w_{n}(t)=\infty \quad \text { for } n \text { large enough. }
$$

Hence,

$$
\begin{equation*}
\lim _{t \rightarrow\left(t_{n}+\frac{r_{n}}{k}\right)^{-}} z_{n}(t)=\infty \quad \text { for } n \text { large enough. } \tag{8}
\end{equation*}
$$

Now, take n_{0} large enough such that

$$
t_{n_{0}}+\frac{r_{n_{0}}}{k} \in\left[t_{n_{0}}, 3 t_{n_{0}}\right] .
$$

Clearly, there exists a positive constant M such that

$$
\frac{-x^{\prime}(t)}{f(x(t))} \leq M<\infty \text { on }\left[t_{n_{0}}, 3 t_{n_{0}}\right] \subseteq\left[t^{*}, \infty\right)
$$

It follows from (7) and (8) that

$$
\infty=\lim _{t \rightarrow\left(t_{n_{0}}+\frac{r_{n 0}}{k}\right)^{-}} z_{n}(t) \leq \lim _{t \rightarrow\left(t_{n_{0}}+\frac{r_{n 0}}{k}\right)^{-}}\left\{\frac{-x^{\prime}(t)}{f(x(t))}\right\} \leq M<\infty,
$$

which is a contradiction. Thus the proof is complete.
Theorem 2. Let $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{3}\right)$, and $\left(\mathrm{C}_{8}\right)$ hold. If $p \in \Omega$ such that $\left(\mathrm{C}_{7}\right)$ and $M\{|p|\}>0$ hold, then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \boldsymbol{R}-\{0\}$.

Proof. Without loss of generality, we only show that $\left(\mathrm{E}_{3}\right)$ is oscillatory at $+\infty$. Assume, on the contrary, that $\left(\mathrm{E}_{3}\right)$ has a solution $x(t)$ which is nonoscillatory at $+\infty$. Thus, we can assume that there exists $t_{0}>0$ such that $x(t)>0$ on $\left[t_{0}, \infty\right)$. Define

$$
z(t):=\frac{-x^{\prime}(t)}{f(x(t))} \quad \text { for all } t \in\left[t_{0}, \infty\right)
$$

It is clear $z(t)$ is a solution of $\left(\mathrm{E}_{4}\right)$ on $\left[t_{0}, \infty\right)$. Hence, for any fixed $\delta>0$, we have

$$
\begin{equation*}
\frac{1}{\delta} \int_{t}^{t+\delta} p(s) d s=\frac{1}{\delta} \int_{t}^{t+\delta} f^{\prime}(x(s)) z^{2}(s) d s-\frac{z(t+\delta)}{\delta}+\frac{z(t)}{\delta} \quad \text { on }\left[t_{0}, \infty\right) . \tag{9}
\end{equation*}
$$

Applying the Besicovitch semi-norm $\|\cdot\|_{B^{\prime}}$, essentially a restriction of $\|\cdot\|_{B}$ to the interval $\left[t_{0}, \infty\right)$, defined by

$$
\|g\|_{B^{\prime}}:=\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t}|g(s)| d s,
$$

to (9), we find

$$
\begin{align*}
0 & \leq\left\|\frac{1}{\delta} \int_{t}^{t+\delta} p(s) d s\right\|_{B^{\prime}} \\
& \leq\left\|\frac{1}{\delta} \int_{t}^{t+\delta} f^{\prime}(x(s)) z^{2}(s) d s\right\|_{B^{\prime}}+\left\|\frac{z(t+\delta)}{\delta}\right\|_{B^{\prime}}+\left\|\frac{z(t)}{\delta}\right\|_{B^{\prime}} \quad \text { for all } \delta>0 . \tag{10}
\end{align*}
$$

It follows from Lemma 1 and $\left(\mathrm{C}_{8}\right)$ that $M\left(z^{2}\right\}=0$, thus, $\|z\|_{B^{\prime}}=\|z(t+\delta)\|_{B^{\prime}}$ $=0$ for all $\delta>0$. Using Fubini's theorem, we have

$$
\begin{align*}
\frac{1}{t \delta} & \int_{t_{0}}^{t} \int_{s}^{s+\delta} f^{\prime}(x(r)) z^{2}(r) d r d s \\
& =\frac{1}{t \delta} \int_{t_{0}}^{t} \int_{0}^{\delta} f^{\prime}(x(u+s)) z^{2}(u+s) d u d s \\
& =\frac{1}{t \delta} \int_{0}^{\delta} \int_{t_{0}}^{t} f^{\prime}(x(u+s)) z^{2}(u+s) d s d u \\
& \leq \frac{1}{t \delta} \int_{0}^{\delta} \int_{t_{0}}^{t+\delta} f^{\prime}(x(s)) z^{2}(s) d s d u \\
& =\frac{1}{t} \int_{t_{0}}^{t+\delta} f^{\prime}(x(s)) z^{2}(s) d s \quad \text { for any fixed } \delta>0 \tag{11}
\end{align*}
$$

