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1. Introduction

A theory of non-random self-similar sets has been developed by Moran
[11] and Hutchinson [9]. Lately Mauldin-Williams [10], Falconer [5] and
Graf [7] investigated random self-similar sets. In this paper we introduce a
new concept of Markov-self-similarity and investigate deterministic and random
Markov-self-similar sets. Takahashi [12] introduced a concept of multi-
similarity which is essentially the same concept as Markov-self-
semilarity. Markov-self-similarity is a natural extension of self-similarity and
Markov-self-similar sets appear as the limit sets of cellular automata
[12, 15]. Cellular automata are used to model problems in crystal growth and
diffusion and other problems of self-organization. Therefore the patterns
appeared in these fields are expected to be Markov-self-similar. On the other
hand some Markov-self-similar sets can be constructed as recurrent sets defined
by Dekking [3]. (See also Bedford [1, 2].)

A Markov-self-similar set is constructed as follows. First we prepare an
N-tuple (Soy,..., Soy) Of contraction similarities of RY which are initial
contractions and used only in the first step. Let F be a non-empty compact
subset of RY and set

A1 = UkN=1 SOk(F)-

Next we fix a family of N N-tuples {(Syy, ..., Sin)}n=, of contraction similarities
of R? which are fundamental contractions and used in the following process
repeatedly. We assume that above N N-tuples satisfy the irreducibility
condition and the open set condition. (See Section 2.) Set

A, = UkN= 1 So:‘(U?’= 1 Ski(F))‘

Note that the contractions S,; are selected depending on the index k of
Sok-  Set

As = UkN=1 SOk(Uf'v=1 Ski(Uy=1Sij(F)))~

We continue this process. Let K =lim,_ A, where the limit is taken with
respect to the Hausdorff metric. The set K has a Markovian shape structure
which is not possessed by a self-similar set constructed in Hutchinson [9].
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A random Markov-self-similar set is a probabilistic counterpart of a non-
random Markov-self-similar set. The plan of this paper is as follows.

In Section 2 we investigate a Markov-self-similar N-tuple of compact sets
which is an extension of a Hutchinson’s self-similar set. The fundamental
result is as follows: Let S =(S,,..., Sy) be an N-tuple of S; = (i, ..., Skw),
k=1,..., N where S,;, i=1,..., N are contraction similarities of R? which
satisfy the open set condition. For a non-negative number B, we define an N
x N non-negative matrix R(B) = [R(B),] by

R(ﬁ)kj = r(Skj)p k,j=1,...,N
where r(S,;) is the contraction ratio of S;;. Let A(B) be the maximal eigen value
of R(B). Let F be a non-empty compact set. Set
K, =lim,, Uﬁ im=1Skiy °Siyi 0 o 8; i (F)
for k=1,..., N where the limit is taken with respect to the Hausdorff
metric. Then

and

0 < #*Ky) < 0

for all k=1,..., N where a is such that A(x) = 1. Furthermore there exists
¢ > 0 such that
H*(K,) = cx for k=1,...,N

where (x,,..., xy) is a positive eigenvector of R(x) corresponding to the
maximal eigen value A(@) = 1. The N-tuple (K;, K,,..., Ky) of compact sets
defined above satisfies the conditions:

Kk=U?’=1Ski(Ki) for k=1,...,N,

K, is an a-set and H#*(S,(K)nS,;(K;)) =0forall k=1,..., Nandi#j. Such
an N-tuple of compact sets is called Markov-self-similar.

In Section 3 we introduce a concept of random Markov-self-similarity and
show that the results that correspond to those for the concept of statitical self-
similarity obtained in Graf [7] hold. Let (u,..., uy) be an N-tuple of Borel
probability measures on Con(X)" where Con(X) denotes the set of all
contractions of a compact set X. Then there exists a unique N-tuple of
probability measures (P,,..., Py) on X '(X), the set of all non-empty compact
sets in X, such that for every Borel set B < ¢ (X),

@) PuB) =[x [TZ; PAE(Sss ... S Ky ..., Ky))eCon(X)N x o (X)¥
UL Si(K)eB})
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forall k=1,..., N. An N-tuple (P4,..., Py) of probability measures on ¢ (X)
which satisfies (i) is called (u,..., uy)-Markov-self-similar. Furthermore the
following holds: Let R(B) = [R(B);;] be an N x N matrix defined by

R(ﬂ)ij = Ir(Sj)” dp(Sy, ..., Sy)

where B > 0, and let A(f) be the maximal eigen value of non-negative matrix
R(f). Under some conditions, dimy(K)= o for P;-a.e. KeX (X) for all k
=1,..., N where « is a positive number such that A(x) = 1.

In Section 4 we investigate the Hausdorff-measures of random Markov-
self-similar sets. The results are as follows: Suppose that there exists a § > 0
such that if R(0),; >0, then r(S) > for uc-ae. (S,...,Sy) where k, i
=1,..., N. Let(x,,..., xy) be a positive eigenvector of R(a) corresponding to
the maximal eigen value 1. Then the following statements are equivalent:

a) YN r(S)x;=x for y-ae. (Sy,...,Sy) and all k=1,...,N.
b) #*K)>O0 for P,-ae. KeX'(X) and all k=1,..., N.
¢ P;({KexX(X)|#*K)>0})>0 for some je{l,..., N}.

This is an extension of the result given by Graf [7]. Furthermore if
P;({Ke X' (X)|#*%K)> 0}) >0 for some je{l,..., N}, then there exists ¢ > 0
such that

H*(K)=cx, for P-ae. Ke#'(X)and all k=1,...,N.

The author would like to thank Professor H. Totoki for helpful discussions.

2. Markov-self-similar sets

Let Y = (Y, d) be a complete metric space. A mapping S: Y - Yis called a
contraction if d(S(x), S(y)) < rd(x, y) for all x, ye Y where 0 <r < 1, and #(S)
= inf{r > 0|d(S(x), S(y)) < rd(x, y) for all x, ye Y} is called the contraction ratio
of S. By Con(Y) we denote the set of all contractions of Y. We assume the
null contraction ¢ is an element of Con(Y) where ¢ is such that ¢(Y) = the
empty set. Fix a positive integer N > 2. Let Con(Y)" = {(S;, S5, ..., Sy)|S;€
Con(Y) for i=1,..., N, (S, Sz ..., Sy) # (¢, b,..., #)}. Let A(Y) be the
space of all non-empty compact subsets of Y. The topology of " (Y) is defined
by the Hausdorff metric p(4, B) =sup {d(a, B), d(4, b)lacA, beB},
A, BeX'(Y).

Hutchinson [9] proved that for every finite set of contractions
81, S5, ..., Sy of a complete metric space there exists a unique invariant non-
empty compact set K, ie, K = (J_, S;(K). Furthermore he showed that if S;
are similarities with contraction ratio r; of R? which satisfy the open set
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condition, the Hausdorff dimension of K equals to « where « is a number such
that Y¥ rf=1. We extend the result as follows.

THEOREM 2.1. Let S=(Si,..., Sy) be an N-tuple of S; = (Si1s..., Skw)€
Con(Y¥k=1,..., N. Then there exists a unique N-tuple (K, ..., Ky) of non-
empty compact sets such that

(1) Kk = IN=1 Ski(Ki) fOI’ k = 1, eey N.

