Classification of weighing matrices of small orders

Hiroyuki Ohmori
(Received December 26, 1990)

Summary

The classification problem of weighing matrices of orders not exceeding 14 has been completed by Chan et al. [2] and Ohmori [17, 18]. In this paper, we first consider a construction problem of weighing matrices of order $8 a-2$ and weight $4 a$ for $a \geq 2$. A general solution for the intersection pattern condition, which is necessary to construct such weighing matrices, is given. Furthermore, the complete classification of weighing matrices for the case $a=2$ is made.

1. Introduction

A weighing matrix W of order n and weight k is an $n \times n$ matrix with elements $+1,-1$ and 0 such that $W W^{t}=k I_{n}, k \leq n$, where I_{n} is the identity matrix of order n and W^{t} denotes the transpose of W. We refer to such a matrix as a $W(n, k)$. A $W(n, n)$ is called a Hadamard matrix of order n. It is known that the order of a Hadamard matrix is 2 or a multiple of 4. In fact, the concept of weighing matrices was introduced by Taussky [24] as a generalization of Hadamard matrices. However, in the area of design theory, weighing matrices appear naturally as the "coeffi int" matrices of an orthogonal design (see Geramita and Seberry [4]) and us applications for weighing designs (for example, see Chakrabarti [1], Federer [3], Raghavarao [22]). Furthermore, weighing matrices have been studied in order to find optimal solutions to the so-called weighing design problem of weighing objects whose weights are small relative to the weights of moving parts of the balance being used. It was shown by Raghavarao [21, 22] that if the variance of the errors in the weights obtained by individual weighing is σ^{2} in the usual weighing design set up, then using a $W(n, k)$ as a design of an experiment to weigh n objects will give the variance σ^{2} / k. Indeed, in the class of all such weighing designs for $n \equiv 0(\bmod 4)$, a Hadamard matrix is optimal. Furthermore, in the class of all weighing designs for $n \equiv 2(\bmod 4)$, a symmetric conference matrix (that is a kind of $W(n, n-1)$) is optimal. Weighing matrices also have applications in the area of coding theory. A linear code is an l-dimensional subspace of the m-dimensional space over Galois field $G F(q)$. The
weight of a vector is defined by the number of non-zero elements of the vector. The minimum weight of a code, denoted by d, is the weight of the non-zero vector having the smallest value of weight in the code. It is quite useful to know the value of minimum weight d since a code of such d can correct $\left[\frac{d-1}{2}\right]$ errors. Thus, given m and l, it is worthwhile to obtain a code having d as large as possible. There are many investigations for linear codes constructed by using $W(n, k)$'s over $G F(3)$, for example, see [16], [19], [20], [23]. Thus, the problem of classifying weighing matrices is important in the area of discrete mathematics and statistics.

Two weighing (Hadamard) matrices are said to be equivalent if one can be transformed into the other by using the following operations: (i) multiply any row or column by -1 ; (ii) interchange two rows or two columns. If a $W(n, k)$ is equivalent to its transpose, the matrix is said to be self-dual. It is known that the complete classification of Hadamard matrices whose orders are less than or equal to 24 has been completed (see Hall [5, 6, 7], Ito et al. [9], Kimura [11], Wallis [27]). Furthermore, it has been shown (Kimura [10, 12], Kimura and Ohmori [14, 15], Tonchev [25, 26]) that there are at least 486 inequivalent Hadamard matrices of order 28. On the other hand, the problem of classifying weighing matrices started recently. Chan, Rodger and Seberry [2] classified the inequivalent weighing matrices of any order with weights less than 6 . For $1 \leq k \leq n \leq 13$, all $W(n, k)$'s have been classified by Chan et al. [2] and Ohmori [17, 18]. As a next step of investigation, it is appropriate to consider the classification problem of weighing matrices of order 14. Geramita and Seberry [4] proved that if $n \equiv 2(\bmod 4)$ then for a $W(n, k)$ to exist, $k \leq n-1$ and k is the sum of two squares. Thus it is now sufficient to consider only the cases of $k=1,2,4,5,8,9,10,13$ for the classification problem of $W(14, k)$'s. For the cases of $k \leq 5$ and $k=13$, it has been completed by Chan et al. [2]. The available construction of $W(n, k)$'s is fully based on the intersection pattern condition (IPC) which consists of two linear equations with non-negative integral variables, because it allows us to get considerable information about the structure of a weighing matrix.

In this paper, we shall deal with the classification problem of $W(8 a-2,4 a)$'s, where a is an integer greater than or equal to 2 . In Section 2 , we present a general solution for IPC. It is essential for the problem of constructing weighing matrices to determine whether there are weighing matrices having the "inner structure" associated with solutions of IPC or not. In fact, for some solutions of IPC, it is shown in Section 2 that there is no weighing matrix having the "inner structure" associated with them. In Section 3 , we deal with the case $a=2$. A set of $W(14,8)$'s which contains all in-
equivalent weighing matrices of order 14 and weight 8 is provided. Furthermore, all $W(14,8)$'s are classified into matrices of some types by solutions of IPC. The set of these matrices is obtained by first constructing all inequivalent admissible and feasible matrices belonging to each of types, secondly extending feasible matrices to weighing matrices with the aid of a personal computer or through the trial and error method, and thirdly removing equivalent weighing matrices by using automorphism groups of feasible matrices. These matrices are also classified into some classes by using the \mathbf{C} - or \mathbf{T} distribution associated with each weighing matrix. Two tables are also presented in Section 3. T-distributions are listed in Table 1. They are helpful to classify weighing matrices. All weighing matrices $W(14,8)$'s constructed in Section 2 are given in Table 2. They are divided into representative matrices of inequivalent classes and others. In conclusion, $W(14,8)$'s will be classified into 65 inequivalent classes, and the result is useful for further classification of all inequivalent $W(14 n, 8 k)$'s by combining a $W(n, k)$ and $W(14,8)$'s, and of all inequivalent $W(m, 8)$'s, where $m>14$.

2. General solution for IPC with parameters $8 a-2$ and $4 a$

Let \mathbf{x} and \mathbf{y} be row (column) vectors of the same size, and $\mathbf{x} * \mathbf{y}$ denote the Hadamard product, i.e. elementwise product. In this case, $|\mathbf{x} * \mathbf{y}|$ is called the intersection number of \mathbf{x} and \mathbf{y}, where $|\mathbf{z}|$ means the number of non-zero elements of a vector \mathbf{z}. In particular, $|\mathbf{x} * \mathbf{x}|$ is called the weight of \mathbf{x}.

The following fundamental result is due to Chan et al. [2].
Proposition 2.1. Let M be a weighing matrix of order n and weight k, and let \mathbf{m} and \mathbf{n} be different rows (columns) of M. Then $|\mathbf{m} * \mathbf{n}|$ is even. Further let $x_{2 l}$ be the number of rows (columns) of M having the intersection number $2 l$ with \mathbf{m}. Then the set of such non-negative integers $\left\{x_{2 l}\right\}$ satisfies the equations:

$$
\sum_{l=k_{0}}^{k_{1}} x_{2 l}=n-1 \quad \text { and } \quad \sum_{l=k_{0}}^{k_{1}} 2 l x_{2 l}=k(k-1)
$$

where $k_{0}=\max \left\{0,\left[\frac{2 k-n}{2}\right]\right\}, k_{1}=\left[\frac{k}{2}\right]$, and $[s]$ is the largest integer not exceeding s.

Definition 2.1. Denote the set of all weighing matrices of order n and weight k by $\Delta(n, k)$. Let \mathbf{m} be a row (column) of $M \in \Delta(n, k)$ and $\mathbf{c}=$ $\left(x_{2 k_{0}}, x_{2 k_{0}+2}, \ldots, x_{2 k_{1}}\right)$ be the vector whose elements are intersection numbers associated with \mathbf{m}, where $k_{0}=\max \left\{0,\left[\frac{2 k-n}{2}\right]\right\}$ and $k_{1}=\left[\begin{array}{l}k \\ 2\end{array}\right]$. In this case,
\mathbf{c} is called the intersection pattern of \mathbf{m}, and M is said to have an intersection pattern \mathbf{c}.

Definition 2.2. For given positive integers n and $k(n \geq k)$, the following equations are called the intersection pattern condition (IPC) with parameters n and k :

$$
\begin{gather*}
x_{2 l} \geq 0 \quad\left(k_{0} \leq l \leq k_{1}\right), \tag{1}\\
\sum_{l=k_{0}}^{k_{1}} x_{2 l}=n-1, \tag{2}\\
\sum_{l=k_{0}}^{k_{1}} 2 l x_{2 l}=k(k-1),
\end{gather*}
$$

where $k_{0}=\max \left\{0,\left[\frac{2 k-n}{2}\right]\right\}$ and $k_{1}=\left[\frac{k}{2}\right]$. A solution $\left\{x_{2 l}\right\}$ satisfying (1), (2) and (3) is expressed as $\left(x_{2 k_{0}}, x_{2 k_{0}+2}, \ldots, x_{2 k_{1}}\right)$. The set of solutions of IPC is denoted by $\Gamma(n, k)$.

Remark 2.1. Let \mathbf{m} be a row (column) of $M \in \Delta(n, k)$ and \mathbf{c} be the intersection pattern of \mathbf{m}. Then Proposition 2.1 shows $\mathbf{c} \in \Gamma(n, k)$. Conversely, for $\mathbf{c} \in \Gamma(n, k)$, a matrix having an intersection pattern \mathbf{c}, however, may exist or may not in $\Delta(n, k)$.

Hereafter, we will deal with the case of $n=8 a-2$ and $k=4 a$, where $a \geq 2$ (note that if $a=2$, it corresponds to $\Delta(14,8)$ which will be discussed in detail in Section 3). In this case, $k_{0}=1$ and $k_{1}=2 a$, and hence IPC with parameters $8 a-2$ and $4 a$ is stated as the following:

$$
\begin{equation*}
\sum_{l=1}^{2 a} x_{2 l}=8 a-3, \quad \sum_{l=1}^{2 a} l x_{2 l}=2 a(4 a-1), \quad x_{2 l} \geq 0 . \tag{2.1}
\end{equation*}
$$

Also, $\Delta(n, k)$ and $\Gamma(n, k)$ are abbreviated as Δ and Γ, respectively.
A general solution of (2.1) will be obtained inductively in the following manner: First the lower and the upper bounds for $x_{4 a}$ in (2.1) are given. Secondly for $1 \leq i \leq 2 a-2$ and $0 \leq j \leq i-1$, let $x_{4 a-2 j=z_{4 a-2 j}}$ be fixed. Then the lower and the upper bounds for $x_{4 a-2 i}$, say $\underline{w} \leq x_{4 a-2 i} \leq \bar{w}$, are given so that for $\underline{w} \leq z_{4 a-2 i} \leq \bar{w}$, there exists a solution of (2.1) having $x_{4 a-2 j}=z_{4 a-2 j}$ $(0 \leq j \leq i)$. In the following it will be discussed in detail.

