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Introduction

A non-associative algebra s/ satisfying

xy = yx and x2(xy) = x(x2y) (x, yes/)

is called a Jordan alqebra. A triple product (xyz) in s/ defined by

{xyz) = (xy)z + {zy)x - y(xz)

satisfies following two identities:

(JTS1) (xyz) = (zyx\

(JTS2) (uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz)).

In general a triple system satisfying these two identities is called a Jordan triple
system. This definition was given by Meyberg [10], though the word of
Jordan triple system had already been used in limited senses [3], [13]. He
extended the Koecher's construction of a Lie algebra from a given Jordan
algebra to the case of Jordan triple systems. Kantor [6] extended still more
this construction to the case of generalized Jordan triple systems, which were
triple systems satisfying only the identity (JTS2) by definition. A familiar
example of generalized Jordan triple system and not Jordan triple system is the
space Mmn(R) of m x n real matrices with the product (XYZ) = X*YZ. In a
Lie algebra with an involution a, a subspace U satisfying [[I/ , cr(L/)]5 U~\ c= U
also becomes a generalized Jordan triple system by the triple product (xyz)
= [[x, G(y)~], z]. Starting from a given generalized Jordan triple system,
Kantor constructed a graded Lie algebra, which is called the Kantor algebra for
the generalized Jordan triple system in this paper. A graded Lie algebra ^
= Zr= - oo &iis s a i d t 0 b e °fthe n'th kind (w > 0) if ^ ± n / {0} and <$m = {0} for
\m\ > n. To a Jordan triple system, there associates a graded Lie algebra of the
first kind. Since the Lie product in the Kantor algebra was not easy to explain
in general style, Yamaguti [14] gave another interpretation for the Kantor
algebra in case of the second kind. Moreover he defined a symmetric bilinear
form on a generalized Jordan triple system of the second kind. In case of the
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Jordan triple system, the form coincides with the usual trace form. If the form
is positive definite, then the generalized Jordan triple system is said to be
compact. Loos [7] classified the simple Jordan triple systems over an
algebraically closed field. Also he [8] gave the classification of the real simple
compact Jordan triple systems. The classification of non-compact simple
Jordan triple systems was made by Neher [12]. As for generalized Jordan
triple systems, Kantor [6] classified (up to weak isomorphisms) K-simple
generalized Jordan triple systems of the second kind over an algebraically
closed field. The classification of real simple compact generalized Jordan triple
systems of the second kind was given by us [5] in case that their Kantor
algebras were classical simple Lie algebras.

The aim of this paper is to classify the non-compact classical real simple
generalized Jordan triple systems of the second kind. This problem is reduced
to determine a representative system of a certain equivalence classes (see §5.1) of
involutive automorphisms for every compact real simple generalized Jordan
triple system of the second kind. This is not so similar as in Lie algebras or
Jordan triple systems, because the equivalence classes do not necessarily
coincide with the conjugate classes. Our method used to determine a
representative system is different from Neher's [6] for Jordan triple
systems. Of course, our method is applicable to the case of Jordan triple
systems.

In §1 we summarize some known results, which are used later in this
paper, about generalized Jordan triple systems. Moreover we study about
modifications by involutive automorphisms. Our modifications are different
from ones considered by Neher in Jordan triple systems. In § 2 we study about
the structure group of a generalized Jordan triple system and the automorphism
group of its Kantor algebra. In § 3 we give classification theorems (Theorem
3.5 and Theorem 3.6). In §4 we recall from [5] the result of classification of
compact simple generalized Jordan triple systems with some arrangements and
improvements. In §5 we classify the non-compact classical simple real
generalized Jordan triple systems of the second kind by using classification
theorems obtained in §3.

§1. Basic results on generalized Jordan triple systems

1.1. Let U be a finite dimensional real vector space and let B: U x U
x U -+U be a trilinear mapping. Then the pair (£/, B) is called a triple

system. We shall often write (xyz) instead of B(x, y9 z). A triple system (U, B)
is called a generalized Jordan triple system (or shortly GJTS) if the identity

(11) (uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz))
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is satisfied for all M, v9 x, y, ze U. Furthermore, if the additional condition

(1.2) (xyz) = (zyx) for all x, y9 ze U

is satisfied, then (17, B) is called a Jordan triple system (or simply JTS).
Starting from a given GJTS (17, B), Kantor [6] constructed a certain graded
Lie algebra (or in short GLA) i f (B) = £ £ _«, Ut such that U.1 = U. We call
$£{B) the Kantor algebra for (17, B). We say that (U, B) is of the n-th kind
(n > 0) if U±m = {0} for all m > n and U±H ± {0}. Let us put

L(a9 b) (x) = (oftx), 5 (a, fc) (x) = (axft) - (fcxa),

R (a, ft) (x) = (xab), Ba (x, y) = (xay).

We say that (17, B) satisfies the condition (A) if Ba = 0 implies a = 0.
Let (17, B) be a GJTS satisfying the condition (A). It is known that there

exists a grade-reversing involutive automorphism TB, which is called the grade-
reversing canonical involution, of i f (B) ([5] Proposition 3.8). The following
two lemmas are essentially due to Kantor [6].

LEMMA 1.1 ([1] Theorem 1.1). Let (U,B) be a GJTS of the 2nd kind
satisfying the condition (A), and let xB be the grade-reversing canonical involution
of the Kantor algebra 5£{B) = £f= _2 Ut for (17, B). Then
(i) \J -2 is the sub space of End (17) spanned by all S(a, b),

Uo is the subspace of End (17) spanned by all operators L(a, b).
(ii) We have the following bracket relations in $£ (B):

la, b] = S(b, a), ma, b), xB(c)] =-tB(B(b, a, c)),

[L{a, b), c] = B (a, b, c), [TB (a), 6] = L(b, a),

• lzB(S(a,b)),c-]=xB(S(a,b)c),

lL(a, b), S (c, d)-] = S (L(a, b) c, d) + S (c, L(a, b) d),

IS {a, b), TB(S(C, dm = US (a, b)c, d) - L(S(a, b)d, c),

lL(a, b), L(c, d)-] = L(L(a, b)c, d) - L(c, L(b, a)d),

where a, b, c, deU.

We remark that the following identity is also valid:

(1.5) zB(L(a, b)) = - L(b, a).