Furthermore for any non-empty compact set F

(2) limm_,w UN : Ski1 Osilizo s OSim-lim(F) = Kk fOI‘ k = 1, ceey N

where the limit is taken with respect to the Hausdorff metric.

The statement (1) of Theorem 2.1 is a special case of Proposition 3.6 in
Section 3, and the statement (2) is proved in the same manner as in Hutchinson

(91
REMARKS (i) Associated with S = {S,,..., Sy}, an operator Ty: A (Y)"
— A" (Y)Y is defined by
Ts(Fy, ..., Fy) = (UiZ1 S1u(F))s ..., U1 SwilF)

for (Fy,..., Fy)e X (Y)Y. Then the equalities (1) imply Ty(K,,..., Ky)
=(Kjy,..., Ky), ie. (Ky,..., Ky) is Tg-invariant.

(i) Let F be a non-empty compact set in Y and (S,,..., Sy) and S, be
such that S, = (Sy,,..., Sew)eCon(Y)", k=0, 1,..., N. Let

(2) K = lim,,_ Uﬁ im=10i; °Siyi,© ** ° S, i (F).

.....

Then the set K can be expressed by

K= UkN=1 Sox(Ky)
where (K4, ..., Ky) is the N-tuple of compact sets that satisfy the equalities (1)
with respect to (S, ..., Sy)-

Next we give the lower and upper estimates of the Hausdorff measures of
compact sets K,. We introduce some notation.
Let Ec Y, 6 >0 and a >0 be arbitrary. Define

HYE) = inf (T2, |EFE < UR, By B <3},
and
H*(E) = sup; o #'5(E)

where |E| is the diameter of E. Then #” is an outer measure on Y such that
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all Borel sets are Js#f*-measurable. #* is called the a«-dimensional
measure. The Hausdorff dimension of E is defined by

dimy(E) = sup {a > 0| #*(E) > 0}
= inf {o > 0| #*(E) < 0}.

An s#*-measurable set E is called a-set if 0 < s#*(E) < o0.

Let (S;,...,Sy) be an N-tuple of S, = (S;..., Siy)eCon(Y)Y, k
=1,..., N. For a non-negative number f, we define an N x N non-negative
matrix R(B) = [R(B);] by

RBy;=7(S) kj=1..,N

where r(S,;) is the contraction ratio of S,; and r(¢) = 0 where ¢ is the null
contraction. Let A(f) be the maximal eigenvalue of R(f). Assume that A(0)
> 1. Then there exists a unique a > 0 such that A(a) = 1.

PROPOSITION 2.2. Under the assumption of Theorem 2.1, let (K, ..., Ky) be
the unique N-tuple of non-empty compact sets which satisfies the equalities (1) of
Theorem 2.1, then it holds that

dimy(K,) < a for k=1,...,N
where o is such that A(a) = 1.
Proposition 2.2 is a special case of Proposition 3.9 in Section 3.

ReMARk. If K = Y., Sou(K,) for an N-tuple (Sy,..., Sony) of contrac-
tions, then dimy(K) < a.

Now we give the definition of Markov-self-similarity. A mappig S: Y—» Y
is called a similarity if there exists an r > 0 such that d(Sx, Sy) = rd(x, y) for all
x, ye Y. We define Sim(Y)" in the same manner as Con(Y)" except that all
contractions are contraction similalities.

DerFINITION 2.3 Let S=(S,,...,Sy) be an N-tuple of S§,
= (Sk1s-.., SimeSIM(Y)Y, k=1,..., N. An N-tuple (K, ..., Ky) of non-empty
compact sets is called Markov-self-similar with respect to S if

K, = ?’=1Ski(Ki) for k=1,...,N

and if for some « >0, K; is an a-set and #*(S;(K)NS;;(K;)) =0 for all
k=1,...,N and i#j. A non-empty compact set K is called Markov-self-
similar with respect to S if there exist a Markov-self-similar N-tuple
(K4, ..., Ky) with respect to S and an N-tuple (S;,..., Sy) of contractions such
that K = -, Si(K}) and #*(S;(K)nS;(K;) = 0.
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An N x N matrix R is called irreducible if for any i, je{l,..., N} there
exists a positive integer m = m(i, j) such that (R™); > 0. For an irreducible
non-negative matrix R, the following Frobenius’ Theorem holds:

THEOREM 2.4. (Frobenius). An irreducible non-negative matrix R has a
unique maximal positive eigen value A for which there correspond positive row and
column eigenvectors. Furthermore the inequalities

Az >Rz  for a vector z>0 and z #0
or

Az <Rz for a vector z>0 and z #0
imply that Az = Rz and z > 0; and the equality

Ry=ny for a vector y>0 and y #0
impliies that n = A. Moreover it holds that

A =max,, o Ming <; <y (A2);/z; = min, o Max, <; < y (42);/2;

where z = (z,, ..., zy).

See Gantmacher [6, Ch. 13, §2].

The following theorem states conditions under which an N-tuple of
compact sets satisfying (1) in Theorem 2.1 is Markov-self-similar. See
Takahashi [12].

THEOREM 2.5. Let S=(S;,...,Sy) be an N-tuple of S,
= (S1»...» Sin)€SIM(RYY, k = 1, ..., N which satisfies the following conditions:

a) There exists a non-empty open set V for which

S:(V)c Vand S;(V)nS,;(V)=Q ifi#jforalk=1,..,N.

b) The matrix R(0) is irreducible and the maximal eigen value A(0) > 1.
Let (K, ..., Ky) be the unique N-tuple of compact sets that satisfies the condition
(1) of Theorem 2.1. Then (K,,..., Ky) is Markov-self-similar with respect to S
for o such that M) = 1. Furthermore there exists ¢ >0 such that

xa(Kk)=ka k=1,...,N

where (x,,..., xy) is a positive eigenvector of R(a) corresponding to the maximal
eigen value 1.

ReMARrks (i) If S, =S =(S,,...,Sy) for all k=1,..., N, the Hausdorff
dimension a is obtained as an « for which Z?Llr(Si)“ = 1, because of Theorem
2.4 (Frobenius).

(ii) For S=(S,,..., Sy) such that S, = (Si;,..., Siy) With r(S,;) = r, for
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i=1,...,Nand k=1,..., N, the Hausdorff dimension « is obtained as an « for
which

ZLN;: 1,

because (4, ..., ry) is a positive eigenvector corresponding to the eigen value 1.
(iii) a) Even if R(0) is reducible, there exists at least one ke {1,..., N} such
that K, is an a-set.
b) There exists S = {S,,..., Sy} for which R(0) is reducible and #*(K))
=0 and #*K;) = co for some i, je{l,..., N}.

For the proof of Theorem 2.5 we need a lemma (cf. Falconer [4]).

LEMMA 2.6. Under the assumptions of Theorem 2.5 there exists an N-tuple
(U1, ..., uy) of Borel probability measures such that, for any measurable set F and
k=1,..,N,

(i1) w(F) = Y0 1S wi(Sa ' (F))
and
ﬂk(Rd) = X

where (x4, ..., Xy) is a positive eigenvector of R(x) corresponding to the maximal
eigen value 1. Furthermore p, has the support contained in K, for k=1,..., N.

