An oscillation criterion for Sturm-Liouville equations with Besicovitch almost-periodic coefficients

Fu-HsiangWONG and Cheh-Chih YEH (Received July 5, 1990)

Let **R** denote the real line. The class $\Omega \subset L^1_{loc}(\mathbf{R})$ of Besicovitch almostperiodic functions is the closure of the set of all finite trigonometric polynomials with the Besicovitch seminorm $\|\cdot\|_B$:

$$\|p\|_{B} := \limsup_{t\to\infty} \frac{1}{2t} \int_{-t}^{t} |p(s)| ds,$$

where $p \in \Omega$. The mean value, $M\{p\}$, of $p \in \Omega$ always exists, is finite, and is uniform with respect to α for $\alpha \in \mathbf{R}$, where

$$M\{p\} := \lim_{t\to\infty} \frac{1}{t} \int_{t_0}^t p(s+\alpha) ds,$$

for some $t_0 \ge 0$ (see [1] and [2] for details).

Consider the second order nonlinear differential equation

(E)
$$x''(t) - \lambda p(t)f(x(t)) = 0,$$

where $p \in \Omega$, $f \in C(\mathbf{R}; \mathbf{R})$ and $\lambda \in \mathbf{R} - \{0\}$.

Equation (E) is oscillatory at $+\infty$ and $-\infty$ if every continuable solution of (E) has an infinity of zeros clustering only at $+\infty$ and $-\infty$, respectively.

Recently, A. Dzurnak and A. B. Mingarelli [3] proved the following very interesting result by using Levin's comparison theorem [5].

THEOREM A. Let $p \in \Omega$ and $M\{|p|\} > 0$. If f is the identity mapping, then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \mathbf{R} - \{0\}$ if and only if $M\{p\} = 0$.

The purpose of this note is to extend Theorem A to the nonlinear case by using the following nonlinear version of Levin's comparison theorem which is due to Yeh [8].

THEOREM B. Let

(C₁) $f \in C^1(\mathbf{R} - \{0\})$ such that xf(x) > 0 and f'(x) > 0 for all $x \neq 0$,

(C₂) f' is decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$,

 $(\mathbf{C}_3) \quad \int_0^x \frac{dt}{f(t)} = \infty \quad for \ all \ x \neq 0,$

(C₄) φ_1 and φ_2 are locally Lebesgue integrable on $[a, \infty)$. Suppose that x_1 and x_2 are non-trivial solution of

(E₁)
$$x''(t) + f(x(t)) \varphi_1(t) = 0$$

and

(E₂)
$$x''(t) + f(x(t)) \varphi_2(t) = 0,$$

respectively, on the interval $[\alpha, \beta] \subseteq [a, \infty)$. If $x_1(t) \neq 0$ for all $t \in [\alpha, \beta]$, $x_1(\alpha) = x_2(\alpha)$ and the inequality

$$(\mathbf{C}_5) \quad \frac{-x_1'(\alpha)}{f(x_1(\alpha))} + \int_{\alpha}^{t} \varphi_1(s) ds > \left| \frac{-x_2'(\alpha)}{f(x_2(\alpha))} + \int_{\alpha}^{t} \varphi_2(s) ds \right|$$

hold for all $t \in [\alpha, \beta]$, then we have the following results:

$$\begin{aligned} & (\mathbf{R}_1) \quad x_2(t) \neq 0 \quad \text{for all } t \in [\alpha, \beta], \\ & (\mathbf{R}_2) \quad \frac{-x_1'(t)}{f(x_1(t))} > \left| \frac{-x_2'(t)}{f(x_2(t))} \right| \quad \text{for all } t \in [\alpha, \beta]. \end{aligned}$$

For other related results, we refer to Mingarelli and Halvorsen [4, 7], and Markus and Moore [6].

In order to treat with our main result, we need the following.

LEMMA 1. Let (C_1) , (C_2) and (C_3) hold. Assume that

(C₆) $p: [t_0, \infty) \rightarrow \mathbf{R}$ is locally Lebesgue integrable and has a mean value $M\{p\}$, where $t_0 \geq 0$,

- $(\mathbf{C}_7) \quad M\{p\}=0,$
- (C₈) $f'(x) \ge k$ for some k > 0 and for all $x \ne 0$.