The following lemma can be proved by straightforward calculations.

LEMMA 1.2. Let (17, B) be a GJTS satisfying the condition (A). Then, it is
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of the 2nd kind if and only if the following identity is valid:

(1.6) S(S(x, y) u9 v) = S(x9 y) L(u9 v) + L(v9 u) S(x, y)

for all u9 v, x, y e U.

1.2. Let (U, B) be a GJTS. A subspace Voi U is called an ideal (resp. K-
ideal) of ([/, B) if the following relation is valid:

B(V9 U, U) + B(U9 V9U) + B(U9 U9 V) c F

(resp. 5(K I/, I/) + B(l/, I/, K) c F).

A GJTS (I/, B) is called simple (resp. K-simple) if 5 is not a zero map and if
(U, B) has no non-trivial ideal (resp. K-ideal). Obviously the X-simplicity
implies the simplicity, but the converse is not always true. In case of compact
(see 1.3) GJTS's of the 2nd kind, we proved the following

LEMMA 1.3 ([1] Theorem 3.8). Let (U, B) be a compact GJTS of the 2nd
kind. Then (U, B) is simple if and only if it is K-simple.

1.3. Now let (I/, B) be a GJTS of the 2nd kind. The symmetric bilinear
form yB on U defined by

(1.7) yB(x, y) = (1/2)Tr {2R(x9 y) + 2R(y9 x) - L(x, y) - L(y, x)}

is called the trace form of (U, B), where Tr(/) means the trace of a linear
endomorphism / . The form yB was defined by Yamaguti [14] for a wider class
of triple systems. We have following relations concerning the trace form.

LEMMA 1.4. (1) The following identity is valid [4]:

(1.8) yB(w, (xyz)) = yB((j>xw), z) = yB((wzy), x).

(2) Let cp be an isomorphism of (U, B) onto (U\ B'). Then we have

(1.9) yB, ((/>(*), cp{y)) = yB(x9 y) for x,yeU.

(3) Let V be an ideal of (U9 B) and let us denote by B the restriction of B to
V. Then we have

(1.10) yB(x9 y) = yB(x, y) for x9yeV.

(4) If (U, B) satisfies the condition (A), then we have

(1.11) yB(x, y) = ( - l/2)P(x9 TB(y)) = ( - 1/2)/J(TB(X), y)

for x, yell, where /? is the Killing form of the Kantor algebra &(B).

We say that a GJTS (U9 B) is compact (resp. non-degenerate) if its trace
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form yB is positive definite (resp. non-degenerate). It is known [1] that the
condition (A) is always satisfied in every non-degenerate GJTS of the 2nd kind.

1.4. For a JTS (I/, B), a modification by an involutive automorphism <p
was defined in [11] as

£„(*, y, z) = B(<p(x)9 y, z) + B(x9 <p{y)9 z) + B(x9 y9 <p(z)) - <p(B(x9 y, z)).

But we have trouble to seek B^ practically from this definition. So we consider
a different one from this.

Let (U, B) be a GJTS. For any involutive automorphism <p of (17, B), we
define a new triple product B^ on U by

(1.12) B,(x9 y, z) = B(x9 q>{y)9 z).

Then (L7, B^) also becomes a GJTS. We call (17, flv) the (^-modification of
(U, B). We put

L^ (x, y) (z) = £^ (x, y, z), R,(x, y) (z) = B9(z9 x9 y)9

S9(x9 y)(z) = B9(x9 z, y) - B9(y9 z, x).

Then we have obviously

(1.13) L,(x, y) = L(x, 9(y)), R9(x, y) = K(<p(x), y),

(1.14) S^(x,y) = S(x,y)o<p.

LEMMA 1.5. Let (17, £) be a GJTS and cp an involutive automorphism of
(U9 B).
(1) If {U, B) satisfies the condition (A), then so does (U, B^).
(2) If (U, B) is of the 2nd kind, then so is (17, B9).
(3) If (U, B) is non-degenerate, then so is (U, B^).

PROOF. (1) is trivial. By straightforward calculations, using (1.13), (1.14)
and Lemma 1.2, we can see that (2) is true. We will prove (3). Since q> is an
involutive automorphism, we get

(1.15) Tr(R(q>(x)9 y)) = TT(R(X9 <p{y)))9 Tr(L(<p(x), y)) = Tr(L(x, q>{y))).

By (1.13), (1.15) and (1.7), we obtain that

(1.16) K ( * > y) = 7B(*> <p(y)) = yB((p(x)> y)-

Hence, if (U, B) is non-degenerate, then so is (U, B^,).

PROPOSITION 1.6. Let ([/, B) be a GJTS of the 2nd kind satisfying the
condition (A) and q> be an involutive automorphism of (U, B). Then <£(B) is
isomorphic to 3?(B<^ as graded Lie algebras.
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PROOF. Let us define a linear map / : i ? (B)-• JS? (B^) by

S(a, b)^> S9(<p(a), <p(b))9 a ^ <p(a),

L(a, fc)i—• L9(q>(a)9 b)9 TB(a)\-^ TBq>(a)9

Then, using (1.4), we can check in case by case that / is an isomorphism.

PROPOSITION 1.7. Let ([/, B) be a simple GJTS and cp an involutive
automorphism of (U9 B). Then ([/, B^) is a simple GJTS or the direct sum of
two simple ideals, which are mutually transferred by q>.

PROOF. Let Fbe a non-zero minimal ideal of (I/, B^). Since cp is also an
automorphism of (U, B9)9 <p(V) is an ideal of {U, Bv). Hence we see that V
+ <p(V) is an ideal of (U, B). Since (U, B) is simple by the assumption, we
must have U = V + <p(V). On the other hand, from the choice of V9 we have
VC\(p(V) = {0} or <p{V) = V. Therefore, we see that V+ cp(V) = U (direct sum)
or V= U. In the former case, V is obviously a simple ideal of (U, B^).

PROPOSITION 1.8. Let (U, B) be a compact simple GJTS of the 2nd kind
and cp be an involutive automorphism of(U, B). Then the modification (I/, B^) is
a simple GJTS of the 2nd kind.

PROOF. By Lemma 1.3, it is known that (I/, B) is K-simple. Since any K-
ideal of (U, B^) is obviously a X-ideal of (U, B), it follows that (17, B^) is also
K-simple, hence simple.