Lemma 2.1. Let $y_{\alpha}^{(0)}=-8 a^{2}+18 a-6, y_{\beta}^{(0)}=8 a^{2}-10 a+3$ and $y_{\gamma}^{(0)}=$ $8 a-3$. Let Γ_{0} be the set of solutions of the following:

$$
\begin{equation*}
\sum_{l=1}^{2 a} x_{2 l}=y_{\gamma}^{(0)}, \quad \sum_{l=1}^{2 a}(l-1) x_{2 l}=y_{\beta}^{(0)}, \quad x_{2 l} \geq 0 . \tag{2.2}
\end{equation*}
$$

Then $\Gamma_{0}=\Gamma$ and for $\left(x_{2}, \ldots, x_{4 a}\right) \in \Gamma_{0}$

$$
\begin{align*}
& 0 \leq x_{4 a} \leq\left[\frac{y_{\beta}^{(0)}}{2 a-1}\right] \tag{2.3}\\
& y_{\alpha}^{(0)}+y_{\beta}^{(0)}=y_{\gamma}^{(0)}, \quad y_{\beta}^{(0)} \geq 0, \quad y_{\gamma}^{(0)} \geq 0 . \tag{2.4}
\end{align*}
$$

Proof. (2.2) follows from (2.1). (2.3) is obtained by the second equality of (2.2). (2.4) is obvious.

Let $w_{\alpha}^{(0)}=0$ and $w_{\beta}^{(0)}=\left[\frac{y_{\beta}^{(0)}}{2 a-1}\right]$. Further let $x_{4 a}=z_{4 a}$ be fixed, where $w_{\alpha}^{(0)} \leq z_{4 a} \leq w_{\beta}^{(0)}$. Denote $\Gamma_{1}\left(z_{4 a}\right)=\left\{\mathbf{c}_{1}=\left(x_{2}, \ldots, x_{4 a-2}\right) \mid\left(\mathbf{c}_{1}, z_{4 a}\right) \in \Gamma\right\}$, where $\left(\mathrm{c}_{1}, z_{4 a}\right)$ means $\left(x_{2}, \ldots, x_{4 a-2}, z_{4 a}\right)$.

Analogously to Lemma 2.1 one can prove the following:
Lemma 2.2. Let $y_{\gamma}^{(1)}=y_{\gamma}^{(0)}-z_{4 a}, \quad y_{\alpha}^{(1)}=y_{\alpha}^{(0)}+(2 a-2) z_{4 a}$, and $y_{\beta}^{(1)}=$ $y_{\beta}^{(0)}-(2 a-1) z_{4 a}$. Let Γ_{1} be the set of solutions of the following equations:

$$
\sum_{l=1}^{2 a-1} x_{2 l}=y_{\gamma}^{(1)}, \quad \sum_{l=1}^{2 a-1}(l-1) x_{2 l}=y_{\beta}^{(1)}, \quad x_{2 l} \geq 0
$$

Then $\Gamma_{1}=\Gamma_{1}\left(z_{4 a}\right)$ and for $\left(x_{2}, \ldots, x_{4 a-2}\right) \in \Gamma_{1}$

$$
\begin{aligned}
0 & \leq x_{4 a-2} \leq\left[\frac{y_{\beta}^{(1)}}{2 a-2}\right], \\
y_{\alpha}^{(1)}+y_{\beta}^{(1)} & =y_{\gamma}^{(1)}, \quad y_{\beta}^{(1)} \geq 0, \quad y_{\gamma}^{(1)} \geq 0 .
\end{aligned}
$$

Next, let $w_{\alpha}^{(1)}=0$ and $w_{\beta}^{(1)}=\left[\frac{y_{\beta}^{(1)}}{2 a-2}\right] . \quad$ For $1 \leq i \leq 2 a-2$, let $x_{4 a}=z_{4 a}$, $x_{4 a-2}=z_{4 a-2}, \ldots, x_{4 a-2(i-1)}=z_{4 a-2(i-1)}$ be fixed in order. Further let $y_{\alpha}^{(l)}, y_{\beta}^{(l)}$, $y_{\gamma}^{(l)}, w_{\alpha}^{(l)}, w_{\beta}^{(l)}, \Gamma_{l}$ and $\Gamma_{l}\left(z_{4 a}, z_{4 a-2}, \ldots, z_{4 a-2 l}\right)$ be defined inductively, and suppose that $w_{\alpha}^{(l)} \leq z_{4 a-2 l} \leq w_{\beta}^{(l)}, 0 \leq y_{\beta}^{(l)}, y_{\gamma}^{(l)}, w_{\alpha}^{(l)}, w_{\beta}^{(l)}$, where $0 \leq l \leq i-1$. In this case, we now further define

$$
\begin{aligned}
& y_{\alpha}^{(i)}=y_{\alpha}^{(i-1)}+(2 a-i-1) z_{4 a-2(i-1)}, \\
& y_{\beta}^{(i)}=y_{\beta}^{(i-1)}-(2 a-i) z_{4 a-2(i-1)}, \\
& y_{\gamma}^{(i)}=y_{\gamma}^{(i-1)}-z_{4 a-2(i-1)},
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{i}\left(z_{4 a}, z_{4 a-2}, \ldots, z_{4 a-2(i-1)}\right)=\left\{\mathbf{c}_{i}=\left(x_{2}, \ldots, x_{4 a-2 i}\right) \mid\left(\mathbf{c}_{i}, z_{4 a-2(i-1)}, \ldots, z_{4 a}\right) \in \Gamma\right\}, \\
& w_{\beta}^{(i)}=\left[\frac{y_{\beta}^{(i)}}{2 a-i-1}\right] \text { and } \\
& w_{\alpha}^{(i)}= \begin{cases}-\left\{y_{\alpha}^{(i)}+(2 a-i-3) y_{\gamma}^{(i)}\right\} & \text { if } y_{\alpha}^{(i)}+(2 a-i-3) y_{\gamma}^{(i)}<0 \text { and } \\
0 & y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)} \geq 0,\end{cases} \\
& 0
\end{aligned}
$$

Under the above notations we may proceed further.
Lemma 2.3. Let $0 \leq i \leq 2 a-2$ and Γ_{i} be the set of solutions of the following:

$$
\begin{equation*}
\sum_{l=1}^{2 a-i} x_{2 l}=y_{\gamma}^{(i)}, \quad \sum_{l=1}^{2 a-i}(l-1) x_{2 l}=y_{\beta}^{(i)}, \quad x_{2 l} \geq 0 . \tag{2.5}
\end{equation*}
$$

Then $\Gamma_{i}=\Gamma_{i}\left(z_{4 a}, \ldots, z_{4 a-2(i-1)}\right), y_{\beta}^{(i)} \geq 0$ and $y_{\gamma}^{(i)} \geq 0$.
Proof. The first equality is straightforward. By the assumption

$$
z_{4 a-2(i-1)} \leq w_{\beta}^{(i-1)}=\left[\frac{y_{\beta}^{(i-1)}}{2 a-i}\right],
$$

which yields $y_{\beta}^{(i)}=y_{\beta}^{(i-1)}-(2 a-i) z_{4 a-2(i-1)} \geq 0$. Let $\quad \mathbf{c}_{i}=\left(x_{2}, \ldots, x_{4 a-2 i}\right) \in$ $\Gamma_{i}\left(z_{4 a}, \ldots, z_{4 a-2(i-1)}\right)$. By the definition of $\Gamma_{i-1},\left(\mathbf{c}_{i}, z_{4 a-2(i-1)}\right) \in \Gamma_{i-1}$. Hence

$$
\sum_{l=1}^{4 a-2 i} x_{2 l}+z_{4 a-2(i-1)}=y_{\gamma}^{(i-1)} .
$$

Thus

$$
y_{\gamma}^{(i)}=y_{\gamma}^{(i-1)}-z_{4 a-2(i-1)}=\sum_{l=1}^{4 a-2 i} x_{2 l} \geq 0 .
$$

Lemma 2.4. For $0 \leq i \leq 2 a-2,0 \leq w_{\alpha}^{(i)} \leq w_{\beta}^{(i)}$.
Proof. By the definition of $w_{\beta}^{(i)}$, it is clear that $w_{\beta}^{(i)} \geq 0$. When $w_{\alpha}^{(i)}=0$, the statement holds, and then suppose that $w_{\alpha}^{(i)}>0$. If $y_{\beta}^{(i)} \equiv 0$ $(\bmod (2 a-i-1))$, then

$$
\begin{aligned}
& (2 a-i-1)\left(w_{\beta}^{(i)}-w_{\alpha}^{(i)}\right) \\
& \quad=y_{\beta}^{(i)}-(2 a-i-1) y_{\gamma}^{(i)}+\left\{y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}\right\}(2 a-i-1) \\
& \quad=-y_{\alpha}^{(i)}-(2 a-i-2) y_{\gamma}^{(i)}+\left\{y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}\right\}(2 a-i-1) \\
& \quad=\left\{y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}\right\}(2 a-i-2) \geq 0 .
\end{aligned}
$$

Thus, $w_{\alpha}^{(i)} \leq w_{\beta}^{(i)}$.

If $y_{\beta}^{(i)} \equiv 0(\bmod (2 a-i-1))$,

$$
\left[\frac{y_{\beta}^{(i)}}{2 a-i-1}\right] \geq \frac{y_{\beta}^{(i)}-(2 a-i-2)}{2 a-i-1}
$$

Thus

$$
\begin{aligned}
(2 a-i-1)\left(w_{\beta}^{(i)}-w_{\alpha}^{(i)}\right) \geq & y_{\beta}^{(i)}-(2 a-i-2)-(2 a-i-1) y_{\gamma}^{(i)} \\
& +\left\{y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}\right\}(2 a-i-1) \\
= & \left\{y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}-1\right\}(2 a-i-2) .
\end{aligned}
$$

Now $y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)} \geq 1$. Because if $y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}=0, y_{\beta}^{(i)}=y_{\gamma}^{(i)}-$ $y_{\alpha}^{(i)}=(2 a-i-1) y_{\gamma}^{(i)} . \quad$ Thus $y_{\beta}^{(i)} \equiv 0(\bmod (2 a-i-1)) . \quad$ This is a contradiction. Hence $w_{\alpha}^{(i)} \leq w_{\beta}^{(i)}$.

Lemma 2.5. If $w_{\alpha}^{(i)}>0$ for $0 \leq i \leq 2 a-2$, then $\overline{\mathbf{c}}=\left(0, \ldots, 0, z_{4 a-2(i+1)}\right.$, $\left.z_{4 a-2 i}\right) \in \Gamma_{i}$, where $z_{4 a-2 i}=w_{\alpha}^{(i)}$ and $z_{4 a-2(i+1)}=y_{\gamma}^{(i)}-w_{\alpha}^{(i)}$.

Proof. It follows that $z_{4 a-2(i+1)}=y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)} \geq 0$,

$$
z_{4 a-2 i}+z_{4 a-2(i+1)}=y_{\gamma}^{(i)}
$$

and

$$
\begin{aligned}
& (2 a-i-1) z_{4 a-2 i}+(2 a-i-2) z_{4 a-2(i+1)} \\
& \quad=-(2 a-i-1)\left\{y_{\alpha}^{(i)}+(2 a-i-3) y_{\gamma}^{(i)}\right\}+(2 a-i-2)\left\{y_{\alpha}^{(i)}+(2 a-i-2) y_{\gamma}^{(i)}\right\} \\
& \quad=-y_{\alpha}^{(i)}+y_{\gamma}^{(i)}=y_{\beta}^{(i)} .
\end{aligned}
$$

Hence, $\overline{\mathbf{c}} \in \Gamma_{i}$ by Lemma 2.3.
Theorem 2.1. For $0 \leq i \leq 2 a-2$, let Γ_{i} be the set of solutions of (2.5). If $\left(x_{2}, \ldots, x_{4 a-2 i}\right) \in \Gamma_{i}$, then $w_{\alpha}^{(i)} \leq x_{4 a-2 i} \leq w_{\beta}^{(i)}$.