Proor. Choose ye K, and write
Visigooim = Siyiz ®Sizis® - 0 Si i (V)

for iy,...,i,=1,..., N. Let us write r(S;;) by r;;, For k=1,...,N and m
=1, 2, ..., define positive linear functionals ¢® on the space C(K,) of contiuous
functions on K, by

oR(f) = ZZ__,,-,,,: L P Ty o) X S Vi)
Note that y;, ; €K, or y,;, . = and that r(@d) = 0. Usual arguments show

that lim,,., , * defines a positive linear functional ¢® on C(K,). By the Riesz
representation theorem, there exists Borel measure p, such that

deuk = oW f =lim,., 0l f

for feC(K,). Putting f=1, it follows that y,(R% = x, because

Since fe C(K;), u has the support contained in K,. For feC(K,),
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o) = Z,, 1 Thiy (Z,, ,m_l(rnlz : ri,.._1im)aximf(Skil(yil.‘.im)))
= Z, 1’k:‘P(l) 1(feSk).

Letting m —» o0 we get
Jf dw, = Z:L 1 Thi ff ° Sidi;,

so (ii) follows. This completes the proof.

ProOOF OF THEOREM 2.5. The proof is similar to that of Theorem 8.6 of
Falconer [4]. The upper bound: Iterating (1) we get

K, = Uﬁum Siy ©Siyiz oS 11',,.(Kim)-
Using Y | riix; = x;, we get
Zz,‘..im ISkil ° Sill'z o0 Sim— 1i,..(I<im)|‘z

N
= i1yenns im(rkilriniz ri,,.—;im)a IK la

< — max; | K;|* < .
min; x;
As IS, °8;,,°...°8;, i (K, )* =0 as m— oo, we have #*(K,) < 0.
The lower bound: Using similar arguments as in the proof of Theorem
8.6 of Falconer [4] and Lemma 2.6 instead of Lemma 8.4 of Falconer, we can
show that

H*(K,) > x;, (g max; x;)"' >0
where g is a positive finite constant.
Proof of the facts that #*(K,) = cx, and that #°*(S,(K,)nS,;(Ky) =0
for i #j: Using (1) and the fact that S,; are similarities, we get
HK) < I, HSulK)) = LI, r(Suf #7(K)
for k=1,..., N. By Theorem 2.4 (Frobenius) it follows that
() HH K = Yo HSuK)) = T r(Suf o *(K)

and that there exists ¢ > 0 such that
H(K)=cx, fork=1,...,N

where (x,,..., xy) is a positive eigenvector of R(x) corresponding to the
maximal eigen value 1. As 0<#%K,) <oo, (1) and (a) mean that
H*(Su(K)nS,;(K;) =0 for i #j. This completes the proof.
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ExamPLE 1. Let Y=[0,11;N=2;8,(0)=y/3, S..0)=@ +2)/3;
$21(3) = ¥/9, $22(») =(y +8)/9 for 0 < y < 1. By Remark (ii) of Theorem 2.5,
a > 0 such that A(x) = 1 is obtained as an o for which (1/3)* + (1/9)* = 1, and it

follows that o = (log(ﬁ + 1) —log 2)/(log 3). By Theorem 2.5 we have

HKy): #4K) = (/5= 1): 3 - /9).

ExampLE 2. Let Y=[0, 11; N =3; §;,(y) = §2:1(») = ¥/9, S12(») = S12(»)
= +4/9, Si300) =5230) =y +8)/9, S3:(») = y/4, S32(») = (¥ +3)/4, Sa3
=¢ for 0 <y <1 The matrix R(0) = [r(S;;)°]; is irreducible, A(1/2) =1 and
the vector (1, 1, 1) is an eigenvector corresponding to the maximal eigen value
1. Therefore the Hausdorff dimension « equals to 1/2 and
HVK,): #VK,): #YEHK) =1:1:1.

3. Random Markov-self-similar sets

Random self-similar sets were investigated by Mauldin-Williams [10],
Falconer [5] and Graf [7]. In this section we consider random Markov-self-
similar sets which are probabilistic counterparts of Markov-self-similar sets
defined in Section 2. Our results and techniques were inspired by the work of
Graf [7], and all of the results are proved in Appendix.

We introduce the scheme used by Graf [7] with necessary
modifications. Let (X, d) be a complete separable metric space whose diameter
| X| is finite. Fix a positive integer N > 2. The definition of Con(X)" is given
in Section 2. Let

D =D(N) = Un-0Cn

where C,, = C,,(N)={1,2,..., N}" and Co = {0}. If 6 =(gy,..., 6,)€D, then
|| = m is the length of ¢ (in particular |@| = 0), |n = (64, ..., 6,) Where n <m
and t(o) =o0,. Let 6x1=(64,..., O T15..., T,) fOr T=1(14,..., 7,)ED.

Our fundamental space is 2 = (Con(X)")” equipped with the product
topology. The element of 2 = (Con(X)")® will be denoted by

‘Sp = (ya)aeD
where &, = (Syu1,...» Ssn)€Con(X)N.

Let u and (u4,..., uy) be a probability measure and an N-tuple of
probability measures on Con(X)". As a probabilistic counterpart of (2') in
Section 2 we define a probability measure {u) ={p: pq,..., uyy on
= (Con(X)M)P as follows: Let {B,|o€Jy=,C,} be a collection of Borel sets in
Con(X)V, ie. B,e%(Con(X)"), then
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u: pigs s by (P Q| &4 €B, for sep=o Ci})
= WUZp€ By [ Loevy. ¢ i) (Bo)

and Kolmogorov’s extension theory determines {u: uy,..., uyy on Q. Taking
u =, we have (> = {p: py,..., uyy where k=1,..., N.

Consider an N x N matrix R(f) = [R(B);;] corresponding to (u,,..., i)
defined by

R(ﬂ)ij = J"’(Sj)ﬂdﬂi(sn ees SN)

where >0 and 0° =0, and let A(B) be the maximal eigen value of non-
negative matrix R(f). Recall that r(S) is the contraction ratio of a contraction
S and that r(@) = 0.

In the following we consider an N-tuple of Borel probability measures
(4y, ..., uy) which satisfies the following conditions (3), (4) and (5):

(3) R(0) is irreducible.

(4) If R(0);; > O, then r(S;) >0 fof u-ae. (Se,..., Sy)-

5) A0)>1.
Furthermore we assume that p, satisfies the following condition (6):

©) YV, r(5)>0 poae (Sp...,Sy).