If $x(t) \neq 0$ is a solution of the differential equation

(E₃)
$$x''(t) - p(t)f(x(t)) = 0$$

on
$$[t_0, \infty)$$
, then $\lim_{t\to\infty} \frac{1}{t} \int_{t_0}^t f'(x(s)) \left\{ \frac{x'(s)}{f(x(s))} \right\}^2 ds = 0$

PROOF. Define

$$z(t) := \frac{-x'(t)}{f(x(t))} \quad \text{for all } t \in [t_0, \infty).$$

522

It follows from (E₃) that z(t) is a solution of

(E₄)
$$z'(t) - f'(x(t))z^2(t) + p(t) = 0$$

on $[t_0, \infty)$. Since $f'(x(t))z^2(t) \ge 0$ on $[t_0, \infty)$, it suffices to show that

$$\limsup_{t\to\infty}\frac{1}{t}\int_{t_0}^t f'(x(s))z^2(s)ds=0.$$

Assume, on the contrary, that

$$\limsup_{t\to\infty}\frac{1}{t}\int_{t_0}^t f'(x(s))z^2(s)ds > 0.$$
⁽¹⁾

Integrating (E_4) from t_0 to t and dividing it by t, we have

$$\frac{z(t)}{t} = \frac{z(t_0)}{t} - \frac{1}{t} \int_{t_0}^t p(s) ds + \frac{1}{t} \int_{t_0}^t f'(x(s)) z^2(s) ds$$
(2)

for all $t > t_0$. It follows from (1), (2) and (C₇) that there exist a positive constant *m* and an increasing sequence $\{t_n\}_{n=1}^{\infty}$ of (t_0, ∞) with $\lim_{n \to \infty} t_n = \infty$ such that

$$\frac{z(t_n)}{t_n} > m^2$$
 for all *n* large enough. (3)

It follows from (C_7) that there exists t^* large enough such that

$$\left|\int_{t_0}^t p(s)ds\right| < \frac{m^2t}{4} \quad \text{for all } t \ge t^*.$$
(4)

Using (4), we have

$$\int_{t_n}^t p(s)ds = \int_{t_0}^t p(s)ds - \int_{t_0}^{t_n} p(s)ds < \frac{m^2t}{4} + \frac{m^2t_n}{4}$$
(5)

for all $t \ge t_n \ge t^*$. It follows from (3) and (5) that

$$z(t_n) - \int_{t_n}^t p(s)ds > z(t_n) - \frac{m^2 t_n}{4} - \frac{m^2 t}{4}$$
$$\ge z(t_n) - \frac{m^2 t_n}{4} - \frac{m^2 (3t_n)}{4} > m^2 t_n - m^2 t_n = 0$$
(6)

for all $t \in [t_n, 3t_n] \subset [t^*, \infty)$. Since $f \in C^1([t_n, 3t_n])$ for all *n* such that $[t_n, 3t_n] \subset [t^*, \infty)$, for such *n*, the equation

(E₅)
$$x_n''(t) - \frac{f(x_n(t))m^2}{4} = 0$$

has a unique solution $x_n(t)$ on $[t_n, 3t_n]$ satisfies $x_n(t_n)$ and

$$\frac{-x'_n(t_n)}{f(x_n(t_n))} = z(t_n) - \frac{m^2 t_n}{2}.$$

It follows from (5) and (6) that

$$\frac{-x'(t_n)}{f(x(t_n))} - \int_{t_n}^t p(s)ds = z(t_n) - \int_{t_n}^t p(s)ds$$

> $z(t_n) - \frac{m^2 t_n}{4} - \frac{m^2 t}{4} = \left\{ z(t_n) - \frac{m^2 t_n}{2} \right\} - \left\{ \frac{m^2 t}{4} - \frac{m^2 t_n}{4} \right\}$
= $\frac{-x'_n(t_n)}{f(x_n(t_n))} - \int_{t_n}^t \frac{m^2}{4} ds \ge 0$ on $[t_n, 3t_n] \subset [t^*, \infty).$

Using Theorem B, we have

$$\frac{-x'(t)}{f(x(t))} > \left| \frac{-x'_n(t)}{f(x_n(t))} \right| \quad \text{on } [t_n, 3t_n] \subset [t^*, \infty).$$
(7)

Now, define

$$z_n(t) := \frac{-x'_n(t)}{f(x_n(t))} \quad \text{on } [t_n, 3t_n] \subset [t^*, \infty).$$