Proof. The second inequality is clear by the definition of $w_{\beta}^{(i)}$. If $w_{\alpha}^{(i)}=$ 0 , the result follows. Suppose that $w_{\alpha}^{(i)}>0$ and let $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a-2(i+1)}\right.$, $\left.x_{4 a-2 i}\right) \in \Gamma_{i}$. By Lemma $2.5, \overline{\mathbf{c}}=\left(0, \ldots, 0, z_{4 a-2(i+1)}, z_{4 a-2 i}\right) \in \Gamma_{i}$, where $z_{4 a-2 i}=$ $w_{\alpha}^{(i)}$ and $z_{4 a-2(i+1)}=y_{\gamma}^{(i)}-w_{\alpha}^{(i)}$. Now, suppose that $z_{4 a-2 i}>x_{4 a-2 i}$. Then

$$
\sum_{l=1}^{2 a-(i+1)} x_{2 l}+x_{4 a-2 i}=z_{4 a-2(i+1)}+z_{4 a-2 i}=y_{\gamma}^{(i)}
$$

and

$$
\begin{aligned}
& \sum_{l=1}^{2 a-(i+1)}(l-1) x_{2 l}+(2 a-i-1) x_{4 a-2 i} \\
& \quad=(2 a-i-2) z_{4 a-2(i+1)}+(2 a-i-1) z_{4 a-2 i}
\end{aligned}
$$

Hence

$$
\sum_{l=1}^{2 a-(i+1)}(l-1) x_{2 l}-(2 a-i-2) z_{4 a-2(i+1)}=(2 a-i-1)\left(z_{4 a-2 i}-x_{4 a-2 i}\right)
$$

and

$$
\begin{aligned}
& \sum_{l=1}^{2 a-(i+1)}(l-1) x_{2 l}-(2 a-i-2)\left\{\sum_{l=1}^{2 a-(i+1)} x_{2 l}+x_{4 a-2 i}\right\}+(2 a-i-2) w_{\alpha}^{(i)} \\
& \quad=(2 a-i-1)\left(w_{\alpha}^{(i)}-x_{4 a-2 i}\right) .
\end{aligned}
$$

Consequently

$$
-\sum_{l=1}^{2 a-(i+1)}(2 a-1-l-i) x_{2 l}+x_{4 a-2 i}-w_{\alpha}^{(i)}=0
$$

This is a contradiction, because

$$
\sum_{l=1}^{2 a-(i+1)}(l+1-2 a+i) x_{2 l} \leq 0 \quad \text { and } \quad x_{4 a-2 i}-w_{\alpha}^{(i)}<0 .
$$

Thus, $x_{4 a-2 i} \geq z_{4 a-2 i}=w_{\alpha}^{(i)}$. This completes the proof.
Definition 2.3. Let $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a}\right)$ and $\overline{\mathbf{c}}=\left(\bar{x}_{2}, \ldots, \bar{x}_{4 a}\right) \in \Gamma$. When $x_{4 a}<\bar{x}_{4 a}$ or there is a positive integer i_{0} such that $x_{4 a-2(l-1)}=\bar{x}_{4 a-2(l-1)}$ $\left(1 \leq l \leq i_{0}-1\right)$ and $x_{4 a-2 i_{0}}<\bar{x}_{4 a-2 i_{0}}, \overline{\mathbf{c}}$ is said to be larger than \mathbf{c}. This is denoted by $\overline{\mathbf{c}}>\mathbf{c}$.

The following corollary follows from Definition 2.3 and Theorem 2.1, along with the definition of $w_{\alpha}^{(i)}$.

Corollary 2.1. Let $\underline{x}_{2 a}=7 a-3, \underline{x}_{2 a+2}=a, \bar{x}_{2}=4 a$ and $\bar{x}_{4 a}=4 a-3$. Then $\left(0, \ldots, 0, \underline{x}_{2 a}, \underline{x}_{2 a+2}, 0, \ldots, 0\right)$ and $\left(\bar{x}_{2}, 0, \ldots, 0, \bar{x}_{4 a}\right)$ are the smallest and the largest solutions in Γ, respectively.

Definition 2.4. Let $M \in \Delta$ and \mathbf{c} be the largest one among intersection patterns of rows and columns of M. Then M is said to be of Type \mathbf{c}. When M is a matrix of Type \mathbf{c} and $\overline{\mathbf{c}} \in \Gamma$, where $\overline{\mathbf{c}}<\mathbf{c}, M$ is said to be of larger type than Type $\overline{\mathbf{c}}$.

Let A be an $s \times t$ matrix whose elements are ± 1 or 0 . Define $A_{s \times t}^{*}=$ $A * A$, the Hadamard product. If there is no zero element in $A, A_{s \times t}^{*}$ is denoted by $J_{s \times t}$. Then $s \times t$ zero matrix is denoted by $O_{s \times t}$. If $s=t, A_{s \times t}^{*}$ and $O_{s \times t}$ are abbreviated as A_{s}^{*} and O_{s}, respectively. For matrices X and Y, the Kronecker product of X and Y is denoted by $X \otimes Y$.

Definition 2.5. Let $\Delta\left(z_{4 a}\right)$ be the set of matrices of Type \mathbf{c}, where $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a-2}, z_{4 a}\right)$. Let $M \in \Delta\left(z_{4 a}\right)$. Then it can be assumed, without loss
of generality, that

$$
M=\left[\begin{array}{c:c}
M_{U} & O_{s \times t} \\
\hdashline M_{L} & M_{R}
\end{array}\right],
$$

where $s=z_{4 a}+1, t=4 a-2, M_{U}^{*}=J_{s \times 4 a}$, and M_{L} and M_{R} are $\left(8 a-3-z_{4 a}\right) \times$ $4 a$ and $\left(8 a-3-z_{4 a}\right) \times(4 a-2)$ matrices, respectively. Submatrices M_{L}, M_{R}, M_{U} and $\left[M_{L} \mid M_{R}\right]$ are called an L-, an R-, a U - and a D-matrix of M, respectively.

Hereafter, for any matrix in $\Delta\left(z_{4 a}\right)$ the above form will be always assumed.
The following lemma will be used to construct $W(14,8)$'s in Section 3.
Lemma 2.6. Let A be a $3 \times m$ matrix whose elements are ± 1 or 0 , where $m \geq 3$. If $A A^{t}=m I_{3}$ and $A^{*}=J_{3 \times m}$, then $m \equiv 0(\bmod 4)$.

Proof. This can be easily shown by considering the structure of three rows of A.

Remark 2.2. When $M \in \Delta$, Lemma 2.6 means that it is impossible that three rows (columns) (say $\mathbf{n}_{1}, \mathbf{n}_{2}$ and $\mathbf{n}_{\mathbf{3}}$) in M exist such that $\left|\mathbf{n}_{1} * \mathbf{n}_{\mathbf{2}} * \mathbf{n}_{\mathbf{3}}\right|=$ $\left|\mathbf{n}_{1} * \mathbf{n}_{2}\right|=\left|\mathbf{n}_{1} * \mathbf{n}_{3}\right|=\left|\mathbf{n}_{2} * \mathbf{n}_{3}\right|=m$, where $m \equiv 2(\bmod 4)$.

The following Theorems $2.2-2.5$ are powerful to reduce the possibilities of existence when $W(8 a-2,4 a)$'s are constructed by using solutions of IPC. Note that for $\Delta\left(z_{4 a}\right), 0 \leq z_{4 a} \leq 4 a-3$.

Theorem 2.2. There is no weighing matrix of Type \mathbf{c} or Type $\overline{\mathbf{c}}$, where $\mathbf{c}=\left(x_{2}, \ldots, 4 a-3\right) \in \Gamma(4 a-3)$ and $\overline{\mathbf{c}}=\left(\bar{x}_{2}, \ldots, 4 a-4\right) \in \Gamma(4 a-4)$.

Proof. Let $M \in \Delta(4 a-3)$. By Corollary $2.1, M$ is of Type \mathbf{c}, where $\mathbf{c}=(4 a, 0, \ldots, 0,4 a-3)$. Let M_{R}, M_{L} and M_{U} be an R-, an L - and a U-matrix of M, respectively. By Definition 2.5 , it can be assumed that $M_{R}^{*}=J_{4 a \times(4 a-2)}$, $M_{U}^{*}=J_{(4 a-2) \times 4 a}$ and $M_{L}^{*}=I_{2 a} \otimes J_{2}$. This means that there exists a submatrix $A_{3 \times(4 a-2)}$ of M_{R} such that $A_{3 \times(4 a-2)} A_{3 \times(4 a-2)}^{t}=(4 a-2) I_{3}$ and $A_{3 \times(4 a-2)}^{*}=$ $J_{3 \times(4 a-2)}$. This contradicts to Lemma 2.6. Next, let $M \in \Delta(4 a-4)$ and M_{R} be an R-matrix of M. Then, M_{R} is a $(4 a+1) \times(4 a-2)$ matrix satisfying $M_{R}^{t} M_{R}=4 a I_{4 a-2}$. Thus it can be assumed that $M_{R}=\left[A_{(4 a-2) \times 4 a} O_{(4 a-2) \times 1}\right]^{t}$, where $A_{(4 a-2) \times 4 a}^{*}=J_{(4 a-2) \times 4 a}$. Hence, $M^{t} \in \Delta(4 a-3)$. This contradicts to $M \in \Delta(4 a-4)$.

Theorem 2.3. Let $M \in \Delta(4 a-5)$ and M be of Type \mathbf{c}, where $\mathbf{c}=$ $\left(x_{2}, \ldots, x_{4 a-2}, 4 a-5\right) \in \Gamma(4 a-5)$ with $a \geq 2$. Then $x_{4 a-2}$ is 0 or 2 .

Proof. By Theorem 2.1, $0 \leq x_{4 a-2} \leq 2+\left[\frac{1}{a-1}\right]$. Thus $0 \leq x_{4 a-2} \leq 3$. Suppose that M is of Type $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a-4}, 1,4 a-5\right)$. Then, an R-matrix
M_{R} of M can be assumed that

$$
M_{R}^{*}=\left[\begin{array}{c:c}
J_{s \times 2} & J_{s \times t} \\
\hdashline J_{1 \times 2} & O_{1 \times t} \\
\hdashline O_{2} & J_{2 \times t} \\
\hdashline J_{1 \times 2} & O_{1 \times t}
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{c:c}
J_{t \times 2} & J_{t} \\
\hdashline J_{1 \times 2} \times & O_{1 \times t} \\
\hdashline I_{2} \otimes J_{2 \times 1} & J_{4 \times t} \\
\hdashline J_{1 \times 2} & O_{1 \times t}
\end{array}\right],
$$

where $s=4 a-2$ and $t=4 a-4$. In any case, this means that M^{t} is of Type $\overline{\mathbf{c}}=\left(\bar{x}_{2}, \ldots, \bar{x}_{4 a-4}, 2,4 a-5\right)$ which means that $\overline{\mathbf{c}}>\mathbf{c}$. This contradicts to the assumption of Type \mathbf{c}. Next, let M be of Type $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a-4}, 3,4 a-5\right)$. This case occurs only when $a=2$. Thus M is of Type $\mathbf{c}=(7,0,3,3)$. Then an R-matrix M_{R} of M can be assumed that $M_{R}^{*}=\left[\begin{array}{l:l}J_{6 \times 7} & I_{3} \otimes J_{2 \times 1}\end{array}\right]^{t}$. Clearly, $M_{R}^{t} M_{R} \neq 8 I_{6}$. Thus this case does not hold.