§2. Structure groups and automorphism groups

2.1. Let (17, B) be a non-degenerate GJTS and yB its trace form. We
denote by \j/ the adjoint operator of \l/eEnd(U) with respect to yB. If cp is an
automorphism of (U9 B), then we get cp~l = cp from (1.9). Let us put

r(l/ , B) = {il/eGL(U)\il/oL(x, y) = Z#(x), ^iy))** for x, yeU}.

We remark that the identity

(2.1) il/ J

is equivalent to

(2.2) +(B(x9 y9 z)) =

It is easily seen that F(L7, B) becomes a group with the composition of
mappings and that T(U, B) contains the automorphism group Aut(£7, B) of
(U, B). The following lemma is well known in case that (U, B) is a JTS.
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LEMMA 2.1. For any non-degenerate GJTS {U, B), the group T(U, B) is
self-adjoint, that is, \j/eT(U, B) for any \l/eT(U, B).

PROOF. For any \I/GT(U, B), using (1.8), we have

yB${xyz), u) = yB({xyz), ^{u)) = yB{z, B{y, x, î (u)))

= yB$(z), B(xl*-\y), #(x), u)) = yB(B$(x), ^ O O , Hz)), u).

Since yB is non-degenerate, we get

This means \j/eT(U, B). Hence F(U, B) is a self-adjoint group.

The group F(l/, B) is called the structure group of (U, B).

EXAMPLE. Let (U, B) be a GJTS as follows (see §4):

U = MpJC); B(X, Y, Z) = XY*Z + ZY*X - ZX*Y.

For any pair (P, Q)eGL(p, C) x GL(q, C), we define a linear endomorphism
[P, Q] on U by [P, Q](X) = PXQ'1. Using the relation ([1])

yB(X, Y) = 2(p + 2q)Re(Tr(XY*)),

where Re (a) means the real part of a complex number a, we obtain [P, Q] ~
= [^*, 6*] . If Q is a unitary matrix, then [P, Q]eT(U, B). Furthermore, if
P is also a unitary matrix, then [P, (2]eAut(l/, 5).

PROPOSITION 2.2. Lef cp a«rf \j/ be involutive automorphisms of a non-

degenerate GJTS (U, B). Then two modifications (U, B^) and (U, B^) are

isomorphic with each other if and only if there exists an element coeT(U, B)

satisfying cb ° \j/ ° co = cp.

PROOF. The "if"-part is easily proved. Now we assume that co is an
isomorphism of (U, B^) onto (U, B^). Then, from (1.16) and (1.9), we have

yB(co(x), i//°co(y)) = yBxj/(co(x), a>(y)) = yBq>(x, y) = yB(x, cp{y)).

Since yB is non-degenerate, we get cb ° \j/ ° co = cp. On the other hand, since co is
an isomorphism, we have

o)(B(x, cp(y), z)) = co(B^(x, y, z)) = B^(co(x), co(y), co(z))

= B(co(x), ij/o co(y),co(z)).

Substituting y by cp"1^) in this identity, we get

0){B(x, y, z)) = B(o{x),il/ocooq)-1(y)i co(z)) = B(co(x), co"1^), co(z)).
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This implies coeF(U9 B), which completes the proof of the "only if "-part.

2.2. The following lemma is analogous to our previous one ([5] Lemma
3.11).

LEMMA 2.3. Let (U, B) be a non-degenerate GJTS of the 2nd kind and
T(U, B) be its structure group. Then any element \l/eT(U, B) induces a grade-
preserving automorphism &W) of 5£(JS). Furthermore it satisfies

(2.3) S£^)oTB = TBo<£$-^.

PROOF. Using Lemma 1.1, we define a linear transformation S£{$) on
<£{B) as

S(a, b) . -

(2.4) L(a, b)

TB(S(a, &

for any a, ft, x, y e L/. Then it is easy to check that S£ (ij/) is a grade-preserving
automorphism of <£{B). Moreover, from the definition of S£{y\i), we have

(2.5) (TB o i f (^ " ̂ ) (X) = TB($ " X W) = ^ W (TsM) = (JS? W ° T j (X),

(2.6) (tB ^

Hence we see that (2.3) is valid on U-x -\- Ux. Since i f (£) is generated by
l/_! + Ul9 it is also valid on <£(B).

Next we put

Aut+JSf(B)= {(jeAut(JS?(B))|(j is grade-preserving},

Aut_iP(B) = {(7eAut(JSf(B))|(j is grade-reversing},

Aut± (if (B)9 TB) = {(7 6 Aut± if (JJ) I Or o TB = Tfl o a } .

Let us consider a map i f : ̂  •-> i f W of r ( t / , 5) into Aut + i f (B). The map ̂ £
is a monomorphism. In fact, the identity

(2.7) ifOA°(?) = ifOA)0i?(<p)

is obviously valid on U =U-X. Furthermore, by use of (2.4), it is valid on
U1. Hence it is also valid on if(B). It is clear that i f is injective.

For any involutive automorphism T of &(B), we define a symmetric
bilinear form /?T on Z£(B) by

j?T(X, 7) =

where )S is the Killing form of
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LEMMA 2.4. Let (U, E) be a non-degenerate GJTS of the 2nd kind. Then
we have

(2.8) xBoaoxB = (a*)-1 for aeAut{<£(B)),

(2.9) <e$) = Sew for <l/er(U, B),

where a* denotes the adjoint operator of a with respect to /?tB.

PROOF. Let <reAut (if {B)). Then we see that

P(X, Y) = p(o(X), a(Y)) = & > ( * ) > *B°O(Y))

= pZB(X, G*°XB°a{Y)) = P(X, TBoa*oxB»

Since )S is non-degenerate, we get TB
OO-*°TB°(T = 1, where 1 denotes the identity

map on i f (B). This implies (2.8). Next let \j/eT(U,B). By use of (2.3) and
(2.7), we have

)*(A-), xB{Y)) = P[XW)*(X), Y).

Hence we get j&?(#) = i f (ij/)*.

THEOREM 2.5. Let (U, B) be a non-degenerate GJTS of the second kind and
if(B) be its Kantor algebra. Then the folio-wing relations are valid:

(2.10)

(2.11) i f (Aut (t/, £)) = Aut+ (J?(B), rB).