REMARK. If R(0);; = 0, then r(S;) = O for p;-ae. (S;, ..., Sy), because R(0);;
= Jr(Sj)odui(Sl, s SN)-

Recall that #°(X) is the space of all non-empty compact sets of X. In
order to construct a probability measure (A'(X), &, P.,>) from (Q
= (Con(X)™)P, A, {u,»), we state necessary results. First the following
proposition is obvious by the definition of (i) = {(ig: ly,..., Un)

ProposITION 3.1. Define ¢: Con(X)¥ x QN - Q by
o((Sy5..., Sy), (LY, ..., V)= &
where
Fo=(1,...,8y) and &,y = (™), for €D and n=1,..., N.
Then ¢ is Borel measurable and satisfies that for every Borel set B c Q,

[uo x [TiZ 1 <#>1(0 ™ (B) = o> (B).
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LEMMA 3.2.
Qo ={FeQ|[]2,7(S,.) =0 for any oeC,(N)}
is a Borel set with {uyy(2,) = 1.
By the definition of Con(X)V, it follows that

nm>0 UcreC,,. Sa'|1 OO Sallal(X) # Q.
PROPOSITION 3.3. Fix KeX'(X) and define y: Q — A (X) by

Nm>0 Usecy Sai1 -+ ° Sayet(X) - for S ey,
K for &Q,.

Y(&) =

Then  is a Borel measurable map.
Lemma 3.2 and Proposition 3.3 are proved in Appendix 1.

DerFNITION 3.4. For an N-tuple (u,,..., uy) of Borel probability measures
and a Borel probability measure p, on Con(X), let P, , be the image measure
of {uoY = {po: Uy, ..., Uny With respect to ¥, i.e., for evry Borel set B < H#(X),

P 55(B) = o> (¥ ~'(B)).

REMARK. A P, ,-random set is constructed as follows: Choose an N-
tuple (S,..., Sy) at ramdom with respect to the initial measure u,. Let

A= UII:’=1 Si(X).
Then for k =1, ..., N, choose an N-tuple (S;,..., Sgy) With respect to y,. Set
A; = UkN=1 Sk(Uﬁv= 1 Sii(X)).

Continue this process. The limit set K = (), A4, is 2 P,.,-random set. This
construction is a stochastic version of that of a Markov-self-similar set in
Section 2.

DerintTioN 3.5. Let (uy,..., uy) be an N-tuple of Borel probability
measures on Con(X)". An N-tuple (P,,..., Py) of probability measures on
H'(X) is called (u4, ..., uy)-Markov-self-similar if for every Borel set B = #'(X),

Py(B) = [ x [Ti=, PA{((Sys ..., Sy} (K, ..., Ky)eCon(X)¥

x A(XN UL, S(K)eB})
for all k=1,..., N.

PrROPOSITION 3.6. Let (uy,..., uy) be an N-tuple of Borel probability
measures on Con(X)". Then the N-tuple (P .y, P .,ss..., P(uyy) is the unique
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(K15 ... uy)-Markov-self-similar N-tuple of probability measures on A (X) where
<#k> = <ﬂk: Hiseens ﬂN>

Taking p, = ds,,,...s.m for k=1,..., N in Proposition 3.6, we have the
statement (1) of Theorem 2.1. Proposition 3.6 is proved in Appendix 2.

The next theorem assures the existance of a such that P, ,-a.e. compact
set has the Hausdorff dimension « for k=1,..., N.

THEOREM 3.7. Let (uy,..., uy) and py be an N-tuple of probability measures
and a probability measure on Con(X)N which satisfy the conditions (3), (4), (5) and
(6). Suppose that, for k=1,..., N, m-ae. (Si,...,Sy)eCon(X)¥ and every
i=1,..., N such that R(0),; > O, there exists a ¢ > 0 with d(S;x, S;y) > cd(x, )
for all x, yeX. Then there exists an a >0 such that

dimy(K) = o

for P -ae. KeA (X). Especially it holds that dimy(K)=a for P.-ae.
Ke A (X).

Theorem 3.7 is proved in Appendix 3 and the following 0-1 law is used in
the proof.

PropPOSITION 3.8. Assume that an N-tuple (u,,..., uy) of Borel probability
measures on Con(X) satisfies the conditions (3) and (5). Let B be a Borel set in
Q = (Con(X)M)?. If

{ > (B) = Hi:R(O)ki>0 {p:>(B)
for all k=1,..., N, then

{u>B)=0  forall k=1,...,N,
or
{yy(B)=1 foral k=1,...,N.

PROOF. Assume that {u;»(B)=0 for some je{l,..., N}. Using the
irreducibility of R(0) we deduce that {y,»(B)=0 for all k=1,..., N. Now
assume that {u,»(B) # 0. Note that

H'ILI (e (B) = HkN=l [ T2 0 <Hi>(B)
and that
Yo #{iIRO) # 0} > N
because A(0) > 1. Therefore there exists a je{l,..., N} such that
{uj>(B) = 1.
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Using the irreducibility of R(0) we duduce that
{u>B)=1 forall k=1,...,N.

ReMARK. Under the assumptions of Proposition 3.8, the statement in
Proposition 3.8 is true for (P,,s, ..., P¢,,y): Let B be a Borel set in X#'(X). If

P 5(B) = [ Ji:romiz 0 Puy (B)
for all k=1,..., N, then
PsB)=0 for all k=1,...,N,
or
P, B)=1 forall k=1,...,N.

An upper bound for the Hausdorff dimension of P, ,-random sets is given
by the following proposition which is an extension of the result obtained by
Mauldin-Williams [10], Falconer [5] and Graf [7].

ProrosiTiON 3.9. Let (uy,..., uy) and p, be an N-tuple of probability
measures and a probability measure on Con(X)¥ which satisfy the condition
(5). Let a be such that A(@) =1. Then

E,,<“0> (s#£*(K)) < o0.
In particular
H*(K)< oo for Py.-ae KeA(X)
and
dimy(K) <a  for P -ae. KeX'(X).
Especially we have the corresponding statements for P, -a.e. K.

ReMARK. The uniqueness of a for which A(x) =1 follows from the fact
that A(B) is continuous and strictly decreasing with respect to p.

The proof of Proposition 3.9. is given in Appendix 4. In the proof we use
the following martingale convergence theorem (Theorem 3.10). Let I be a
subset in D, and define f%%: (2, #, {i))— R, by

FOUL) =X rLTT L P(S 1) ] oo

and

f({‘t)a),ﬂ(y) = Xk

for k=1,..., N where (x,,...,xy) is an positive eigenvector of R(«x)
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corresponding to the maximal eigen value 1. We abbreviate f& , by f%,.

THEOREM 3.10. Let (uy,..., uy) be an N-tuple of probability measures on
Con(X)" which satisfies the conditions (3) and (5). Let o be the unique value such
that A(@)=1. For meN let B, be the o-field of all Borel subsets in
= (Con(X)™)? depending only on coodinates from D, = \Jy<mCn. Then for
every peN and k=1,..., N, (f®)en is an LP-bounded martingale with respect
t0 (B)men Which converges {uy-ae. and in IP(Q, (u)) to a function
f®.  Furthermore if the condition (4) holds, then f® >0 for {u>-ae. and k
=1,...,N.

Theorem 3.10 is proved in Appendix 4.

The following theorem gives conditions which assure that, for P, -a.e.
compact sets, the Hausdorff dimension is equal to a.