Theorem 2.4. Let $M \in \Delta(1)$ and M be of Type $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a-2}, 1\right)$. Then $x_{2} \leq 4$.

Proof. Let $x_{2} \geq 5$ and M_{D} be a D-matrix of M. Since $a \geq 2, M_{D}$ contains a submatrix N such that $N^{*}=\left[\begin{array}{l|l|l}N_{L}^{*} & J_{5 \times(4 a-2)}\end{array}\right]$ and N_{L}^{*} is a $5 \times 4 a$ matrix whose each row has just two 1's. Thus it can be assumed that

$$
N_{L}^{*}=\left[\begin{array}{c:c:c:c}
J_{2} & O_{2} & O_{2} & \\
O_{2} & J_{2} & O_{2} & O_{5 \times(4 a-6)} \\
O_{1 \times 2} & O_{1 \times 2} & J_{1 \times 2} &
\end{array}\right] .
$$

This, with Lemma 2.6 and Remark 2.2, shows that $N^{t} N \neq 4 a I_{5}$.
Theorem 2.5. Let $M \in \Delta(0)$ and M be of Type $\mathbf{c}=\left(x_{2}, \ldots, x_{4 a-2}, 0\right)$. Then $x_{2} \leq 2$.

Proof. Let $x_{2} \geq 3$ and M_{D} be a D-matrix of M. Then M_{D} has a submatrix $N=\left[\begin{array}{l|l|l}N_{1} & N_{2}\end{array}\right]$, where N_{1} is a $3 \times 4 a$ matrix whose each row contains just two non-zero elements and $N_{2}^{*}=J_{3 \times(4 a-2)}$. In this case, let $N_{3}=$ $N_{1} N_{1}^{t}-2 I_{3}$. Then it follows that elements of N_{3} are either ± 2 or 0 , in order to keep the orthogonality with respect to rows of N. If there exists a non-zero element in N_{3}, then $M \in \Delta(1)$, which contradicts to the assumption of M of Type c. If $N_{3}=O_{3}, N_{2} N_{2}^{t}=(4 a-2) I_{3}$, which is impossible by Lemma 2.6.

3. Construction and classification of $\boldsymbol{W}(\mathbf{1 4}, 8)$'s

In this section, we only consider a case $a=2$ in the previous section. This case has special interest as described in Section 1. By Theorem 2.1,
there are 25 solutions of IPC with parameters 14 and 8. They are listed in the following:

(x_{2}	x_{4}	x_{6}	x_{8})	(x_{2}	x_{4}	x_{6}	x_{8})
$\mathbf{c}_{1}=(8$	0	0	$5)$	$\mathbf{c}_{2}=(7$	1	1	$4)$
$c_{3}=(6$	3	0	$4)$	$\mathrm{c}_{4}=(7$	0	3	3)
$\mathbf{c}_{5}=(6$	2	2	3)	$\mathrm{c}_{6}=(5$	4	1	3)
$\mathbf{c}_{7}=(4$	6	0	3)	$\mathrm{c}_{8}=(6$	1	4	$2)$
$\mathbf{c}_{9}=(5$	3	3	2)	$\mathrm{c}_{10}=(4$	5	2	$2)$
$\mathbf{c}_{11}=(3$	7	1	2)	$\mathrm{c}_{12}=(2$	9	0	2)
$\mathrm{c}_{13}=(6$	0	6	$1)$	$\mathrm{c}_{14}=(5$	2	5	1)
$\mathrm{c}_{15}=(4$	4	4	$1)$	$\mathrm{c}_{16}=(3$	6	3	1)
$\mathrm{c}_{17}=(2$	8	2	1)	$\mathbf{c}_{18}=(1$	10	1	1)
$\mathrm{c}_{19}=(0$	12	0	1)	$\mathrm{c}_{20}=(5$	1	7	0)
$\mathrm{c}_{21}=(4$	3	6	0)	$\mathbf{c}_{22}=(3$	5	5	0)
$\mathrm{c}_{23}=(2$	7	4	0)	$\mathrm{c}_{24}=(1$	9	3	0)
$\mathrm{c}_{25}=(0$	11	2	$0)$.				

It follows from Theorems $2.2-2.5$ that there is no weighing matrix of Type \mathbf{c}_{i} for $i=1,2,3,4,6,13,14,20,21,22$.

Definition 3.1. Let N and N_{i} be $s \times 6$ matrices whose elements are ± 1 or 0 and weights of columns are 8 for $i=1,2 . N^{*}$ is said to be admissible when all elements of $N^{* t} N^{*}$ are even. If $N^{t} N=8 I_{6}, N$ is said to be feasible. When M is a weighing matrix of Type \mathbf{c} and N is an R-matrix of M, both admissible matrix N^{*} and feasible matrix N are said to be of Type c. For two admissible matrices, N_{1}^{*} and N_{2}^{*}, if there are permutation matrices Q_{1} and Q_{2} such that $N_{2}^{*}=Q_{1} N_{1}^{*} Q_{2}, N_{2}^{*}$ is said to be equivalent to N_{1}^{*}. For two feasible matrices, N_{1} and N_{2}, if there are signed permutation matrices \bar{Q}_{1} and \bar{Q}_{2} such that $N_{2}=\bar{Q}_{1} N_{1} \bar{Q}_{2}, N_{2}$ is said to be equivalent to N_{1}.

One can find many admissible and feasible matrices. For example, an admissible matrix, say A^{*}, and a feasible matrix, say F, are given as follows.

$$
\left.\begin{array}{rl}
A^{*} & =\left[\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]^{t}, \\
F & =\left[\begin{array}{lllll:ll:ll}
1 & - & 1 & - & 1 & 0 & 0 & 1 & 1 \\
1 & - & 1 & - & 1 & - & 0 & 0 & 1 \\
\hdashline 1 & 1 & - & - & 1 & 1 & - & - & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 & 1 & - & - & - & - & 0 \\
1 & 1 & - & - & - & - & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
\end{array}\right]^{t},
$$

where the symbol "-" means -1 . Throughout this paper, the symbol "-" is used instead of -1 . It can easily be shown that A^{*} and F are of Type \mathbf{c}_{10} and of Type \mathbf{c}_{5}, respectively.

Definition 3.2. Let $M \in \Delta$ and M_{R} be an R-matrix of M. Without loss of generality, it can be assumed that $M_{R}=\left[L(6)^{t}\left|L(4)^{t}\right| L(2)^{t}\right]^{t}$, where the weights of all rows of $L(i)$ equal i for $i=2,4,6$. In this case, $L(i)$ is called an Ri-matrix of M_{R}. Letting m be a column of M_{R}, the portion belonging to $L(i)$ of \mathbf{m} is called the Ri-part of \mathbf{m}.

Note that the existence of a $W(14,8)$ implies the admissibility of an R-matrix. The following theorem will be proved by showing the non-existence of an admissible matrix for each type.

Theorem 3.1. There is no weighing matrix of Type \mathbf{c}_{i} for $i=8,11,12,16$.
Proof. (i) Type \mathbf{c}_{8}. Let M_{R} be an R-matrix of such a weighing matrix. Then, without loss of generality, it can be assumed that

$$
M_{R}^{*}=\left[\begin{array}{c:c}
J_{6 \times 4} & J_{6 \times 2} \\
\hdashline J_{1 \times 4} & O_{1 \times 2} \\
\hdashline N_{1}^{*} & N_{2}^{*}
\end{array}\right],
$$

where the 4×6 matrix $\left[N_{1} \mid N_{2}\right.$] is an $R 2$-matrix of M_{R}. Thus M_{R}^{*} is not admissible, because there exists at least one pair of columns having an odd intersection number in the first four columns of M_{R}^{*}.
(ii) Type \mathbf{c}_{11}. Let M_{R} be an R-matrix of such a weighing matrix of Type \mathbf{c}_{11}. Then, without loss of generality, it can be assumed that

$$
M_{R}^{*}=\left[\begin{array}{c:c}
J_{3 \times 2} & J_{3 \times 4} \\
\hdashline J_{1 \times 2} & O_{1 \times 4}^{-} \\
\hdashline N_{1}^{*} & N_{2}^{*}
\end{array}\right],
$$

where the 7×6 matrix $N=\left[N_{1} \mid N_{2}\right]$ is an $R 4$-matrix of M_{R}. Moreover, as N^{*}, two cases, say $N(1)^{*}$ and $N(2)^{*}$, can be considered, where

$$
N(1)^{*}=\left[\begin{array}{c:c}
J_{4 \times 2} & K_{1}^{*} \\
\hdashline O_{3 \times 2} & J_{3 \times 4}
\end{array}\right] \quad \text { and } \quad N(2)^{*}=\left[\begin{array}{c:c}
L_{2}^{*} & K_{2}^{*} \\
\hdashline O_{1 \times 2} & J_{1 \times 4}
\end{array}\right],
$$

with $L_{2}^{*}=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1\end{array}\right]^{t}$. For both cases of $N(1)$ and $N(2)$, one cannot determine K_{1}^{*} and K_{2}^{*} so that M_{R}^{*} is admissible.
(iii) Type \mathbf{c}_{12}. Let M_{R} be an R-matrix of such a weighing matrix of Type \mathbf{c}_{12}. Then, without loss of generality, it can be assumed that

$$
M_{R}^{*}=\left[\begin{array}{c:c}
J_{2 \times 1} & J_{2 \times 5} \\
\hdashline J_{6 \times 1} & K^{*} \\
\hdashline O_{3 \times 1} & L^{*}
\end{array}\right],
$$

where K is a 6×5 matrix and the weight of a column of K is 6 or 4 . Let x_{i} be the number of columns of K^{*} having weight i, where $i=6$ or 4 . Thus we have two equations similar to IPC: $x_{4}+x_{6}=5$ and $4 x_{4}+6 x_{6}=$ 3×6. But there does not exist a non-negative solution. Hence, M_{R}^{*} is not admissible.
(iv) Type \mathbf{c}_{16}. Let M_{R} be an R-matrix of such a weighing matrix of Type \mathbf{c}_{16} and $M_{R 2}$ be an $R 2$-matrix of M_{R}. If $M_{R 2}$ has the submatrix $O_{3 \times 1}$, it can be assumed that for the first column \mathbf{m} of $M_{R}, \mathbf{m}=\left[\begin{array}{l:l:l}\mathbf{m}_{6}^{t} & \mathbf{m}_{4}^{t} & \mathbf{m}_{2}^{t}\end{array}\right]^{t}$, where \mathbf{m}_{i} is the Ri-part of $\mathbf{m}, \mathbf{m}_{6}=J_{3 \times 1}, \mathbf{m}_{4}=\left[J_{1 \times 5}: 0\right]^{t}$ and $\mathbf{m}_{2}=O_{3 \times 1}$. Let $\overline{\mathbf{m}}(\neq \mathbf{m})$ be any column of $M_{\boldsymbol{R}}$. Then the intersection number of $\overline{\mathbf{m}}$ and m in the $R 4$-part of M_{R} must be odd. Thus there are two equations: $x_{1}+x_{3}+x_{5}=5$ and $x_{1}+3 x_{3}+5 x_{5}=15$, where x_{i} is the number of columns having the intersection number i with m in the $R 4$-matrix of M. Only three solutions $\left(x_{1}, x_{3}, x_{5}\right)=(2,1,2),(1,3,1)$ and $(0,5,0)$ are obtained. However, in each case, one cannot determine an $R 4$-matrix of M_{R} so that M_{R}^{*} is admissible. Next, if $M_{R 2}$ does not have the submatrix $O_{3 \times 1}$, it can be assumed that $M_{R 2}^{*}=I_{3} \otimes J_{1 \times 2}$. Then it follows that

But it can also be shown that it is impossible to make M_{R}^{*} to be admissible in each case. This completes the proof.