PROOF. We have already proved that i f (r(C7, B)) <= Aut + i f (B). For
any ae Aut+ i f (B), we denote by i]/ the restriction of a on U. Then we have

(2.12) ff*G>)

In fact, using (1.11), we have

yB$(y), z) = yB(y, ^(z)) = ( - 1/2)p{xB{y), ^(z))

= ( - \/2)pZB(y, ff(z)) = ( - l/2)iStB(<7*(3;), z)

= ( - l/2)j3(<j*0>), TB(Z)) = yB(<J*(y), z).

Using (2.8) and (2.12), we have

, y, Z)) = (T(.[[TB(y), X], Z]) = [[(JoTj,(y), ff(x)], (7(Z)]
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= B(<J(X), (<T*rl(y), c{z)) =

This means that ^ e r ( t / , B). Moreover, using again (2.4), (2.8) and (2.12), we
have

= <T(X) + (j(TB(y)) = <T(X + r

This means that i f (^) = a on (/_! + £/1? hence on JS? (5). Therefore we see
that & maps r(£/, 5) onto Aut+Ji?(B). Next we get from (2.3) that
S£ (Aut((7, 5)) cz Aut+ (if (5), zB). Conversely, for any <re Au t + \& (B), TB),
there exists ^ G T ( ( 7 , B) such that <£{$) = (*. Hence we have i?(^)oTB

= TB° &({//). From this and Lemma 2.4, we get i f (i^"1) = & WO, hence
\j/~1 = [j/. This means ^eAut ( l / , B). Therefore we have proved that
J?(Aut(l7, 5)) = Aut+ (if (5), TB).

COROLLARY. Let (U, B) be a non-degenerate GJTS of the 2nd kind. Then
we have

Aut(L7, B) = {<x

^ denotes the restriction of a on U.

§3. Classification Theorems

3.1. At first, we show the following

THEOREM 3.1. Let (U, B) be a non-degenerate real GJTS of the 2nd kind
and TB the grade-reversing canonical involution on i f (J3). Then there exists a
grade-reversing Car tan involution o commuting with xB.

PROOF. Since &(B) is semisimple ([1] Proposition 2.4), there exists a
grade-reversing Cartan involution v of <£{B). Then the form /?v is negative
definite by definition. Now we put p = xB ° v. Then the automorphism p of

is self-adjoint with respect to the inner product, which is defined by

(3.1) (X, Y)=- j3v(X, Y).

In fact, we have

) , Y)=- P(TBOV(X), V(Y)) = - P(v(X), TBOV(Y)) = (X,

It follows that p2 is a positive definite symmetric operator. Therefore, there
exists a derivation D on &(B) satisfying
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(3.2) expD = p2.

Now let us put

(3.3) <j = exp( l /4)D°v°exp(- 1/4) D.

Then we see that a is a Cartan involution commuting with xB (see [9] p. 153).
Moreover, since p is grade-preserving, the automorphism exp(l/4)D is also
grade-preserving. It follows from (3.3) that a is grade-reversing.

3.2. Let (U, B) be a GJTS satisfying the condition (A). An involutive
automorphism cp of (U, B) is called a Cartan involution if the (^-modification
(U, By) is compact.

THEOREM 3.2. For every non-degenerate GJTS (U, B) of the 2nd kind, there
exists a Cartan involution on it.

PROOF. By Theorem 3.1, there exists a grade-reversing Cartan involution a
of 5£ (B) commuting with xB. Put

(3.4) (p = o°TB\l].

Then cp is an automorphism of (17, B) by Corollary of Theorem 2.5. It is trivial
that cp is involutive. Using (1.11), (116) and (3.4), we have the relation

= ( - l/2)j?(x, a(x)) = ( - 1/2)/Ux, x).

Hence the form yBqt is positive definite, hereby cp is a Cartan involution.

Let (U, B) be a non-degenerate GJTS of the 2nd kind and cp be a Cartan
involution of it. Then cp is also an automorphism of the compact GJTS
(U, B^. Obviously (I/, B) is the (^-modification of (U, B^). Hence we have
the following

THEOREM 3.3. Any non-degenerate GJTS of the 2nd kind is obtained by a
modification of a compact GJTS.

3.3. For a given GJTS (U, B), let us consider the direct sum (U + 17, B
+ B) as triple system. This direct sum also becomes a GJTS. A linear map
cp:U + U^>U + U defined by cp((x, y)) = (y, x) is an involutive automorphism
of (U + U, B + B). Hereafter we shall denote by (U, B) the (^-modification of
(U + U,B + B), that is,

(3.5) B((xu x2), (yl9 y2), (zl9 z2)) = (B(xu y2, zx)9 B(x2, yl9 z2)).

We call (U9 B) the special direct sum of (U, B).
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PROPOSITION 3.4. If(U,B) is a compact simple GJTS of the 2nd kind, then
(U, B) is a simple GJTS of the 2nd kind.

PROOF. Let W be a non-zero ideal of (U, B). Let us put

V={XGU\(X, 0)EW}.

We will prove that V is a non-zero K-ideal of (U, B). Let us assume that V
= {0}. From the assumption of W being nonzero, there exists a non-zero
element (x, y) in W. For any u,veU, we have

(By(u, v), 0) = (B(u, y, v), 0) = B((u, 0), (x, y), (v, 0))eW.

Since V= {0}, we get By{u, v) = 0, hence By = 0. Since a simple GJTS satisfies
the condition (A) ([1] Proposition 2.5), it follows that y = 0, that is,
(x, 0)eW. Using again the assumption V= {0}, we obtain x = 0, which
contradicts to the choice of (x, y). Therefore V is the non-zero subset of
U. For x, ye U and zeV, we have

{B(z, x, y), 0) = 5((z, 0), (0, x), (y, 0))e W,

(5(x, y, z), 0) = 5((x, 0), (0, y), (z, 0 ) ) e K

Hence we see that B(z, x, y) and £(x, >̂ , z)eV. Therefore V is a X-ideal of
(U9 B). On the other hand, since (U, B) is also X-simple by Lemma 1.3, we
must have V = U. It follows that U + {0} <= W. Using this relation, we get

(0, B(x, y, z)) = 5((0, x), (y, 0), (0, z))eW

for any x, y,zeU. Since 5(17, I/, 17) = U, we get {0} + U c W Therefore
we have W = L7 + U = U.