THEOREM 3.11. Let X < R? be a compact set with the non-empty interior
X. Let (uy,..., uy) and po be an N-tuple of probability measures and a
probability measure on Con(X)¥ which satisfy the conditions (3), (4), (5) and
(6). Swuppose - that, for w-ae. (Si,...,Sy)eCon(X)¥ and k=1,...,N, the
followng conditions are satisfied.

a) Foralli=1,...,N, S, is a contraction similarity or the null contraction

o.
b) (Sy, ..., Sy) satisfies the following open set condition: S{(X)nS ,-()of) =0
ifi#].

Let «>0 be such that Ala)=1. Then dimy(K)=a for P.-ae.
Ke X (X). Especially dimy(K) =« for P, -ae. KeX'(X) and k=1,..., N.

Theorem 3.11 is proved in Appendix 5.

ExaMPLE. Let X =[0,1] and N=2. Let T}, T, and T; be similalities
which map [0, 1] to [0, 1/3], [1/3, 2/3] and [2/3, 1] respectively, and T;, T;, T;
and T, be similalities which map [0, 1] to [0, 1/4], [1/4, 1/2], [1/2, 3/4] and
[3/4, 1] respectively. Let

— -1
#1 =37 e, 1) + e@ats + ETiTy)
and

_ (-1 N
Hy =6 lei<js4 E(F: T

Then (u,, u,) is a pair of probability measures on Con(X)? and it satisfies the
conditions (3), (4) and (5). By Theorem 3.11,

dimy(K) = o for P, y-ae. KeX'([0,1]) and k=1, 2
where a is such that (1/3)* + (1/4)* = 1.
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4. Hausdorff measures of random Markov-self-similar sets
First we state a theorem which corresponds to Theorem 7.8 of Graf [7].

THEOREM 4.1. Let the assumptions of Theorem 3.11 be satisfied. Suppose
that there exists a 6 >0 such that if R(0),;>0, then r(S)>90 for w-ae.
(Sis...,8y), k=1,...,N. Let (xq,..., xy) be a positive eigenvector of R()
corresponding to the maximal eigen value 1. Then the following statements are
equivalent :

a) Y r(S)x; = x for weae. (Sy,..., Sy) and all ke{l,..., N}.

b) #*K)>O0 for P, -ae. KeX'(X) and all ke{l,..., N}.

¢) P, ({KeX (X)|#*K)>0})>0 for some je{l,..., N}.

Theorem 4.1 is proved in Appendix 6.

The following theorem gives an information about the «-dimensional
Haudorff measure #%K) for P-ae. KeX'(X) for Markov-self-similar
(Punys ---» Peuny)- See [13] and [14].

THEOREM 4.2. Let the assumptions and the condition c) of Theorem 4.1 be
satisfied. Then there exists a ¢ > 0 such that

H*K) = cx,
for P, -ae. KeX'(X) and all ke{l,..., N}.

For the proof of Theorem 4.2 we show the following lemma:

LemMMA 4.3. Assume that 0 < E, ,(#*(K(#))) < o0 for k=1,..., N and
that

Zf.i LJHS) X = x,
for w-ae. (Sy,...,Sy) and k=1,..., N. Then it holds that
HK(P) = Liz, rS{L) H(K(F))
for {uy-ae. & and k=1,..., N. Furthermore there exists a ¢ > 0 such that
E . (H#(K(&F))=cx, for k=1,..,N.
Proor. Since
K(&#) < UL S{K(Z)
and S; are similarities, it follows that

HK(S) < T, rS(L) HK(F)).
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Integrating the both sides with respect to (g, and using Proposition 3.1,
E Gy [ (K(PN] < Ty R@WE uy [#H(K(S)]

fork=1,..., N. Since 0 < E,,,(#*(K(¥))) < o, we deduce, by Theorem 2.4
(Frobenius), that there exists a ¢ > 0 such that

E [ K(SF)]=cx, for k=1,...,N
E s [HK(AN] = T | ROWE s [#*(K(L)]
for k=1,..., N. Therefore
HK(P) = LSS A K(SD)
for {y>-ae. ¥ and k=1,..., N. This completes the proof.

ProoF oF THEOREM 4.2. Proposition 3.9 and Theorem 4.1 assure the
assumptions of Lemma 4.3. Iterating Lemma 4.3, we have

HK(F)) = Loy S (LN L H(Si(FDNL -
S (S, (L ) (K (P00

for {uy-ae. & and k = 1,..., N where 02 = (#))@ gnd 50 on. Consider
E s [#*(K(¥))| B, -1] where #,,_, are the o-field of all Borel subsets in
= (Con(X)™)? depending only on coordinates from {J;c,—;C;. Using Propo-
sition 3.1 we have

E ; [#*K(S)| Bp-1] =
PIMIRE N E7%) D I [N EZ0)) i
Y (S, (O E, [HHK(SP))].
Since Y, r(S)*x; = X, and E,,(#*(K(¥))) = cx,, it follows that
E (s [ K(S))| B p-1] = CX;.
As m is arbitrary, we have
HYK) = X, for P, ,-ae. KeX'(X) and k=1,..., N.

REMARK. In the case of #*K)=0 for ae K, the exact Hausdorff
dimension of K was investigated by Graf, Mauldin and Williams [8].

ExaMpLE. Consider the example stated at the end of Section 3. Theorem
4.2 implies that

H*(K)=c(1/3)* for P, s-ae. KeX(X)
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and
H*(K)=c(1/4) for P,,s-ae. KeA(X)

for some ¢ > 0.

APPENDIX
1. Proof of Lemma 3.2 and Proposition 3.3

PrOOF OF LEMMA 3.2 (cf. the proof of Lemma 3.2 of Graf [7]). The result
that ©Q, is a Borel set is proved in Lemma 3.2 of Graf [7]. We show that
{poy(20) = 1. By Proposition 3.1, it suffices to prove that {(u,>(2,) =1 for
k=1,..., N. For a>0 set

B, = {#€Q]| there exists ge{l,..., N} such that [[_,r(S,.) = a},

then the fact that B, is Borel measurable is also proved in Lemma 3.2 of Graf
[71.

Define p,: (0, 1) = [0, 1] by pi(a@) = (u)(B,) for k=1,..., N. It follows
that from Proposition 3.1 that, for every ae(0, 1), we have

(al) pua) = [p x ]—[?':1 1Sy ... Sy), (LY, ..., M) there exist
je{l,..., N} and oe{l,..., N}" such that r(S) [].2,7(¥%) > a})
<Y D < TTS <D IE(S s o5 S, (FD, .., SM))| there exists
oe{l,..., N}N such that r(S) [, (89, > a})
<YV {1 SWIFS) > a))p(a).
Since r(S) < 1 there exists a be(0, 1) such that
w({(S1s .., Sy max, iy r(S) > b)) < 1/N

for all je{1,..., N}. If there exists a k such that p,(b) > 0, let k; be such that
Px,(b) = max, p;(b) > 0. Then it follows from (al) that p, (b) < p;,(b). This
contradiction implies that p,(b) =0 for all k=1,..., N.

Let n, =inf{ae(0, 1)|pi(a) =0} for k=1,..., N, and 5 =max, 4y
< 1. Assume #>0. Then there is an a>#n with ab <#n. We deduce as
before

plab) < Y0 Do x [T, <#d1({(S s .. S (P, .., M) there exists
oe{l,..., N}N such that r(S)[ ]2, r(SS) = ab}).