Note that the existence of a $W(14,8)$ also implies the existence of a feasible matrix. The following theorem will be proved by showing the nonexistence of a feasible matrix.

Theorem 3.2. There is no weighing matrix of Type \mathbf{c}_{10}.
Proof. Let M_{R} be an R-matrix of a weighing matrix of Type \mathbf{c}_{10}. Then, without loss of generality, it can be assumed that

$$
M_{R}^{*}=\left[\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]^{t}
$$

Let \mathbf{m}_{i} be the i-th column of M_{R} for $1 \leq i \leq 6$. Then, without loss of generality, it can be assumed that $\mathbf{m}_{1}=(1,1,1,1,0,1,1,1,1,0,0)^{t}$. It follows that there are three inequivalent cases to consider in order to decide on the second row of M_{R}, say $\mathbf{m}_{2}^{(j)}, 1 \leq j \leq 3$, where $\mathbf{m}_{2}^{(1)}=(1,1,1,1,0,-,-,-,-, 0,0)^{t}, \mathbf{m}_{2}^{(2)}=$ $(1,1,-,-, 0,1,1,-,-, 0,0)^{t}, \mathbf{m}_{2}^{(3)}=(1,1,1,-, 0,1,-,-,-, 0,0)^{t}$. But it is impossible to construct a feasible matrix based on the matrix $\left[\mathbf{m}_{1} \mid \mathbf{m}_{2}^{(j)}\right]$ for $j=2$ and 3 , because there is no 6×3 matrix S such that $S^{*}=J_{6 \times 3}$ and $S^{t} S=6 I_{3}$ by Lemma 2.6. There are exactly two inequivalent matrices, say X_{1} and X_{2}, based on the matrix $\left[\mathbf{m}_{1} \mid \mathbf{m}_{2}^{(1)}\right.$] so that they are enlarged as large as possible keeping on the orthogonality with respect to columns, where

$$
\begin{aligned}
& X_{1}=\left[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & - & - & - & - & 0 & 0 \\
1 & 1 & - & - & 1 & 0 & 1 & 0 & - & 0 & 1 \\
1 & - & 1 & - & 1 & 1 & 0 & - & 0 & 0 & -
\end{array}\right]^{t}, \\
& X_{2}=\left[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & - & - & - & - & 0 & 0 \\
1 & 1 & - & - & 1 & 0 & 1 & 0 & - & 0 & 1 \\
1 & - & 1 & - & - & 1 & 0 & - & 0 & 0 & 1 \\
1 & - & - & 1 & - & 0 & 0 & 1 & - & 1 & 0
\end{array}\right]^{t} .
\end{aligned}
$$

However, they cannot be extended into a feasible matrix.
Hereafter, it will be investigated successively in the following lemmas and theorems whether there are weighing matrices of the remaining types or not.

Lemma 3.1. There is the unique weighing matrix of Type \mathbf{c}_{5} up to equivalence.

Proof. Let M be a weighing matrix of Type \mathbf{c}_{5} and $M_{R}=$ $\left[L(6)^{t}\left|L(4)^{t}\right| L(2)^{t}\right]^{t}$ be an R-matrix of M, where $L(i)$ is the $R i$-matrix of M_{R}. Considering $L(4)^{*}$ and $L(2)^{*}$, one can show that M_{R}^{*} is equivalent to one of the following matrices:

Clearly, the last two matrices are not admissible. Thus one can assume that M_{R}^{*} is the first one.

Next, it will be shown that M_{R} is unique up to equivalence. Let \mathbf{m}_{i} be the i-th column of $M_{R}=\left[X_{1} \mid X_{2}\right]$, where $1 \leq i \leq 6$ and $X_{1}^{*}=$ $\left[\begin{array}{l:l:ll:l}J_{2 \times 6} & O_{2} & J_{2}\end{array}\right]^{t}, X_{2}^{*}=\left[\begin{array}{ll:l}J_{4 \times 6} & J_{4 \times 2} & O_{4 \times 2}\end{array}\right]^{t}$. Suppose that \mathbf{m}_{3} and \mathbf{m}_{4} are orthogonal in the $R 6$-parts of them. Then m_{1} is not orthogonal to m_{3} and \mathbf{m}_{4} by Lemma 2.6. Thus, for $3 \leq i \leq 6$, the number of positive elements of \mathbf{m}_{i} is even. Hence, without loss of generality, it can be assumed that

$$
X_{2}=\left[\begin{array}{cccccc:cc:cc}
1 & 1 & - & - & 1 & 1 & - & - & 0 & 0 \\
1 & 1 & 1 & 1 & - & - & - & - & 0 & 0 \\
1 & 1 & - & - & - & - & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Furthermore, two feasible matrices of Type \mathbf{c}_{5}, say S and T, can be constructed, where

$$
\left.\begin{array}{l}
S=\left[\begin{array}{cccccc:cc:cc}
1 & - & 1 & - & - & 1 & 0 & 0 & - & - \\
1 & - & 1 & - & 1 & - & 0 & 0 & 1 & 1 \\
\hdashline 1 & 1 & - & - & 1 & 1 & - & - & 0 & 0 \\
1 & 1 & 1 & 1 & - & - & - & - & 0 & 0 \\
1 & 1 & - & - & - & - & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]^{t}, \\
T=\left[\begin{array}{ccccc:cc:cc}
1 & - & - & 1 & - & 1 & 0 & 0 & 1 \\
1 & - & 1 & - & 1 & - & 0 & 0 & 1 \\
1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & 0 \\
1 & 1 & - & - & - & - & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
\end{array}\right]^{t} .
$$

Let $\pi=(5,6,1,2,3,4,7,8,9,10)$ and $\rho=(\underline{1}, 2, \underline{5}, 3, \underline{4}, 6)$ be two signed permutations. Then $S^{(\pi, \rho)}=T$, i.e., S is equivalent to T. For the notations π, ρ and $S^{(\pi, \rho)}$, refer to Remark 3.1. Thus it follows that a feasible matrix based on M_{R}^{*} can be uniquely constructed up to equivalence, say P_{5}^{1}, where $P_{5}^{1}=S$.

Finally, one can show that there exists the unique weighing matrix of Type \mathbf{c}_{5} up to equivalence. Let M_{U} be a U-matrix of M. Then, without loss of generality, it can be assumed that

$$
M_{U}=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & - & - & 1 & 1 & - & - \\
1 & 1 & - & - & - & - & 1 & 1
\end{array}\right]
$$

The trial and error approach produces the unique weighing matrix up to equivalence, say ($U 1,1$), based on P_{5}^{1} and M_{U}, where

$$
(U 1,1)=\left[\begin{array}{cccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & - & - & - & - & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & - & - & 1 & 1 & - & - & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & - & - & - & - & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
- & 1 & 0 & 0 & 0 & 0 & 0 & 0 & - & - & 1 & 1 & 1 & 1 \\
- & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & - & 1 & - & 1 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0 & - & - & - & 1 & - & 1 \\
0 & 0 & 1 & - & 0 & 0 & 0 & 0 & - & 1 & 1 & - & - & 1 \\
0 & 0 & - & 1 & 0 & 0 & 0 & 0 & 1 & - & 1 & - & - & 1 \\
0 & 0 & 0 & 0 & 1 & - & 1 & - & 0 & 0 & - & - & 1 & 1 \\
0 & 0 & 0 & 0 & - & 1 & - & 1 & 0 & 0 & - & - & 1 & 1 \\
0 & 0 & - & 1 & 1 & - & - & 1 & - & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & - & 1 & - & 1 & 1 & - & - & 1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

For $(U 1,1)$ refer to Remark 3.2. This completes the proof.
Remark 3.1. The notation $\pi(i, \underline{j}, \ldots, k)(\rho(i, \underline{j}, \ldots, k))$ means a row (column) signed permutation on a matrix as follows: move the i-th row (column) to the first row (column), the j-th row (column) to the second row (column) by multiplying -1 in addition, ..., the k-th row (column) to the last row (column). The notation $X^{(\pi, \rho)}$ means the matrix resulting from the operations by row and column signed permutations π and ρ, respectively, on a matrix X.

Remark 3.2. Many weighing matrices are constructed in Lemma 3.1 and the forthcoming Lemmas $3.2-3.6$. They are listed with the abbreviated forms in Table 2 of this section in the following manner: (i) the name of a weighing matrix (for example, $(U 1,1)$) is given; (ii) for each row of a weighing matrix, the number is corresponded, i.e. for the row (m_{1}, \ldots, m_{14}) the number $\sum_{i=1}^{14} \bar{m}_{i} 3^{i-1}$, where $m_{i} \equiv \bar{m}_{i}(\bmod 3), 0 \leq \bar{m}_{i} \leq 2$; (iii) the number corresponding to each row of a weighing matrix is given in order starting from the second row, because the first row of the matrix is $(1,1,1,1,1,1,1,1,0,0,0,0,0,0)$ which is common to all weighing matrices. For example, the weighing matrix W_{1}, named $(U 1,1)$, is expressed as follows:

$(U 1,1)$	6520	6232	3640	2388211	2414453	2978699
3004945	3103416	3116520	2603826	2602206	37062	38358

Here, for example, the number 3004945 corresponds to the 8 -th row $(1,-, 0,0,0,0,0,0,-,-,-, 1,-, 1)$ of $(U 1,1)$.

In the following, one will obtain many matrices, in the order of admissible, feasible and weighing matrices for each type. But the methods to find them are not described in detail, because they can be obtained with the same way as in the proof of Lemma 3.1.

Lemma 3.2. There are three inequivalent feasible matrices, say $P_{7}^{i}, 1 \leq$ $i \leq 3$, of Type \mathbf{c}_{7}. At most n_{7}^{i} inequivalent weighing matrices based on P_{7}^{1} can be constructed with $n_{7}^{1}=n_{7}^{2}=n_{7}^{3}=1$.

Proof. Let M be a weighing matrix of Type \mathbf{c}_{7} and M_{R} be an R-matrix of M. Then, M_{R}^{*} is unique up to equivalence, i.e., $M_{R}^{*}=\left[J_{6 \times 4}: J_{6}-I_{3} \otimes J_{2}\right]^{t}$. Moreover, there are only three inequivalent feasible matrices, say $P_{7}^{i}, i=1$, 2, 3, based on M_{R}^{*}, where

$$
P_{7}^{1}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 \\
- & - & - & - & 1 & 1 \\
0 & 0 & - & 1 & - & 1 \\
0 & 0 & 1 & - & - & 1 \\
- & 1 & 0 & 0 & - & 1 \\
1 & - & 0 & 0 & - & 1 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0
\end{array}\right], \quad P_{7}^{2}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
- & 1 & - & 1 & - & 1 \\
1 & - & 1 & - & - & 1 \\
0 & 0 & - & - & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & - & 0 & 0 & - & 1 \\
1 & - & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0
\end{array}\right],
$$

$$
P_{7}^{3}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
- & 1 & - & - & 1 & 1 \\
1 & - & - & - & 1 & 1 \\
0 & 0 & - & 1 & - & 1 \\
0 & 0 & 1 & - & - & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & - & 0 & 0 & - & 1 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0
\end{array}\right] .
$$

Thus a weighing matrix, say ($V i, 1$), based on P_{7}^{i} can be uniquely constructed up to equivalence by the trial and error. Such $\{(V i, 1)\}$ are listed in Table 2.