Using (11) and Lemma 1 , we have

$$
\begin{equation*}
\left\|\frac{1}{\delta} \int_{t}^{t+\delta} f^{\prime}(x(s)) z^{2}(s) d s\right\|_{B^{\prime}}=0 \quad \text { for any fixed } \delta>0 \tag{12}
\end{equation*}
$$

Applying (12) and $\|z\|_{B^{\prime}}=\|z(t+\delta)\|_{B^{\prime}}=0$ to (10), we see that

$$
\begin{equation*}
\left\|\frac{1}{\delta} \int_{t}^{t+\delta} p(s) d s\right\|_{B^{\prime}}=0 \quad \text { for all } \delta>0 \tag{13}
\end{equation*}
$$

Since p is Besicovitch almost periodic, it follows from Besicovitch [1, p.97] that

$$
\lim _{\delta \rightarrow 0}\left\|p(t)-\frac{1}{\delta} \int_{t}^{t+\delta} p(s) d s\right\|_{B^{\prime}}=0
$$

This and (13) imply $M\{|p|\}=\|p\|_{B^{\prime}}=0$, which is a contradiction. Thus the proof is complete.

Example. Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)-\lambda(\sin t) f(x)=0 \tag{14}
\end{equation*}
$$

where $f(x):=\operatorname{sgn}(x) \ln (|x|+1)$ satisfies $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{8}\right)$. A simple computation shows that $p(t):=\sin t$ satisfies

$$
M\{p\}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} p(s) d s=\lim _{t \rightarrow \infty}\left(\frac{-\cos t+1}{t}\right)=0
$$

and

$$
\begin{aligned}
M\{|p|\} & =\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}|p(s)| d s \\
& =\lim _{n \rightarrow \infty} \frac{1}{2(n+1) \pi} \int_{0}^{2(n+1) \pi}|\sin s| d s \\
& =\lim _{n \rightarrow \infty} \frac{1}{(n+1) \pi}\left\{\int_{0}^{\pi}(\sin s) d s+\int_{2 \pi}^{3 \pi}(\sin s) d s+\cdots+\int_{2 n \pi}^{(2 n+1) \pi}(\sin s) d s\right\} \\
& =\lim _{n \rightarrow \infty} \frac{2(n+1)}{(n+1) \pi}=\frac{2}{\pi}>0 .
\end{aligned}
$$

It follows from Theorem 2 that for each $\lambda \in \boldsymbol{R}-\{0\}$, (14) is oscillatory at $+\infty$ and $-\infty$.

References

[1] A. Besicovitch, Almost-periodic functions, Dover, New York, 1954.
[2] H. Bohr, Almost-periodic functions, Chelsea, New York, 1951.
[3] A. Dzurnak and A. B. Mingarelli, Sturm-Liouville equations with Besicovitch almostperiodicity, Proc. Amer. Math. Soc., 106 (1989), 647-653.
[4] S. G. Halvorsen and A. B. Mingarelli, On the oscillation of almost-periodic Sturm-Liouville operators with an arbitrary coupling constant, Proc. Amer. Math. Soc., 97 (1986), 269-272.
[5] A. Yu. Levin, A comparison principle for second order differential equations, Soviet Math. Dokl., 1 (1960), 1313-1316.
[6] L. Markus and R. A. Moore, Oscillation and disconjugacy for linear differential equations
with almost-periodic coefficients, Acta Math., 96 (1956), 99-123.
[7] A. B. Mingarelli and S. G. Halvorsen, Non-oscillation domains of differential equations with two parameter, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 1338 (1988).
[8] C. C. Yeh, Levin's comparison theorem for second order nonlinear differential equations and inequalites, Math. Japonica, 36 (1991).

Department of Mathematics
National Cental University
Chung-Li, Taiwan
Republic of China