Since a >n we have pja)=0 for j=1,..., N, and so
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2 otS%) <a for (pp-ae P and j=1,..., N.
This leads to

plab) < 7, i ({((Sy, ..., Sy)I7(S;) = b})p;(ab)

for k=1,..., N. Assume that there exists a k such that p,(ab) > 0. As before
this leads to a contradction, so p,(ab) =0 for all k = 1,..., N. This contradicts
ab < n and the definition of . Thus # =0 and p, vanishes identically for
k=1,..., N. This completes the proof.

ProoF OF PrOPOSITION 3.3. The proof of Theorem 3.7 of Graf [7] using
Lemma 3.2 instead of Lemma 3.2 of Graf [7] implies Proposition 3.3.

2. Proof of Proposition 3.6. (cf. the proof of Theorem 4.5 of Graf [7])
First we give a definition.
DerFINITION.  Let (ug,..., uy) be an N-tuple of probability measures on
Con(X)". For k=1,..., N, define T, = T¢*¥: P(% (X))" - P(A' (X)) by
[TQs. ... OWI(B) = [ x TTZ, @1 ({(Sy> .. Sw);
(K15 ..., KD U1gjsn Si(K )€ B})
where P('(X)) is the set of all Borel probability measures on J (X).

REMARK. An N-tuple (P,,..., Py) of probability measures on 4 (X) is
(44, ..., py)-Markov-self-similar if and only if

P, = Ty (P, ..., Py)
for all k=1,..., N.
ProOF OF PROPOSITION 3.6. The proof of Theorem 4.5 of Graf [7] assures
that
Te(Puyys s Piuny) = P
for k=1,..., N.
Define T: P(o" (X))¥ - P(A (X)) by
T(Qv ) QN) = (T1(Q1, oo QN)s ) TN(QD e QN))

for (Qy,..., Qp)eP(A(X))N. Let A < A (X) be a closed set. Using induction
on n, we have
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(T"Q1, .., QW)(A)
= K> x ([T, 20P1{(& Kouss ... Kou)oen) €Q X (H(X)Y)P
|Uoecoy U1 Sap1 00 Sainmy © Soui(Kpu) € A})
Hence we obtain
lim, ., Sup (T(Q, ..., Q)(A)
= inf,, SuPpym [ X ([T12; Q0P1{(S (Kot .., Koun)oen) €2 X
(P Usecn- s UMt So11° -+ Sapnmy © Spuil Kpu) € A})
< [ X ([T 1 2P 1(Nm Unam {5 (Kt ... s Koundoen) €2 X
(X ™1 Usecn- s U1 Sa11.© -+ Sapn—1° Sonil K oui) € 4})
<[> % (T2 1 Q0PI Kous s Kouwdoen) €2 X (£ (XYY
1imy+ o Usec, -, U1 8a11°++ © Soin—1 © Sy Ko € A}).

By Theorem 2.2 of Graf [7] and the definition of y, the last expression equals
to

(<> x ([T Q0PI (Kouss - s Kou)oen) €Q X (X (X)W |Y(F) € A})
= @~ 1(A).
Therefore it holds that
limn—*oosup (Tn(Ql’ (KRS QN))k(A) < P(uk)(A)'

Since this is true for an arbitrary closed set 4 of X' (X), {(T"(Q1,---s On))i}nen
converges to P, in the weak topology. This implie the uniqueness of the
(U1, ..., uy)-Markov-self-similar probability measure.

3. Proof of Theorem 3.7
First we show the following 0-1 law (cf. Theorem 7.2 of Graf [7]):

LemMma A. For a given B >0, it holds that

(a) P<“k>({Ke.9if(X)|.#“(K) =0})=0forall k=1,...,N, or=1 for all
k=1,...,N,

and that

(b) P<uk>({Ke%(X)|.%””(K) =ow})=0forall k=1,...,N, or=1 for all
k=1,...,N.
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Proor. By Proposition 3.6 we have
P ({KeX (X)|#*(K)=0}) = [ x T P d({((S s - s Sp) (Kyy e
KA (U= 1 Si(K)) = 0})
= [ % [T Peupd({((S1s - Sn)y (Ko, K AP(SHK ) = 0
for j=1,...,N})
= [ Tiron0 Pouy {KIH#P(K) = O}).

By the remark of Proposition 3.8 we have (a). The fact (b) follows in the same
way because

Py ({KI#P(K)) = 00}) = 1 — P,y {K|#P(K) < 0}).

Proor oF THEOREM 3.7. It is easy to prove the theorem using (a) and
(b). See the proof of Corollary 7.3 of Graf [7].

4. Proof of Proposition 3.9 and Theorem 3.10
First we prove Theorem 3.10 (cf. the proof of Theorem 6.3 of Graf [7]).
Proor oF THEOREM 3.10. Since
E s [f 4 1,01 Bg) = E(#k>[2recq+. ::i (S Xuo| 2,]

= Ve, TTbe 1 TS apn)* By [ 7(S)* X1

=D pec, LIn=1 7Sain)” Xuie) = f G

{y-ae. & for g >1 and
E s LS 12 B6] = 332 | R@ixi = x¢ = S8,

(f%)een is a martingale with respect to (#,)en-
By induction on peN we prove (f%)) .y is I-bounded. Since f$), > 0 and

q,a =

(f®)en is @ martingale, it is L'-bounded. Now assume that p > 1 and that for
m < p, (f¥).en is L™-bounded for all k=1,..., N. Let

M =sup{|| f¥|.lgeN, m<p, k=1,..., N} < o0,
L=max{| f§I5/x/k=1,..., N} < o0,

1
C = max {Z J(Z?=lr(si)“)Pduk(Sl, s Slk=1,..., N}

< NP/min, gy X
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and

5= max{fzle r(S,-)""?duk(Sl, o Solk=1,..., N}.
k

Note that 6 < 1 by Theorem 2.4 (Frobenius) because the maximal eigen value of
R(po) is smaller than one. We show by induction on g that

(a2) I f91E < X (1L + M?-C- Y12 &Y.

For ¢ =0 it is obvious. Assume that (a2) holds for g=1,...,n. Forgq=n
+ 1, we have

1% Ll = f (1 1P A
= I {Z?:l rS)yf9, (y('))}pn LA (F D) dp(Sy, ..., Sy)

p' V[a VN
=Zv1+ HWSPy 1oy f’(s1) PSSR
n!
d(Sy, ... Sy)

= j(r(Sl)"“ IfGalll 4 -+ SN foa D) S 1 s SW + D0, 4 tonmp
P!
— | 1(§)"* - 1 (Sy)" ||f(1) : ”f(N) d#k(sbu-, Sy)
Vl!“'vN!
_[21 L HSYEX(O"L+ MP-C- Y120 ) dw(Sy, ..., Sx) +
p‘ \J tl VNQ&
Mp2v1+ VN = pv-r—-——._— r(S ) ! r(SN)N dﬂk(sl,---aSN)
VN

< x,0(0"L+ MP-C- Y120 8 + MP f X r(S)YPdw(Sys ..., Sy)

= %, (8" L+ MPCY"_, &).