Theorem 3.3. There is no weighing matrix of Type \mathbf{c}_{9}.

Proof. Let M_{R} be an R-matrix of a weighing matrix of Type c_{9} and $M_{R 2}$ be an $R 2$-matrix of M_{R}. Then $M_{R 2}^{*}$ is equivalent to one of the following matrices, say $K(i)^{*}, 1 \leq i \leq 8$:

$$
\left.\begin{array}{lllll}
{\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right.} & 1 \\
0 & 0 & 0 & 0 & 1
\end{array} 1\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right],
$$

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \tag{7}\\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(8)
where (i) corresponds to $K(i)^{*}$. It can be shown that there is no admissible matrix of Type \mathbf{c}_{9} based on $K(i)^{*}$ except for $i=4$, 8. Note that an admissible matrix based on $K(1)^{*}$ can be constructed, but it is not of Type \mathbf{c}_{9}. Furthermore, one can construct uniquely an admissible matrix based on $K(i)^{*}$, say $K_{i}^{*}, i=4,8$, up to equivalence, where

$$
K_{4}^{*}=\left[\right], \quad K_{8}^{*}=\left[\right] .
$$

Repeated applications of Lemma 2.6 show that K_{8}^{*} only is transformed to a feasible matrix, say K_{8}, up to equivalence, where

$$
K_{8}=\left[\begin{array}{ccccccccccc}
1 & - & 1 & - & - & 0 & 1 & 1 & 0 & 0 & - \\
1 & - & 1 & - & 1 & 0 & - & - & 0 & 0 & 1 \\
1 & 1 & - & - & - & 1 & 0 & - & 0 & - & 0 \\
1 & 1 & - & - & 1 & - & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & - & - & - & 0 & - & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]^{t}
$$

But it can be shown by computer calculation that a weighing matrix based on K_{8} does not exist.

Lemma 3.3. There are four inequivalent feasible matrices of Type \mathbf{c}_{15}, say $P_{15}^{i}, 1 \leq i \leq 4$. At most n_{15}^{i} inequivalent weighing matrices of Type \mathbf{c}_{15} based on P_{15}^{i} can be constructed with $n_{15}^{1}=7, n_{15}^{2}=2, n_{15}^{3}=2, n_{15}^{4}=0$.

Proof. Let M be a weighing matrix of Type \mathbf{c}_{15} and M_{R} be an R-matrix of M. Let $M_{R 2}$ be an $R 2$-matrix of M_{R}. Then $M_{R 2}^{*}$ is equivalent to one of the following matrices, say $K(i)^{*}, 1 \leq i \leq 21$:

$$
\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0
\end{array} 0.0 \begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array} 0
$$

$$
\begin{align*}
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]} \\
& \text { (8) } \tag{7}\\
& \text { (11) } \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]} \\
& \text { (9) } \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]} \\
& \text { (12) }
\end{align*}
$$

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

(14)
(13)

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

(16)
$\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right]$
(19)
(17)
(20)

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \tag{21}\\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \tag{15}\\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

$\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$
(18)

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right],
$$

where (i) corresponds to $K(i)^{*}$.
Suppose that $K(i)^{*}$ can be extended to an admissible matrix K^{*} of Type \mathbf{c}_{15} so that the $R 2$-matrix of K^{*} is $K(i)^{*}$. If there exists a column of weight 0 in $K(i)^{*}$, the weights of columns in the $R 4$-matrix of K^{*} are 4 . Consequently, weights of the other columns of K^{*} must be even in the $R 2$-matrix. Thus the cases of $K(i)^{*}$ are removed for $i=2,4,5,6,7,8,9,10,11,12,15,18$, 19. Furthermore, $K(i)^{*}$ for $i=1,3$ are also removed, because weighing matrices constructed based on these cases are of larger types than Type \mathbf{c}_{15}. In a similar way, it follows that for $i=16,20,21, K(i)^{*}$ cannot be extended to the admissible matrices. From $K(i)^{*}$ for $i=13,14,17$, one can uniquely construct an admissible matrix K_{i}^{*} up to equivalence, where

But some repeated applications of Lemma 2.6 show that it is impossible to construct a feasible matrix based on K_{13}^{*} or K_{17}^{*}. Moreover, there are only four inequivalent feasible matrices, say $P_{15}^{i}, 1 \leq i \leq 4$, based on K_{14}^{*}, where

$$
\left.\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1
\end{array} 1\right.} \\
- & - & 1 & 1 & 1 & 1 \\
1 & - & - & 1 & - & 1 \\
1 & - & 1 & - & - & 1 \\
0 & 0 & - & - & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
- & 1 & 0 & 0 & - & 1 \\
- & 1 & 0 & 0 & - & 1 \\
0 & 0 & - & 1 & 0 & 0 \\
0 & 0 & - & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
- & 1 & - & - & 1 & 1 \\
1 & - & - & - & 1 & 1 \\
0 & 0 & - & 1 & - & 1 \\
0 & 0 & 1 & - & - & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & - & 0 & 0 & - & 1 \\
0 & 0 & - & 1 & 0 & 0 \\
0 & 0 & - & 1 & 0 & 0 \\
- & 1 & 0 & 0 & 0 & 0 \\
- & 1 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & - & - & 1 & 1 \\
- & - & 1 & 1 & - & 1 \\
1 & 1 & - & - & - & 1 \\
0 & 0 & - & 1 & 1 & 1 \\
0 & 0 & 1 & - & 1 & 1 \\
- & 1 & 0 & 0 & - & 1 \\
1 & - & 0 & 0 & - & 1 \\
0 & 0 & - & 1 & 0 & 0 \\
0 & 0 & - & 1 & 0 & 0 \\
- & 1 & 0 & 0 & 0 & 0 \\
- & 1 & 0 & 0 & 0 & 0
\end{array}\right],
$$

and (i) corresponds to P_{15}^{i}. By computer search at most n_{15}^{i} inequivalent weighing matrices, say ($W i, l$), $1 \leq l \leq n_{15}^{i}$, based on P_{15}^{i} can be constructed
with $n_{15}^{1}=7, n_{15}^{2}=2, n_{15}^{3}=2$ and $n_{15}^{4}=0$. For the method of constructing weighing matrices with the aid of a computer, refer to Remark 3.3. Such $\{(W i, l)\}$ are listed in Table 2.

Remark 3.3. The present algorithm for construction of weighing matrices of Type \mathbf{c} is described as follows: (i) construct a set of column vectors of size 14 and weight 8 which are orthogonal to each column of a feasible matrix of Type \mathbf{c}, and choose eight vectors with the first elements being all ones which are orthogonal to each other in the set; (ii) remove weighing matrices obtained in (i) which are matrices of larger types than Type c; (iii) remove equivalent matrices by using automorphism groups of feasible matrices and automorphism groups of the U-matrices of weighing matrices obtained. The computation was performed on a PC-9801 computer.

Our algorithm will be used for constructing weighing matrices of each type hereafter.

Lemma 3.4. There are five inequivalent feasible matrices of Type \mathbf{c}_{17}, say $P_{17}^{i}, 1 \leq i \leq 5$. At most n_{17}^{i} inequivalent weighing matrices \mathbf{c} of Type \mathbf{c}_{17} based on P_{17}^{i} can be constructed with $n_{17}^{1}=1, n_{17}^{2}=2, n_{17}^{3}=1, n_{17}^{4}=0$ and $n_{17}^{5}=0$.

Proof. Let K be an R-matrix of a weighing matrix of Type \mathbf{c}_{17}. Then K^{*} is equivalent to one of three inequivalent admissible matrices, say K_{i}^{*}, $1 \leq i \leq 3$, of Type \mathbf{c}_{17}, as follows:

By Lemma 2.6, it is impossible to be extended to a feasible matrix of Type \mathbf{c}_{17} based on K_{2}^{*}. However, there are only four inequivalent feasible matrices of Type \mathbf{c}_{17} based on K_{1}^{*}, say $P_{17}^{i}, 1 \leq i \leq 4$, and only one inequivalent feasible matrix based on K_{3}^{*}, say P_{17}^{5}, where

$$
\begin{aligned}
& P_{17}^{1}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & - & - & 1 & 1 \\
0 & 0 & - & 1 & - & 1 \\
0 & 0 & 1 & - & - & 1 \\
- & 1 & 0 & 0 & - & 1 \\
1 & - & 0 & 0 & - & 1 \\
- & - & 1 & 1 & 0 & 0 \\
- & - & 1 & 1 & 0 & 0 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right], \quad P_{17}^{2}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & - & 1 \\
0 & 0 & - & - & 1 & 1 \\
- & - & 0 & 0 & 1 & 1 \\
0 & 0 & - & - & - & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & 1 & - & 1 & 0 & 0 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & - & 1
\end{array}\right], \\
& P_{17}^{3}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
- & 1 & 0 & 0 & - & 1 \\
1 & - & 0 & 0 & - & 1 \\
1 & 1 & - & 1 & 0 & 0 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
- & - & - & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & - & 1 \\
0 & 0 & 0 & 0 & - & 1
\end{array}\right], \quad P_{17}^{4}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & - & 0 & 0 & - & 1 \\
- & 1 & - & 1 & 0 & 0 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & - & 1 \\
0 & 0 & 0 & 0 & - & 1
\end{array}\right],
\end{aligned}
$$

$$
P_{17}^{5}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
0 & 0 & - & 1 & - & 1 \\
- & 1 & 0 & - & 0 & 1 \\
1 & - & 0 & - & 0 & 1 \\
- & 1 & - & 0 & 1 & 0 \\
1 & - & - & 0 & 1 & 0 \\
1 & 1 & - & 1 & 0 & 0 \\
- & - & - & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & - & 1 \\
0 & 0 & 0 & 0 & - & 1
\end{array}\right] .
$$

By using a computer, at most n_{17}^{i} inequivalent weighing matrices, say ($X i, l$),
$1 \leq l \leq n_{17}^{i}$, based on P_{17}^{i} can be constructed with $n_{17}^{1}=1, n_{17}^{2}=2, n_{17}^{3}=1$, $n_{17}^{4}=0, n_{17}^{5}=0$. Such $\{(X i, l)\}$ are listed in Table 2.

Lemma 3.5. There are two inequivalent feasible matrices of Type \mathbf{c}_{18}, say $P_{18}^{i}, 1 \leq i \leq 2$. At most n_{18}^{i} inequivalent weighing matrices based on P_{18}^{i} can be constructed with $n_{18}^{1}=1$ and $n_{18}^{2}=1$.