It is clear that $z_n(t)$ is a solution of the differential equation

(E₆)
$$z'_6(t) - f'(x_n(t))z_n^2(t) + \frac{m^2}{4} = 0$$

on $[t_n, 3t_n] \subseteq [t^*, \infty)$ with $z_n(t_n) = z(t_n) - \frac{m^2 t_n}{2}$. Let

$$r_n := \frac{1}{z_n(t_n) - \frac{m}{2\sqrt{k}}}$$

and

$$w_n(t) := \frac{m}{2\sqrt{k}} + \frac{1}{k(t_n - t) + r_n}$$

on $\left[t_n, t_n + \frac{r_n}{k}\right] \subseteq [t^*, \infty)$, where *n* is large enough such that $z_n(t_n) > \frac{m}{2\sqrt{k}}$. It is clear that $w_n(t_n) = z_n(t_n)$ and

An oscillation criterion for Sturm-Liouville equations

$$w'_n(t) - kw_n^2(t) + \frac{m^2}{4} < 0 \le z'_n(t) - kz_n^2(t) + \frac{m^2}{4}$$

for all $t \in [t_n, 3t_n] \cap \left[t_n, t_n + \frac{r_n}{k}\right] \subseteq [t^*, \infty)$. A simple comparison argument shows that

$$w_n(t) \leq z_n(t)$$
 on $[t_n, 3t_n] \cap \left[t_n, t_n + \frac{r_n}{k}\right] \subseteq [t^*, \infty).$

It follows from $z_n(t_n) = z(t_n) - \frac{m^2 t_n}{2} > \frac{m^2 t_n}{2}$ that $t_n + \frac{r_n}{k} \in [t_n, 3t_n]$ for *n* large enough. By the definition of $w_n(t)$, we see that

$$\lim_{k \to (t_n + \frac{r_n}{k})^-} w_n(t) = \infty \quad \text{for } n \text{ large enough}.$$

Hence,

$$\lim_{t \to \left(t_n + \frac{r_n}{k}\right)^-} z_n(t) = \infty \quad \text{for } n \text{ large enough.}$$
(8)

Now, take n_0 large enough such that

t

$$t_{n_0} + \frac{r_{n_0}}{k} \in [t_{n_0}, 3t_{n_0}].$$

Clearly, there exists a positive constant M such that

$$\frac{-x'(t)}{f(x(t))} \leq M < \infty \text{ on } [t_{n_0}, 3t_{n_0}] \subseteq [t^*, \infty).$$

It follows from (7) and (8) that

$$\infty = \lim_{t \to \left(t_{n_0} + \frac{r_{n_0}}{k}\right)^-} z_n(t) \le \lim_{t \to \left(t_{n_0} + \frac{r_{n_0}}{k}\right)^-} \left\{\frac{-x'(t)}{f(x(t))}\right\} \le M < \infty,$$

which is a contradiction. Thus the proof is complete.

THEOREM 2. Let (C_1) , (C_2) , (C_3) , and (C_8) hold. If $p \in \Omega$ such that (C_7) and $M\{|p|\} > 0$ hold, then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \mathbb{R} - \{0\}$.

PROOF. Without loss of generality, we only show that (E_3) is oscillatory at $+\infty$. Assume, on the contrary, that (E_3) has a solution x(t) which is nonoscillatory at $+\infty$. Thus, we can assume that there exists $t_0 > 0$ such that x(t) > 0 on $[t_0, \infty)$. Define

Fu-Hsiang WONG and Cheh-Chih YEH

$$z(t) := \frac{-x'(t)}{f(x(t))} \quad \text{for all } t \in [t_0, \infty).$$

It is clear z(t) is a solution of (E_4) on $[t_0, \infty)$. Hence, for any fixed $\delta > 0$, we have

$$\frac{1}{\delta} \int_{t}^{t+\delta} p(s)ds = \frac{1}{\delta} \int_{t}^{t+\delta} f'(x(s))z^{2}(s)ds - \frac{z(t+\delta)}{\delta} + \frac{z(t)}{\delta} \quad \text{on } [t_{0}, \infty).$$
(9)

Applying the Besicovitch semi-norm $\|\cdot\|_{B'}$, essentially a restriction of $\|\cdot\|_{B}$ to the interval $[t_0, \infty)$, defined by

$$\|g\|_{B'} := \limsup_{t\to\infty} \frac{1}{t} \int_{t_0}^t |g(s)| ds,$$

to (9), we find

$$0 \le \left\| \frac{1}{\delta} \int_{t}^{t+\delta} p(s) ds \right\|_{B'}$$
$$\le \left\| \frac{1}{\delta} \int_{t}^{t+\delta} f'(x(s)) z^2(s) ds \right\|_{B'} + \left\| \frac{z(t+\delta)}{\delta} \right\|_{B'} + \left\| \frac{z(t)}{\delta} \right\|_{B'} \quad \text{for all } \delta > 0.$$
(10)