Since & < 1, we deduce that (f%)),n is [P-bounded.
We show that f® > 0 for (y,)-a.e. and k=1,..., N if the condition (4)
holds. Using Proposition 3.1 and Lemma 6.4 of Graf [7], we deduce

(L1 fOF) = 0}) = [ x [Ti= 1 DTSy -5 Sw)y (D, FM)
YN PSP SO = 0))
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= [Tiropro <O UL 1f L) = O}).

By Proposition 3.8 and the fact that E, ,[f*]=x, >0, we deduce that
WYL fP(&)>0})=1for all i=1,..., N. This completes the proof.

A subset I" < D is called a minimal covering if for each ne{1,..., N}" there
exists a unique o€l such that #|j = o for some jeN. Let Min = {I"c D|Iis
a minimal covering}. For I';, I', = D, we write Iy < I', if for every g €l
there exists o,€l, such that ¢,|j = o, for some jeN.

CorOLLARY OF THEOREM 3.10 (cf. Corollary 6.5 of Graf [7]). Let the
assumptions of Theorem 3.10 be satisfied. Then

E (s [SUP rpengin inf { f%% | "€ Min, I' > I'}] < o0
for k=1,...,N. In particular
SUp ryemin IDf { f ¥, | F'eMin, I' > Iy} < o0
for {uy-ae. Se€Q and k=1,..., N.
Proor. For {y>-ae. & we have

suproeMin lnf{f(lk',)a |Fe Min, r > FO} < SupqoeN infqaqo fgfz:(y) = f(k)(y)‘
Since J f®d{u> < o by Theorem 3.10 the corollary is proved.

For the proof of Proposition 3.9 we state a result in Graf [7].
THEOREM 2.4 OF GRAF [7]. Let ¥ €Q, be given. Then, for every >0,
HP(K(L)) < | X 1P sup pemin I0f Y e [l Loz 7(Sopn) IT€Min, I'> I},

Proor OF PrOPOSITION 3.9 (cf. the proof of Theorem 7.4 of Graf
[7]). We show that Ep_, [H*(K)]<oo for k=1,...,N. Let v:Q
— X' (X) be as defined in Proposition 3.3. Since P, =y}, it is
enough to show that E . ,[#°W(¥))] < © for k=1,..., N. By Lemma 3.2
and Theorem 2.4 of Graf [7] it holds that

H W) < | X Sup pyemin i { e ([ T2 H(Sopo)® 177 Miim, I > T}

< | X |*Sup roemin inf{ f Fo/min ¢;yX;| € Min, I"> I}

for {uy-ae. . By the last corollary, the expectation of this last expression
with respect to {u,) is finite. This completes the proof.

5. Proof of Theorem 3.11

For the proof of Theorem 3.11 we need a lemma, Lemma D, which is a
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modification of Theorem 6.8 of Graf [7]. To show Lemma D we state
necessary results. For & e(Con(X)V)? and ceD, let &?e(Con(X)")” defined
by (#°), = &, for t€D.

LEeMMA B (cf. Lemma 6.6. of Graf [7]). Let (uy,..., uy) satisfy the
conditions (3), (4) and (5). Let a be such that AMa)=1. For B < a, {uy-ae.
FeQ and k=1,..., N, there exists an meN such that, for every aeD with
lo| = m,

o HSan® (P < [T, 1ol -

Proor. Let ceD and peN be arbitrary. Using Chebyshev’s inequality,
we have

> GLITT 7Sl 2 fEONF?) > 1})

< jﬂﬂ {TSon)?* P du (&) f{f L) P A ) ().

Therefore

ey ({ ) there exists a aeC, such that [\, r(S,)*~# f€(#°) > 1})

n=

SJ sec, LIbk 1 T(San® ™ P d<pu ) () max, iy J { (O} dpu) ().

Let peN such that p(a — f) > «. Then we have A(p(x — f)) < 1. Let

X
€ = MmaX <N Z;Ll Rp(o — ﬂ))”x—J

where (x,,..., xy) is a positive eigenvector of R(x) corresponding to the
maximal eigen value 1. By Frobenius’' theorem we have that ¢ < 1. Since
f(f®Pdlu;y < oo for i=1,..., N by Theorem 3.10 and

f Yoec, LIt 7(Sai)® P dmH(F) < xct/(min gin ),
we deduce
;°=1<uk>({.?| there exists a o€ C, such that
oLy S PSS ) > 1)) < o0,
By the Borel-Cantelli lemma we have

e (NmenUgam {7 there exists a ae C, such that
L FSapnf P fU(F) > 1)) = 0.

n=1
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This completes the proof.

LemMMA C. (cf. Theorem 6.7 of Graf [7]). Let (uy,..., py) satisfy the
conditions (3), (4) and (5). Let o be such that A(a)=1. For B <a, {yy-ae.
LeQand k=1,..., N,

sup inf{f¥,(¥)|F'eMin, I' > I,}) > f¥(9).
IoeMin

Proor. By Lemma B and Lemma 6.4 of Graf [7] we deduce the
result. See the proof of Theorem 6.7 of Graf [7].

LeMMA D. Let (uq, ..., puy) satisfy the conditions (3), (4) and (5). Let f<a
where Ma) = 1. Then, for {(yy-ae. ¥ and k=1,..., N,

SUP roeminiDf{Y o, 1) T 1Sy |ITeMin, I'> I'y}) > 0.

n=1

Proor. Since A(B) > 1, there exists an # >0 such that, for A4,
={(Sy,...., SIrS)=n for i=1,..., N with RO),; >0} (k=1,..., N), the
maximal eigen value of a matrix T =[t,;] is greater than 1 where

by = j T(Si)ﬂdﬂk(slg ) SN)
A

k

Define r,(S): Con(X) - [0, 1) by

_ 0, r(S) <n
(8) = {r(S), ’S) > 1.

Let f(&) = lim,,,, ,, Za’eC,,.
..., N. For $e€Q we have

ol 7o(Sopn) Xy defined on (2, B, () for k=1,

SUP rinfrs 1 Yo r7(S,)° Ld=| 17(San)
> suppinfre g Y, 7a(S0)° LL' Ta(Sop)
> n?supinfrs r, Zaernﬂ 1 Ty(Sanf
21! fP(S)/max, onx;  for {u)-ae. &

The last inequality follows from Lemma C. Since by Theorem 3.10
[fP(F)d{wy > 0, we deduce that

@3) supp, infrs o ¥, ST 7S, > 0

with positive probability.
We show that the left-hand side in (a3) is either 0 with probability 1 or > 0
with probability 1. By Proposition 3.1 we have
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o= Y ((FIsup ryinfrs 1 Yo rSF I, 7S, = 0})
= e % [T2 <> (S s .5 S (£, M)
Yo P supr, infro 1 Y, r(SOPTTIL H(SH) = 0})
= [ R0 HOULIsuppinf s 1y ¥ 7S TIVL, (S, = O}),

because r(S;) > 0 for je {1,..., N} such that R(0),; > 0. By Proposition 3.8 and
(a3) we deduce that

pi=0 for i=1,...,N.
This completes the proof.
ProoF oF THEOREM 3.11. By Proposition 3.9 we have
dimy(K) <«

for P, ae. KeA(X)and k=1,..., N. The converse inequality is shown in
the same way as in the proof of Theorem 7.6 of Graf [7] using Theorem 2.5 of
Graf [7] and lemma D.