THEOREM 3.5. Any non-compact simple GJTS of the 2nd kind is obtained as
(1) a modification of a compact simple GJTS of the 2nd kind by an involutive

automorphism, or
(2) the special direct sum of a compact simple GJTS of the 2nd kind.

PROOF. Let (U, B) be a non-compact simple GJTS of the 2nd kind. Since
it is non-degenerate ([1] Theorem 2.8), by Theorem 3.3, there exist a compact
GJTS (U, B') and an involutive automorphism cp of (U, B') such that B
= B'y. We remark that we also have B^ = B'. Now we assume that (U, B') is
not simple. Then, by Proposition 1.7, we see that U = V+ cp(V) (direct sum)
and V is a simple ideal of {U, B'). We denote the restriction B'\VxVxV by the
same symbol B'. From (1.10), we see that an ideal of a compact GJTS of the
2nd kind is also a compact GJTS. Hence (V, B') is a compact simple GJTS of
the 2nd kind. Identifying cp(V) and V, we see that (U, B) is isomorphic to
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(V, B'). In fact, we define a linear map f:U->V by f(x + (p(y))
= (x, y) (x, yeV). Then we have

f(B(u + (?("), w + <p(x), y + cp(z))) = f(B'(u + (p(i>), x + cp(w), y + p(z)))

= /(fl'(u, x, y) + <p(ff(v, w, z))) = (£'(u, x, y), B'(v, w, z))

= B'((u, v), (w, x), (y, z)) = F ( / ( M + <p(v))9 / (w + ^(x)), / (y + <p(z))).

Hence / is a homomorphism of (U9 B) to (V, B'). Since / is obviously bijective,
we have proved that (U, B) is isomorphic with (F, Bf). Therefore ([/, B) is
isomorphic to the special direct sum of the compact simple GJTS (F, B').

THEOREM 3.6. Let (U, B) be a non-degenerate GJTS of the 2nd kind, and let
cp and \j/ be involutive automorphisms of(U, B). Then the modification ([/, B^) is
isomorphic with (U, B^) if and only if there exists a grade-preserving
automorphism o of & (B) such that

(3.6) a-1oTBo^((p)o(7 = TBo^(il/).

PROOF. Assume that (17, B^) and (I/, B^) are isomorphic with each
other. From Proposition 2.2, there exists an element (oeT(U,B) such that
d)°(po<y = i/f. Hence we get &(cb)oJ? (cp)° & (co) = ^(ij/). It follows from
(2.3) that

Jfico)-1 OTBO J?((p)o <?(co) = TB°

Conversely, let or be a grade-preserving automorphism of ^(B) satisfying
(3.6). Then, by Theorem 2.5, there exists fieT(U, B) such that 5£{\x)
= <j. Using (2.8), we get ££(\if°£(<p)°jS?(/x) = S£(^). Hence, using again
(2.9), we get \io<po\i — i//. It follows from Proposition 2.2 that (17, B^) and
(U, B^) are isomorphic with each other.

§4. Compact classical simple GJTS's of the 2nd kind

In [5], we gave the classification of compact classical simple GJTS's of the
2nd kind. Here again we will write it down by another representation with
some improvements. Throughout this section, we will use following notations.

/?(resp. C, H): the set of all real (resp. complex, quaternion) numbers,
fX : the transposed matrix of a matrix X,
X*: the transposed conjugate matrix of X,
In : the identity matrix of degree n,
Jn = (aij): ^ e matrix of degree n such that atj = 5ifH+1-j9 where 5Uj

denotes the Kronecker's delta,
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o i \ / o j n \ - ( o l

'n

Kn = Jn®[ ) , where i denotes the imaginary unit,

MPfq(K): the vector space of all p x q matrices with entries in K, where
K = R C

Mp>q(H) = {XeM2p'2q(Q\XJq = JpX}9

Mn(K) = Mn>n(K),
Alt'n(K) = {XsMn{K)\tXJn + JnX = 0}.

THEOREM 4.1 ([5]). Compact classical real simple GJTS's (U, B) of the 2nd
kind are classified (up to isomorphisms) as follows:

1. U = MpJK) x Afftr(K), K = R,C,H, p<r;

X2)'\Y2)' \Z2JJ \X2Y2*Z2 + Z2Y2*X2 - YfXa

2. U = Mp,q(R), 2<p;

Br(X, Y,Z) = X'YZ + Z'YX - ZAq<r'XYAq_r,

0<,r<q/2 if q is odd or (p, q) = (2, 2),
0 < r < q/2 otherwise.

3. U = MPJQ;

Br(X, Y,Z) = XY*Z + ZY*X - ZAq>rX*YAq<r,

0<r<q/2 if q is odd or (p, 9) = (1, 2), (1, 4), (2, 2),
0 < r < q/2 otherwise.

4. U = MPj2,(X), where K = R, C, (p, <?) # (1, 1);

B(x, Y, z) = xy*z + zr*x + zjq'XYJq.

5. U = MPJQ, 2<p, (p,«)#(2,2);

5(AT, i; z) = xr*z + zy*z - Z'XY.

6. U = MPJH);

Br(X, Y,Z) = XY*Z + Z7*X - Z^;rZ*K4;r, O < r < q/2.
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7. U = MPyq(H), (p, 4) #(1,1), (1,2);

B(X, Y,Z) = XY*Z + ZY*X + ZKqX*YKq.

8. U = MliB(X) x Alt'n{K), where K = R, C, 4 < n;

= /Xi Yl*Z1 + Z,Y1*X1 - Z,X2Y2* _ \
\X2Y2*Z2 + Z2Y2*X2 - YfXiZi ~ Z.J^X^JJ-

§5. Ossification of non-compact classical simple GJTS's

Throughout this section, we keep the notations in the previous
section, We will also use following notations for matrices:

i-h ° o \
H(q,j)= 0 /,_2J. 0 (0<j

\ 0 0 - Jj /

/ 0 0 Jj v
K(q;j,k)=i 0 H(q-2j,k) 0 (0 < j ^ q/2, 0 < k +J < q/2),

\Jj 0 0 /

L(q,r;j,k) =

. S(r,k) + S{r,j) 0 (S(r,k)-S{r,j))Jr

- 0 2J,_2rS(<z-2r,fc-r)J,_2r 0

\ J,(S(r, fc) - S(r,;)) 0 Jr(S(r, k) + S(r, j))Jr

l,J) = S(q,j) - '

L'(q, r; j , k) = L(q, r; j , fc) (g) I2.