It follows from Lemma 1 and (C₈) that $M(z^2) = 0$, thus, $||z||_{B'} = ||z(t + \delta)||_{B'} = 0$ for all $\delta > 0$. Using Fubini's theorem, we have

$$\frac{1}{t\delta} \int_{t_0}^t \int_s^{s+\delta} f'(x(r)) z^2(r) dr ds$$

$$= \frac{1}{t\delta} \int_{t_0}^t \int_0^{\delta} f'(x(u+s)) z^2(u+s) du ds$$

$$= \frac{1}{t\delta} \int_0^{\delta} \int_{t_0}^t f'(x(u+s)) z^2(u+s) ds du$$

$$\leq \frac{1}{t\delta} \int_0^{\delta} \int_{t_0}^{t+\delta} f'(x(s)) z^2(s) ds du$$

$$= \frac{1}{t} \int_{t_0}^{t+\delta} f'(x(s)) z^2(s) ds \quad \text{for any fixed } \delta > 0. \quad (11)$$

Using (11) and Lemma 1, we have

$$\left\|\frac{1}{\delta}\int_{t}^{t+\delta}f'(x(s))z^{2}(s)ds\right\|_{B'}=0 \quad \text{for any fixed } \delta>0.$$
(12)

Applying (12) and $||z||_{B'} = ||z(t + \delta)||_{B'} = 0$ to (10), we see that

526

An oscillation criterion for Sturm-Liouville equations

$$\left\|\frac{1}{\delta}\int_{t}^{t+\delta} p(s)ds\right\|_{B'} = 0 \quad \text{for all } \delta > 0.$$
(13)

Since p is Besicovitch almost periodic, it follows from Besicovitch [1, p.97] that

$$\lim_{\delta \to 0} \left\| p(t) - \frac{1}{\delta} \int_{t}^{t+\delta} p(s) ds \right\|_{B'} = 0.$$

This and (13) imply $M\{|p|\} = ||p||_{B'} = 0$, which is a contradiction. Thus the proof is complete.

EXAMPLE. Consider the differential equation

$$x''(t) - \lambda(\sin t)f(x) = 0, \qquad (14)$$

where f(x) := sgn(x)ln(|x| + 1) satisfies (C₁), (C₂), (C₃) and (C₈). A simple computation shows that p(t) := sin t satisfies

$$M\{p\} = \lim_{t \to \infty} \frac{1}{t} \int_0^t p(s) ds = \lim_{t \to \infty} \left(\frac{-\cos t + 1}{t} \right) = 0$$

and

$$M\{|p|\} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} |p(s)| ds$$

= $\lim_{n \to \infty} \frac{1}{2(n+1)\pi} \int_{0}^{2(n+1)\pi} |\sin s| ds$
= $\lim_{n \to \infty} \frac{1}{(n+1)\pi} \left\{ \int_{0}^{\pi} (\sin s) ds + \int_{2\pi}^{3\pi} (\sin s) ds + \dots + \int_{2n\pi}^{(2n+1)\pi} (\sin s) ds \right\}$
= $\lim_{n \to \infty} \frac{2(n+1)}{(n+1)\pi} = \frac{2}{\pi} > 0.$

It follows from Theorem 2 that for each $\lambda \in \mathbf{R} - \{0\}$, (14) is oscillatory at $+\infty$ and $-\infty$.

References

- [1] A. Besicovitch, Almost-periodic functions, Dover, New York, 1954.
- [2] H. Bohr, Almost-periodic functions, Chelsea, New York, 1951.
- [3] A. Dzurnak and A. B. Mingarelli, Sturm-Liouville equations with Besicovitch almostperiodicity, Proc. Amer. Math. Soc., 106 (1989), 647-653.
- [4] S. G. Halvorsen and A. B. Mingarelli, On the oscillation of almost-periodic Sturm-Liouville operators with an arbitrary coupling constant, Proc. Amer. Math. Soc., 97 (1986), 269–272.
- [5] A. Yu. Levin, A comparison principle for second order differential equations, Soviet Math. Dokl., 1 (1960), 1313-1316.
- [6] L. Markus and R. A. Moore, Oscillation and disconjugacy for linear differential equations

527

with almost-periodic coefficients, Acta Math., 96 (1956), 99-123.

- [7] A. B. Mingarelli and S. G. Halvorsen, Non-oscillation domains of differential equations with two parameter, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 1338 (1988).
- [8] C. C. Yeh, Levin's comparison theorem for second order nonlinear differential equations and inequalites, Math. Japonica, **36** (1991).

Department of Mathematics National Cental University Chung-Li, Taiwan Republic of China