Proof. Let K be an R-matrix of a weighing matrix of Type \mathbf{c}_{18}. Then K^{*} is equivalent to the following admissible matrix:

$$
\left[\begin{array}{c:cccc}
J_{2} & 1 & 1 & 1 & 1 \\
\hdashline J_{6 \times 2} & 0 & 0 & 0 & 0 \\
\hdashline O_{4 \times 2} & L^{*} & J_{4}^{*}
\end{array}\right],
$$

where $L^{* t} L^{*}=2 I_{4}+J_{4}$, i.e., $L^{* t}$ is the incidence matrix of a BIBD with parameters (4, 6, 3, 2, 1) (see Raghavarao (1971) for the definition of a BIBD). Without loss of generality, it can be expressed as

$$
L^{*}=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]^{t}
$$

Then one can construct two inequivalent feasible matrices, say P_{18}^{1} and P_{18}^{2}, based on the above admissible matrix, where

$$
P_{18}^{1}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
- & - & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & - & 1 \\
1 & 0 & 0 & - & - & 1 \\
0 & - & 1 & 0 & - & 1 \\
- & 0 & - & 0 & - & 1 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0 \\
- & - & 1 & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0
\end{array}\right], \quad P_{18}^{2}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & - & 1 \\
0 & 0 & - & 1 & 1 & 1 \\
0 & - & 0 & - & 1 & 1 \\
- & 0 & 0 & - & 1 & 1 \\
0 & 1 & 1 & 0 & - & 1 \\
- & 0 & - & 0 & - & 1 \\
1 & - & 0 & 0 & - & 1 \\
- & - & 1 & 1 & 0 & 0 \\
- & - & 1 & 1 & 0 & 0 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0
\end{array}\right] .
$$

By computer search, at most n_{18}^{i} inequivalent weighing matrices, say (Yi,l), $1 \leq l \leq n_{18}^{i}$, based on P_{18}^{i} can be constructed with $n_{18}^{1}=1$ and $n_{18}^{2}=1$. Such $\{(Y i, l)\}$ are listed in Table 2.

Lemma 3.6. There are 19 inequivalent feasible matrices of Type \mathbf{c}_{19}, say $P_{19}^{i}, 1 \leq i \leq 19$. At most n_{19}^{i} inequivalent weighing matrices based on P_{19}^{i} can be constructed with $n_{19}^{1}=0, n_{19}^{2}=3, n_{19}^{3}=8, n_{19}^{4}=10, n_{19}^{5}=2, n_{19}^{6}=6, n_{19}^{7}=$ $9, n_{19}^{8}=6, n_{19}^{9}=4, n_{19}^{10}=5, n_{19}^{11}=8, n_{19}^{12}=6, n_{19}^{13}=6, n_{19}^{14}=1, n_{19}^{15}=1, n_{19}^{16}=$ $1, n_{19}^{17}=4, n_{19}^{18}=1, n_{19}^{19}=1$.

Proof. Let K be an R-matrix of a weighing matrix of Type \mathbf{c}_{19}. Then K^{*} is equivalent to one of three inequivalent admissible matrices of Type \mathbf{c}_{19} as follows:

$$
K_{1}^{*}=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right], K_{2}^{*}=\left[\begin{array}{lllllllllllll}
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right],
$$

One can construct l_{i} inequivalent feasible matrices based on $K_{i}^{*}, 1 \leq i \leq 3$, respectively, where $\left(l_{1}, l_{2}, l_{3}\right)=(5,8,6)$. They are numbered as $P_{19}^{l}, 1 \leq l \leq 19$, where
$\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & - & 1 \\ 1 & 1 & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ - & 1 & - & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ 1 & - & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ 1 & 1 & - & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0 \\ - & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & 1 & 1 & 1 \\ 0 & 0 & 1 & - & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ 1 & - & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & 1 & 1 & 1 \\ 0 & 1 & 0 & - & 1 & 1 \\ 0 & - & 0 & - & 1 & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ 1 & 0 & - & 0 & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & - & 0 & - & 1 & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 0 & - & 0 & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ 1 & - & 0 & 0 & - & 1 \\ 1 & 1 & - & 1 & 0 & 0 \\ - & - & - & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & - & 0 & - & 1 & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 0 & - & 0 & - & 1 \\ 1 & 1 & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right]$,
(7) $\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ 1 & - & 0 & 0 & - & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & - & 1 \\ 0 & - & 0 & - & - & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 0 & - & 0 & - & 1 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & - & 1 \\ 0 & - & 0 & - & - & 1 \\ - & 0 & 1 & 0 & - & 1 \\ 1 & 0 & - & 0 & - & 1 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0 \\ 1 & - & 1 & 1 & 0 & 0 \\ - & - & - & 1 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ 1 & - & 0 & 0 & - & 1 \\ - & 1 & 1 & 1 & 0 & 0 \\ 1 & - & 1 & 1 & 0 & 0 \\ 1 & 1 & - & 1 & 0 & 0 \\ - & - & - & 1 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & - & 1 & 1 \\ 1 & 0 & - & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & - & 1 \\ 0 & 1 & 0 & - & - & 1 \\ 1 & 0 & - & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & - & 1 & 1 \\ 1 & 0 & - & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 0 & - & 1 & - & 1 \\ 0 & - & 0 & - & - & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & - & 1 & 1 \\ 1 & 0 & - & 0 & 1 & 1 \\ - & - & 0 & 0 & 1 & 1 \\ 0 & 0 & - & 1 & - & 1 \\ 0 & - & 0 & - & - & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 1 & 0 & 0 & - & 1 \\ - & 1 & 1 & 1 & 0 & 0 \\ 1 & - & 1 & 1 & 0 & 0 \\ 1 & 1 & - & 1 & 0 & 0 \\ - & - & - & 1 & 0 & 0\end{array}\right]$ (14) $\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & - & 0 & 1 & - & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 0 & - & 0 & - & 1 \\ 1 & 1 & 0 & - & 0 & 1 \\ - & - & 0 & - & 0 & 1 \\ - & - & 1 & 0 & 1 & 0 \\ 1 & - & - & 0 & 1 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & - & 0 & 1 & - & 1 \\ 1 & 0 & 1 & 0 & - & 1 \\ - & 0 & - & 0 & - & 1 \\ - & 1 & 0 & - & 0 & 1 \\ 1 & - & 0 & - & 0 & 1 \\ - & - & 1 & 0 & 1 & 0 \\ 1 & - & - & 0 & 1 & 0 \\ 1 & 1 & - & 1 & 0 & 0 \\ - & - & - & 1 & 0 & 0\end{array}\right]$,
(16)
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & - & 1 & 1 \\ 1 & 0 & - & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & - & 1 \\ 0 & 0 & 1 & - & - & 1 \\ - & 0 & - & 0 & - & 1 \\ - & - & 0 & 1 & 0 & 1 \\ 1 & - & 0 & - & 0 & 1 \\ - & - & 1 & 0 & 1 & 0 \\ - & 1 & - & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & - & 1 & 1 \\ 1 & 0 & - & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & - & 1 \\ 0 & 0 & 1 & - & - & 1 \\ - & 0 & - & 0 & - & 1 \\ - & - & 0 & 1 & 0 & 1 \\ 1 & - & 0 & - & 0 & 1 \\ - & 1 & 1 & 0 & 1 & 0 \\ - & - & - & 0 & 1 & 0 \\ 1 & - & 1 & 1 & 0 & 0 \\ 1 & 1 & - & 1 & 0 & 0\end{array}\right]$,
會
$\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & - & - & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & - & 0 & 1 & - & 1 \\ 1 & 1 & 0 & 0 & - & 1 \\ - & - & 0 & 0 & - & 1 \\ 1 & 0 & 1 & - & 0 & 1 \\ - & 0 & - & - & 0 & 1 \\ - & - & 1 & 0 & 1 & 0 \\ 1 & - & - & 0 & 1 & 0 \\ - & 1 & - & 1 & 0 & 0 \\ 1 & - & - & 1 & 0 & 0\end{array}\right]$,

$$
\left[\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & - & - & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & - & 0 & 1 & - & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & - & 0 & 0 & - & 1 \\
- & 0 & 1 & - & 0 & 1 \\
1 & 0 & - & - & 0 & 1 \\
1 & - & 1 & 0 & 1 & 0 \\
- & - & - & 0 & 1 & 0 \\
- & 1 & - & 1 & 0 & 0 \\
1 & - & - & 1 & 0 & 0
\end{array}\right]
$$

and (i) corresponds to P_{19}^{i}. By computer search, many weighing matrices based on P_{19}^{i} can be constructed. For example, by algorithm (i) described in Remark 3.3, one can construct 480 weighing matrices based on P_{19}^{3}. Let $G=\left\langle g_{l}\right\rangle, 1 \leq l \leq 5$, be an automorphism group of P_{19}^{3}, having $\left\{g_{l}\right\}$ as generators, where

$$
\begin{aligned}
& g_{1}=(\pi(\underline{1}, \underline{2}, \underline{3}, 4, \underline{5}, \underline{6}, \underline{7}, \underline{8}, \underline{9}, \underline{10}, \underline{11}, \underline{12}), \rho(\underline{1}, \underline{2}, \underline{3}, \underline{4}, \underline{5}, \underline{6})), \\
& g_{2}=(\pi(1,3,2,4,5,6,7,8,9,10, \underline{12}, \underline{11}), \rho(1,2,4,3,5,6)), \\
& g_{3}=(\pi(1,2,3,4, \underline{8}, \underline{7}, \underline{6}, \underline{5}, 9,10,11,12), \rho(1,2,3,4,6,5)), \\
& g_{4}=(\pi(4,3,2,1,5,6,7,8, \underline{10}, \underline{9}, \underline{12}, \underline{11}), \rho(1,2, \underline{3}, \underline{4}, 5,6)), \\
& g_{5}=(\pi(5,6,7,8,1,2,3,4,9, \underline{10}, 11, \underline{12}), \rho(3,4,1,2, \underline{5}, 6)) .
\end{aligned}
$$

Using G in order to remove equivalent matrices, one can reduce from 480 matrices to 15 ones. Furthermore, by removing matrices being not of Type \mathbf{c}_{19}, at most $n_{19}^{3}=8$ inequivalent weighing matrices based on P_{19}^{3} can be constructed. The same method can be performed for other feasible matrices, in order to construct weighing matrices. As a result, n_{19}^{i} weighing matrices based on P_{19}^{i}, say ($Z i, l$), can be constructed for $1 \leq i \leq 19$ and $1 \leq l \leq n_{19}^{i}$. Such $\{(Z i, l)\}$ are listed in Table 2. Note that the construction is performed in the order starting from P_{19}^{1}.

Theorem 3.4. There is no weighing matrix of Type \mathbf{c}_{23}.
Proof. Let M be a weighing matrix of Type \mathbf{c}_{23} and M_{R} be an R-matrix of M. For $M_{R 2}$ being an $R 2$-matrix of $M_{R}, M_{R 2}^{*}$ is equivalent to one of 21 matrices presented in the proof of Lemma 3.3. If K^{*} is an admissible matrix based on $K(i)^{*}, 1 \leq i \leq 21$, where $K(i)^{*}$ is one of the matrices as in the proof
of Lemma 3.3, then it can be shown that the type of weighing matrix having K^{*} as an R-matrix is larger than Type \mathbf{c}_{23}. This contradicts to the assumption of the matrix M of Type \mathbf{c}_{23}.

Theorem 3.5. There are two inequivalent admissible matrices and four inequivalent feasible matrices of Type \mathbf{c}_{24}, say $P_{24}^{i}, 1 \leq i \leq 4$. All weighing matrices constructed based on those matrices are of larger types than Type \mathbf{c}_{24}.