Moreover we will use following notations for mappings:

IP, Q, K](X, Y) = (PXQ-\ QYR-1),

<o(X, Y) = (X, Y), x(X, Y) = {-% -'X),
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for (X, Y)eMpJK)xMq,r(K);

\ co(X) = X

for XeMpJK).

5.1. Let (U, B) be a compact simple GJTS. We put

Inv((7, B) = the set of all involutive automorphisms of (U, B),

= the set of all involutive automorphisms of S£(B),

Inv_ (if (£), xB) = Inv(J?(B))n Aut_ (&(B), xB).

For cr, pelnv_ (J^(B), TB), we say that a is equivalent to p (denoted by a ~ p) if
£~lo(T°€ = p for some £eAut+(«£?(£)). We denote by 0t a representative
system of equivalence classes of Inv_ (&(B), zB) under this equivalence
relation. Moreover, we put

For cp, \l/eAut(U, B), we say that cp is equivalent to \j/ under F([7, B) if there
exists an element coeF(C7, 5) such that eb°(p°co = i//. Then we see that the set
& is a representative system of equivalence classes under T(U, B) of Inv(£/, B).

For classification of non-compact simple GJTS's, by Theorem 3.5 and
Theorem 3.6, it is sufficient to decide the set Sf, equivalently the set 0t, for every
compact simple GJTS.

5.2. Let (U, B) be a compact classical real simple GJTS of the 2nd
kind. It is known ([1]) that its Kantor algebra S£ (B) is a non-compact simple
Lie algebra and the grade-reversing canonical involution xB is a Cartan
involution of 5£ (B). For brevity we put 9 = & (B). Let 9 = X + 9 be the
Cartan decomposition of ^ by TB, that is,

Jf = {Xe$\TB(X) = X}9 0> = {Xe<Z\xB(X) = - X}.

Let G be a connected classical simple Lie group, whose Lie algebra is
isomorphic to ^ , and let K be the analytic subgroup of G corresponding to
Jf. Let us denote by Inn(^) (resp. Inn(^, zB)) the set of all inner
automorphisms (resp. inner automorphisms commuting with TB) of <§. Then it
is known that Inn(^) = Ad^(G), Inn(^, TB) = Ad^(K) and Inn(^, xB) is a
maximal compact subgroup of Inn(^). Furthermore, since G is the self-adjoint
subgroup of GL(n, C), we can obtain the group K as K = GnU(ri), where U(n)
denotes the group of unitary matrices.

The following proposition is used in process of deciding representative
systems Sf in §5.5.
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PROPOSITION 5.1 ([2]). Let G be a compact but not necessarily connected
Lie group and S be a Car tan subgroup of G generated by z. And let Go (resp. So)
be the connected component of the identity of G (resp. S). Then any geGoz is
conjugate to an element of Soz via conjugation by an element of Go.

5.3. For example, we will firstly consider about the following GJTS
{U, B):

U = MPJR) x MqJR), p<r;

Jl. ^ l \£i \ i ^ \ * 1 ^ 1 — 1 2 2

In this case, we have following results:

Kantor algebra: ^ = S£(B) = sl(n, R), where n = p + q + r,

Cartan involution: TB(X) = — fX,

Characteristic element:

/ ( a - l ) J , 0 0
£ = f 0 a/a 0 I , where a = -—- ,

\ / n

\ 0 0 (a-l)/r/

Aut(^) = Ad#(SL(n, R))\jzBoAd9(SL(n, R))9 where

SL'(n, R) = {PeGL(n, R)\detP = ± 1}.

Now we assume that p < r. Then we have

Aut + ^ = {Ad (P) I Ad (P) E =* £}

Px v PieMp(R),

Ad(P) P= [ P2 )eSL'(n,R), P2eMJR), ,

P

Inn_ ^ = (f>,

t_(#, xB) = {TBoAd(P)|P = I P2 eO(n)},

If tfio Ad(P)eInv_ (#, TB), then we have P2 = I or P2 = - /, where the latter
occurs only when n is even. If P2 = I, then P is a symmetric orthogonal
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matrix. Hence we get

/ S(p, i)
Ad(P)~Adl S(q,j)

V S(r, k) •

under Aut+(^, TB). Therefore we see

/ S(p, i)
(5.1) TB o Ad (P) - TB ° Ad S{q, j)

\ S(r,k)

0<i<p, 0<j<-,

If P2 = - /, then Pt(i = 1, 2, 3) is a skew-symmetric orthogonal matrix. Hence,
we have that p, q and r are all even and that

Ad(P)~Ad(JM/2)

under Aut+(^, TB). Hence we also get

(5.2) Tf

From (5.1) and (5.2) we see that

/ S(p, i)

V S(r,k)

TB ° Ad (Jn/2) if p, q and r are even}.

Since any element X = {X^ X2)eU is imbedded in J?(B) as

/ 0 Xx O N

X = 0 0 X2 ,
^00 0 '

we have
/O p.^pr1 o

Ad(P)A' = P X P - 1 = 0 0 P2X2Pi~
i

\ 0 0 0

Therefore we get
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A 0, S(q,j), S(r9 /c)] (0 < i < p, 0 <j < q/2, 0 < k < r),

[Jp/2, Jq/2, Jr/2~] if P> 4 and r are even}.

Next we assume that p = r. Then we have

_(», TB) =

U{Ad(0ie= Q2 )eO(n)}.

Let Ad(<2)elnv_ (^, TB). Then Q is a symmetric or skew-symmetric (the latter
occurs only when q is even) orthogonal matrix. If Q is symmetric (resp. skew-
symmetric), then there exist matrices Tl9 T2 and T3 satisfying

T i G i T a " 1 ^ Tl9T3eSL'(p,K)9

TiQiTi"1 = S(qJ) for some j (resp. T2Q2T2~
l = Jq/2).

Therefore, putting

(Tl \
T= T2 eSL'(n,R),

V TJ
we have

[ \TQT~l=[ S(q,j) \ (resp. j

Hence we get

(5.3) Ad(0~Ad I S(qJ) j or Ad(Q)~ Ad j Jq/2

under Aut+^. Therefore we see that

^ = { r B ° A d S(q,j)

V S(r,k) I
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Ad ( S(q,j) j (0<j<q),

( - I P \

Ad I Jql2 I if q is even,

TB ° Ad (Jn/2) if p, q and r are even}.