6. Proof of Theorem 4.1
Our fundamental lemma is as follows:

LeMMA E (cf. Lemma 6.10 of Graf [7]). Let (uy,..., uy) be an N-tuple of
probability measures on Con(X)N which satisfies the conditions (3), (4) and (5) in
Section 3. Let o> 0 be such that A(@)=1. For neN define h,: Q- R, by

h(#) = inf{fr(#)| T Min, T # {0}, | T <n}
where

fl",a(y) = ZGEI‘HLLI 1 r(So'ln)a xt(o‘)

and |I'| = max{|o|: ceI'}. (Note that for all k=1,..., N, fr.,(¥) = fE(¥)
for '#@) Then (h,), are non-increasing sequences of Borel measurable
Sfunctions which satisfy the following properties:

(i) hps1(#) =Y K(S)*min(x;, h (D) for all neN and S Q.

(i) h:=inf,nh, = inf i () fra-

(iii) If the condition {u;»({h >0}) >0 for some je{l,..., N} holds, then
Y 1S x; = x, for we-ae. (Sy,...,Sy) and all k=1,..., N.
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Proor. We only show (iii) since (i) and (ii) is trivial. It follows from (i)
and (ii) that
(ad) h(&#) =YL, r(S)min(x;, h(F))

for all €. Let (y,,..., yy) be a positive vector such that (y,,..., yn)
=(¥1..., yw)R(®) and Zi':ly,‘ = 1. Integrating the both sides of (a4) with
respect to Zszl Vi), we have by Proposition 3.1 that

Y1V J W) = Yo_ J J Yo r(S)min(x;, AL D)) (F)
dﬂk(sl’ L] SN)
= Yo, | min(x;, AN Y5 -, ykfr(S.-)"
d)u'k (Sla R SN)
=Y jmin(xi, h(S))yid{p:>-
Since y, > 0, we deduce that
KS)<x, for {yy-ae. & and k=1,...,N.
Therefore (a4) implies that

@) W) = Yo, rS) L)

for {uy-ae. & and k=1,..., N. Let 5, be the essential supremum of h(<¥)
with respect to (u) for k=1,..., N. Using (a5) and Proposition 3.1 we
obtain that

M = Zf; L (S m;
for {uy-ae. & and k=1,..., N. Integrating the both sides with respect to
{u.>, we have
=Y R@gm for k=1,.,N
where (1, ..., ) is non-negative nonzero vector by our assumption (iii). By
Theorem 2.4 (Frobenius),
M = Ziv:lR(a),‘mi for k=1,...,N

and (n,,..., ny) is positive eigenvector of R(x) corresponding to the maximal
eigen value. This implies that
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Me=Yo r(Syn; for {(wy-ae & and k=1,...,N.
Since n,:---:1y = x,:-+- Xy, We have

X =Y, r(S)x; for w-ae. (Sy,...,Sy) and k=1,..., N.
This completes the proof.

Using Lemma E and the similar arguments to the proof of Theorem 6.11 of
Graf [7], we have the following proposition.

PrOPOSITION F. Assume the condition of Lemma E are satisfied. Let
oa >0 be such that Aa)=1 and (x,,..., Xy) be a positive eigenvector of R(x)
corresponding to the maximal eigen value 1. Then the following conditions are
equivalent :

a) For all ke{l,..., N}, Y r(S)*x; = x; for we-ae. (S,..., Sy).

b) For all ke{l,..., N}, sup pewininf{fPu(L)I[eMin, I' > Iy} >0 for
{y-ae &.

C) <ﬂj: Hiseens “N)({ylsupfoeMininf{f(Ra(y)lreMin’ r> FO} > 0}) >0
for some je{l,..., N}.

ProOF. (a)—(b): Under the assumption (a), it holds that f¥,(¥) = x,
for (u>-ae. &¥. This measn

Sup infrs o fRAL) = x5, > 0 {wd-ae. &.

(b) = (c) is trivial.
(c)—>(): Fix I'peMin for I'eMin with I'>T, and oel,, let I,
= {teD|o*tel}, then I,eMin. It holds that

(36) ian‘> Io f(Ra(y) = infr> Io Zae Io [HLO'=| 1 r(Saln)‘z de I H:L 1 r(Sm(ﬂm))axt(mt)]
= Zae Io [1—[5:1 1 r(Scrln)a il'lfl‘> I's Z‘CE I, HL‘;L 1 r(San(rlm))axt(aor)]
= Zae o [“Ld—l 1 r(Saln)a min(xz(a)a infl'éMin\ (2) fra(&))]

=Y oers [T1 | 7(S41)* min(x,), H(F)].

By (c), there exists a Borel set B = 2 with {u;»(B) > 0 such that, for any ¥ €B,
there is a I'y with infp,  f2,(¥) > 0. By (a6), it holds that for any ¥ € B,
there exist I'oeMin and a oel, such that [] r(Sqn)* >0 and h(¥°)

n=1

>0. For oeD, let Q(c)={¥ |]_['”' 1 7(Sqn)* >0 and h(¥°) > 0}. Note that

1> (Uqsep£2(0)) > 0, because B < U;eDQ(a). Hence there exists a ceD such
that (u>(@(0) > 0. Since {u;>(Q(0)) = KT, S > 0 <t > (]
h(#) > 0}) > 0, it holds that {u,,>({&|h(#)>0}) > 0. Therefore Lemma E
implies the condition (a).
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ProOF OF THEOREM 4.1. (a)—(b). By Theorem 2.5 of Graf [7] and
Lemma 3.2, there exists a ¢ > 0 such that

c|X[*sup rinfrs Y e rr(S, [TV, 1Sy < #*W(S))

n=1

for (u>-ae. . Using the assumptions of Theorem 4.1 we have
¢ 0% | X[*sup r inf > r, Yoo [ IV, F(Sarn)® < #W(S))

for {yy-a.e.#. Proposition F yields s#*(y(S)) > 0 for {y)-a.e.# and by the
definition of P, ., we have (b).

(b) = (c) is trivial.

(c)—(a). By Theorem 2.4 of Graf [7] and Lemma 3.2 in Section 3 it
follows that

HWY(S) < |XI*supinfrs 1 Yoo /[T, H(Sorn)®

for {u)-ae. & and k=1,...,N. Assume that p/((Sy,..., Sy)| Y1, r(S)*x; #
x)>0 for some je{l,...,N}. Then Proposition F  implies
supry infrs p fEASL):= suppinfrs 1 Yo ([ TVL, H(Soin)Xue) = 0 for <py>-ae. &
and k=1,...,N. It follows that #*(Y(¥)) =0 for {wy-ae. & and k
=1,..., N. By the definition of P, we have #*%K)=0 for P, ,-ae.
KeA'(X) and all k=1,..., N. This completes the proof.
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