From the following identity

/o - ^ ^ e r 1 ) o v
(rB°Ad(Q))X= 0 0 -\QiXlQ2~

i) ,

^00 0 /

we see

p, 0, S(4 ;), S(r, fc)] (0 < i < p, 0 < ; < 9 /2, 0 < k < r),

* ° Up, Jqii, ~ Ip] if 1 is even,

Opiz, Jqi2> Jriil if V, Q and r are even}.

5.4. For another example, we will consider about the following GJTS

U = MPJR), 2<p;

Br(X, Y, Z) = X'YZ + Z'YX - ZAqJXYAq,r, 0 < r < q/2.

For brevity, we put m = p + r,n = p + q — r. In this case, we have following
facts:

Kantor algebra: 0 = &(B) = so'(m, n)

= {XeSI(m + n, R)\'XAm+n,m + Am+n,mX = 0},

Cartan involution: xB(X) = - ' X = Ad(Xm+niJA',

Characteristic element: E = 0,

Inn(^) = Ads(SO'(w, n)°), where

SO'(w, n) = {PGSL(W + «, R)\'PAm+n,mP = ^lm+n,m},

S0'(m, rif = the identity connected component of S0'(m, n),
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Aut(^) = Ady(O'{m9 n))9 where

O'(m, n) = {PeGL(m + n, R)\<PAm+ntmP = Am+nJ,

+V = {Ad(P)\P = I P2 I eO'(m, n)}9

_ ^ = {Ad(0|Q = Q2 eO'(m, n)}9

i = {Ad(G)IG=( 62 eO'(m,n)nO(m + n)}.

Let Ad (g) e Inv _ (^, zB). Then we have

r.2 u . j ± / m + n if m and n are even,
g 2 e t h e center of SO (m, n) = }

Im+n otherwise.

Let us assume that Q2 = I. Then we have

2ieO(p) , Q2e0'(r, q - r)f]O(q), Q3 = JpQxJp9

Q2
2 = j9 QiQs = /, detQ2 = (— l)p.

Since G3==Gi~1> w e have {QiJp)
2 = /. Furthermore, since (^J^ is an

orthogonal matrix, it is symmetric. Hence there exists

7\ e 0(p) such that TdQJJ T,"x = S(p, i) (0 < i < p).

As for Q2, the problem is troublesome. In case of g2e5O /(r , f̂ — r)°, there
exists a matrix T2eSO'(r, q - r)°(]O(q) such that

T J G J ^ " " 1 = L(̂ f, r; 2;, 2k)AqtF (0 < 2; < r, 0 < 2k < q - r).

If Q2 is not contained in SO'(r, q — r)°, then we examine about the conjugacy of
Q2 in case by case. For example, let us assume that Q2eSO'(r, q — r)
- SO'(r, q - r)°. Now we put

(r, 1) 0

0 JqS(q-r9l)Jq

Since Q2eC°SO'(r, q — r)°, by Proposition 5.1, there exists a matrix
T2 eSO'(r, q-r)°(\ O(q) satisfying T2Q2 T2"

x = C°Lfe r; 2j, 2k) A^r. On the
other hand, it is easily seen that C°L(q, r; 2/, 2k)Aqr is conjugate to L(g, r;
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2/ - 1, 2k - l)Aqtr. Hence we may consider that T1QylT1~
1 = L(q, r;2j - 1,

2k - l)Aqr. In case of Q2 iSO'(r, q - r), similarly we see that Q2 is conjugate
to L(q, r ; 2/ - 1, 2k)Aqt, or L(g, r ; 2j, 2/c - l)Aqtr. Hence we get together that
Q2 is conjugate to L(q, r;j, k)Aqr by an element of SOf(r, q — r)°f)O(q). Let
us put

Then TeSO'(m, n)on0(m + n) and

/ S(p,«Vp\
T I S T - ^ L{q,r;j,k)Aq<r

K JPS(p, i) I

{0<i<p,0<j<r,0<k<q-r).

Therefore we get

/ S{p,i)Jp\
Ad(0~Ad L(q,r;j,k)Aq<r

Since Ad(T)£lnn+(^, tB), we have

(5.4) xB o Ad (Q) ~ xB o Ad I L(q9 r; j , fc) Aq, r

\ JpSip, i)

Since any element X eU is imbedded in i?(2?) as

,ox ox
i = o o r , x'= -Ajj.

^ 0 0 0 ^

we have

/ 0 Q.JpXA^Q^ 0

(T B °Ad(0)Z= 0 0 -Q

\ 0 0 0

for every matrix
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( X
Hence, considering the restriction of the map (5.4) on U, we obtain an element
[S(p, 0, L(q, r; j , fe)] of Sf. Since [P, Q] = [ - P, - g ] , we may assume that i
runs from 0 to p/2.

Next let us assume that Q2 = — /. Then QxJp and Q2 are alternative
matrices and satisfy (Qx Jp)

2 = - /, Q2
2 = — /. Hence p, g and r must be

even. There exist 7\eO(p) and T2eSO'(r, q - r)°nO(q) such that

Putting T as above mentioned, we get

(5.5) TQT'^i 0 S{q/2,r/2)Atir 0 1.
V ^pip/2 0 0 /

Hence we also see [J p / 2 , S{q/29 r/2)]G«^. Therefore we get

^ = {[S(p,0,L(9,r;j ,fc)] (0 < i < p/2, 0 < j < r, 0 < k < q - r),

^ r/2)] if P, ̂  and r are even}.

5.5. In this last paragraph, we list up the representative systems Sf of
equivalence classes of involutive automorphisms for all compact classical simple
GJTS's of the 2nd kind.

1. U = MPiq(R) x Af,,,(«), p<r;
XA (YA (Zi\\^fX1

tY1Z1+Z1
tY1X1-Z1X2

t'i
Y r \ V r \ 7 II \ Y *Y 7 4- Z lV Y *Y Y 5

^ 2 / \ r 2 / \ Z 2 / / \A2 I2£2-\- 62 12A2— IIAJLZ

(1) In case of p < r:

lS(p, 0, S(«, j), S(r, k)] (0 < i < p, 0 < j < qlX 0 < k < r),

[^p/2» ^q/2» Jrll\ ^ P> <l anC^ T a f e e v e n -
(2) In case of p = r:

[S(p, 0, S(9, J), S(p, fc)] (0 < i < k < p, 0 < j < q/2),

if p and g are even,

- / , , J,/2, ̂ p] if « is even.
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2. U = MpJQxMq,r(Q, p<r;

((XA (YA (ZA^^/X^Z.+Z^X.-Z.X

\\Y I' I y / ' \ z / / \ Y y* 7 -L y y* Y — Y * Y

(1) In case of p < r:

[S(p, 0, Sfo,;), S(r, fe)] (0 < i < p, 0 < j < «/2, 0 < /c < r),

CO,

^ ° [^P/2» Jq/2> Jr/i] ^ P, 1 and v 2iTQ even.

(2) In case of p = r:

p, 0, Sfe j), S(p, k)] (0 < i < k <. p, 0 < j^ ̂  «/2),

Jq/2* I pi ^ 4 is even,)

/ 4 / 2 , Jp/2] if p and q are even,

3. U = MpJH)xMq,r{H), p^r;

'XA [YA fZA\ (X1Y?Z1+Z1Y?Xt-Z1X2Y2*
1 ' Y I9 \ Y I9 \ 7 II \ Y Y* 7 -I- 7 V*Y V* Y '

AlJ \Y2/ \ L 2 ) ) \A2*2 Z2 + Z2^2 A2 ~" ̂ 1 A \A

(1) I n c a s e o f p<r:

p, 0, Sf(q, j), S'(r, fe)] (0 < i < p, 0 < j < q/2, 0 < k < r),
CO.

(2) In case of p = r:

[S'(p, 0, S'(«, /), S'(p, k)] (0 < i < k < p, 0 < j < 4/2),

CO,

T,

CO°T.

4. U = MPJK), 2<p ;

5r(^, l; Z) = ̂ fyZ + ?YX - ZAjXYAq^ 0 < r < q/2.

[S(p, 0, L(q, r;j, fc)] (0 < i < p/2, 0 <j < r, 0 < k < q - r),

r/2)] if p, ̂f and r are even.
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5. U = Mp,2q(R), 2<p, (p,<j)#(2,l);

B(X, Y,Z) = X'YZ + Z'YX - ZJ2q'XYJ2q.

[S(p, i), K(2q; j , *)] (0 < i < p/2, 0 < j < q, 0 < k < q - j),

[S(p, 0, S(2q, q)2 (0 < i < p/2),

[JP / 2 , J , ] if p i s even.

6. U = MPi2q(R), (p, g ) # ( l , 1);

B(X, i; Z) = Z'YZ + Z'YX + zJq'XYJq.

lS[p, i), H(2q, m (0 < i < p/2, 0 < j < q),

[S(p, i), S(2q, <j)] (0 < i < p/2),

[ Jp /2 , JqH(2q,;)] (0 < ; < q) if p is even.

7. J7 = MP>,(C);

Br(Z, Y Z) = XY*Z + ZY*X - ZAq<rX*YAq,r, 0 < r < q/2.

[S{p, i), L(q, r;j, *)] (0 < i < p/2, 0 <j £r,0 <k < q - r),

(O,

i»o[J,12, S(q/2, r/2)] if p, q and r are even.

8. U = Mp<2q(Q, 4<p + q;

B{X, Y, Z) = XY*Z + ZY*X - ZJ2qX*YJ2q.

lS(p, i), K(2q; j , ft;)] (0 < i ^ p/2, 0 < j < q, 0 < k < q - j),

[S(p, 0, S(2q, «)] (0<i

CO,

^•"[^P^. ^J if P is even-

9. U = Mp,2q(C), (p,q)¥=(U 1);

:, U Z) = XY*Z + ZY*X + ZJq'XYJq.

[S(p, 0, ff (2«, m (0 < i < P/2, 0 < ; < 4),

[S(p, 0, S(2q, q)-] (0 < i < p/2),

fi» ° [ ̂ P/2, ^ ,^(2«, j)] (0 < j < q) if p is even.
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10. U = MPJQ, 2<p, (p,q)* (2,2);

B(X, Y,Z) = XY*Z + ZY*X - Z'XY

[S(p, 0, S(q,;)] (0 < i < p/2, 0<j<q),

(O°Up,S(q,m (0<j<q/2),

« ° [ ^ P / 2 ' Jq/2] if P and q are even.

11. U = MPJH);

Br{X, Y,Z) = XY*Z + ZY*X - ZA'q_,X*YA'qir, 0 < r < q/2.

IS'ip, i), L'(q, r; j , fc)] (0 < i < p/2, 0 < ; < r, 0 < k <L q - r),

CO.

12. U = Mp,2q(H);

Bq(X, Y,Z) = XY*Z + ZY*X - ZJ'2qX*YJ'2q.

iS'{p, i), K'(2q; j , fc)] (0 < i < p/2, 0 < ; < q, 0 < k < q - j),

[S'(p, 0, S'(2q, q)-] (0 < i < p/2),

CO,

co°lI2p,S'(2q,q)l

13. U = Mp,q{H), (p, q) * (1, 1), (1, 2);

B(X, Y,Z) = XY*Z + ZY*X + ZKqX*YKq.

IS'ip, i), K'(q; j , fc)] (0 < i < p/2, 0<j< q/2, 0 < k <Z q/2 - j),

CO,

IS'ip, i), S'(q, q/2)-\ (0^i< p/2) if q is even,

14. U = MUn(R) x Alt'n(R), 4 < n;

B((XX2)>{Y
f V 'V 7 _L 7 'V Y 7 Y *V

•**• 1 •* 1 ^ * 1 • ^ 1 •* 1 ^ - 1 ^ 1 * ^ 2 2

7 tY Y —XYY7 —

[/i, S(n, 0, JnS(n, i) J J (0 < i < n).

15. U = MUn(C)x Alt^(C), 4<n;
' Y \ / Y \ / 7
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= / Xt YfZt + Zt YfXi - Z,X2 Y2* _ \
V%2Y2 Z2 + Z2Y2 X2 — Yt XXZ2 — Z2Jn Xx Yx Jn)

CO.
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