Proof. Let K be an R-matrix of a weighing matrix of Type \mathbf{c}_{24}. Then K^{*} is equivalent to one of two inequivalent admissible matrices of Type \mathbf{c}_{24}, say K_{1}^{*} and K_{2}^{*}. Moreover, it can be shown that there are one and three inequivalent feasible matrices based on K_{1}^{*} and K_{2}^{*}, say P_{24}^{1} and $P_{24}^{i}, 2 \leq i \leq 4$, respectively, where

$$
\begin{align*}
& K_{1}^{*}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right], \quad K_{2}^{*}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \\
& {\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
- & 0 & - & 0 & 1 & 1 \\
- & 0 & 1 & 0 & - & 1 \\
0 & - & - & 1 & 0 & 1 \\
0 & - & 1 & - & 0 & 1 \\
1 & 1 & - & 0 & 0 & 1 \\
- & - & 0 & 1 & 1 & 0 \\
1 & - & 0 & - & 1 & 0 \\
- & 1 & 1 & 0 & 1 & 0 \\
1 & - & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & - & 1 \\
0 & 0 & 0 & - & 0 & 1 \\
0 & 0 & 0 & - & 1 & 0
\end{array}\right], }
\end{align*}
$$

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & - & 1 & - & 1 \\
0 & - & 0 & - & 1 & 1 \\
0 & 1 & 0 & - & - & 1 \\
1 & - & 0 & 0 & - & 1 \\
- & - & 1 & 0 & 0 & 1 \\
- & 1 & - & 0 & 0 & 1 \\
- & 0 & - & 1 & 1 & 0 \\
1 & 0 & - & - & 1 & 0 \\
1 & - & - & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & - & - & 1 \\
0 & - & 0 & - & 1 & 1 \\
0 & - & 0 & 1 & - & 1 \\
- & 1 & 0 & 0 & - & 1 \\
- & 1 & - & 0 & 0 & 1 \\
1 & - & - & 0 & 0 & 1 \\
- & 0 & - & 1 & 1 & 0 \\
- & 0 & 1 & - & 1 & 0 \\
- & - & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and (i) corresponds to P_{24}^{i}. The computer search shows that all weighing matrices constructed based on P_{24}^{i} are of larger types than Type \mathbf{c}_{24}.

Theorem 3.6. There exists the unique admissible matrix of Type \mathbf{c}_{25} and there are two inequivalent feasible matrices, say P_{25}^{1} and P_{25}^{2}, based on the admissible matrix. All weighing matrices constructed based on $P_{25}^{i}, 1 \leq i \leq 2$, are of larger types than Type \mathbf{c}_{25}.

Proof. Let K be an R-matrix of a weighing matrix of Type \mathbf{c}_{25}. Then K^{*} is equivalent to the admissible matrix \underline{K}^{*}. Furthermore, it can be shown that there are two inequivalent feasible matrices, say $P_{25}^{i}, i=1,2$, based on \underline{K}^{*}. Here

$$
\underline{K}^{*}=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right], \quad P_{25}^{1}=\left[\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
- & 1 & 0 & 0 & - & 1 \\
0 & - & - & 1 & 0 & 1 \\
0 & 1 & - & - & 0 & 1 \\
- & - & 0 & - & 0 & 1 \\
1 & - & 1 & 0 & 0 & 1 \\
- & 0 & 1 & - & 1 & 0 \\
1 & 0 & - & - & 1 & 0 \\
- & 1 & 0 & 1 & 1 & 0 \\
- & - & - & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & - & 1 \\
0 & 0 & - & 1 & 0 & 0
\end{array}\right],
$$

$$
P_{25}^{2}=\left[\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & - & 1 \\
- & - & 0 & 0 & - & 1 \\
0 & 1 & - & 1 & 0 & 1 \\
0 & - & - & - & 0 & 1 \\
- & 1 & 0 & - & 0 & 1 \\
1 & - & 1 & 0 & 0 & 1 \\
- & 0 & - & 1 & 1 & 0 \\
- & 0 & 1 & - & 1 & 0 \\
1 & 1 & 0 & - & 1 & 0 \\
1 & - & - & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right] .
$$

Using a computer, it can be shown that all weighing matrices constructed based on P_{25}^{i} are of larger types than Type \mathbf{c}_{25}.

Now, a set of $W(14,8)$'s constructed in Lemmas $3.1-3.6$ contains all inequivalent weighing matrices of order 14 and weight 8 . Thus weighing matrices in the set will be classified into some inequivalent classes.

Definition 3.3. Let $M \in \Delta$ and $\mathbf{C}=\mathbf{C}\left(\cdots i^{n_{i}} \cdots j^{n_{j}} \cdots\right)$ be the distribution of types of rows of M, for $1<i<j \leq 25, n_{i} \geq 1, n_{j} \geq 1$, where n_{l} is the number of rows of M having Type \mathbf{c}_{l}. In this case, \mathbf{C} is called the \mathbf{C} distribution associated with M.

The following result is straightforward.
Theorem 3.7. Let $M_{i} \in \Delta$ and \mathbf{C}_{i} be the \mathbf{C}-distribution of $M_{i}, i=1,2$. If $\mathbf{C}_{1} \neq \mathbf{C}_{2}$, then M_{1} is not equivalent to M_{2}. In particular, if M_{2} is the transpose matrix of M_{1} and $\mathbf{C}_{1} \neq \mathbf{C}_{2}, M_{1}$ is not self-dual.

There are many inequivalent weighing matrices having the same \mathbf{C}-distribution. Thus, another criterion is needed to determine whether two matrices are equivalent or not.

Definition 3.4. Let $M \in \Delta$ and $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{14}\right), \mathbf{m}_{i}=\left(m_{1}^{i}, m_{2}^{i}, \ldots\right.$, m_{14}^{i}) be three different rows of M, where $i=1,2$. Define a 3×8 matrix $T=\left(t_{i j}\right)$ associated with \mathbf{m}, where $t_{0 l}=m_{j_{l}} \neq 0$ and $t_{i l}=m_{j_{l}}^{i}, 1 \leq l \leq 8, i=1,2$. T is called a t-matrix associated with \mathbf{m} if $\left|\mathbf{t}_{1} * \mathbf{t}_{2}\right| \geq\left|\mathbf{t}_{1} * \mathbf{t}_{3}\right|, \mathbf{t}_{1}=J_{1 \times 8}$, and the first non-zero elements of t_{2} and t_{3} are ones, where t_{i} is the i-th row of T. Let T_{1} and T_{2} be two t-matrices associated with \mathbf{m}. If there are two signed matrices \bar{P} and \bar{Q} such that $T_{2}=\bar{P} T_{1} \bar{Q}$, then T_{2} is said to be equivalent to T_{1}.

The following lemma is straightforward.
Lemma 3.7. Let $M \in \Delta$ and \mathbf{m} be a row of M. Then a t-matrix associated with \mathbf{m} is equivalent to one of following matrices.

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & - & 0 & 0 & 0 & 0
\end{array}\right]
$$

(1)
(2)

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & - & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(3)
(4)

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & 0 & - & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & - & -
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & - & - & 0
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & - & 0 & 0 & 1 & - & 0 & 0
\end{array}\right]
$$

(8)
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & - & - & 0 & 0 & 0 & 0 \\ 1 & 0 & - & 0 & 1 & - & 0 & 0\end{array}\right]$
(9)

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \tag{10}\\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & - & - & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & - & 1 & 0 & - & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & 1 & - & 0 & - & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & - & 1 & - & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & 1 & - & - & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -
\end{array}\right] \quad\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 0 & 0 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 0 & 0 \\
1 & 0 & 0 & - & 0 & 0 & 0 & 0
\end{array}\right]}
\end{array} \begin{array}{ll}
{\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & - & -
\end{array}\right]}
\end{array} \begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 0 & 0 \tag{18}\\
1 & - & 0 & 0 & 0 & 0 & 1 & -
\end{array}\right]
$$

$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & - & - & - & 0 & 0 \\ 1 & 1 & - & 1 & 0 & 0 & - & -\end{array}\right] \quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & - & - & - & 0 & 0 \\ 1 & 1 & - & 1 & - & 0 & - & 0\end{array}\right]$
(27)
(28)
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & - & - & - & 0 & 0 \\ 1 & 1 & - & 1 & - & - & 0 & 0\end{array}\right] \quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - \\ 1 & - & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(29)
(30)
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - \\ 1 & - & 0 & 0 & 1 & - & 0 & 0\end{array}\right] \quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - \\ 1 & 1 & - & - & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - \\ 1 & 1 & - & - & 1 & - & 0 & 0\end{array}\right]$
(33)
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - \\ 1 & 1 & - & - & 1 & 1 & - & -\end{array}\right]$

$$
\begin{align*}
& {\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & - & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & - & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & - & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & - & - & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & - & 0
\end{array}\right]}
\end{align*}\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \tag{36}\\
1 & 1 & 1 & - & - & - & 0 & 0 \tag{37}\\
1 & 1 & - & - & 0 & 0 & - & 0
\end{array}\right]
$$

Remark 3.4. For each of rows (columns) of weighing matrices obtained in Lemmas 3.1-3.6, t-matrices are searched. As a result, there is no weighing matrix having a t-matrix equivalent to the i-th matrix (i) for $35 \leq i \leq 38$.

For the i-th matrix (i) in Lemma 3.7, let $T_{1}(i)=(i)$ (for $1 \leq i \leq 2$), $T_{2}(i)=$ $(i+2)$ (for $1 \leq i \leq 12$), $T_{3}(i)=(i+14)($ for $1 \leq i \leq 15), T_{4}(i)=(i+29)$ (for $1 \leq i \leq 5$), for the sake of convenience.

Let $M \in \Delta$ and \mathbf{m} be a row of M. Then one can make $78 t$-matrices associated with \mathbf{m}, each of which is equivalent to one of the first 34 matrices given in Lemma 3.7. Hence the distribution of such t-matrices associated with \mathbf{m} is obtained.

Definition 3.5. The distribution of t-matrices associated with \mathbf{m} is denoted by $\left\{\ldots, T_{i}\left(\ldots, j^{n_{i j}}, \ldots\right), \ldots\right\}$, where $T_{i}\left(\ldots, j^{n_{i j}}, \ldots\right)$ means that there are $n_{i j} t$-matrices associated with \mathbf{m} equivalent to $T_{i}(j)$. In this case, the distribution is called the \mathbf{T}-distribution associated with \mathbf{m}.

Note that $\sum_{i, j} n_{i j}=78$. For all weighing matrices obtained in Lemmas 3.1-3.6, and then for all rows (columns) of each matrices, T-distributions are derived and hence 91 different \mathbf{T}-distributions can be obtained. They are listed as $\mathbf{T}_{i}, 1 \leq i \leq 91$, in Table 1 of this section.

Definition 3.6. Let $M \in \Delta$ and $\mathbf{T}=\mathbf{T}\left(\ldots, i^{l}, \ldots\right)$ be the distribution of T-distributions associated with rows of M, where i^{l} means that there are l rows having the \mathbf{T}-distribution \mathbf{T}_{i} for $l \geq 1$. In this case, \mathbf{T} is called the T-distribution associated with M.

The next is straightforward.
Theorem 3.8. Let $M_{i} \in \Delta$ and $\mathbf{T}(i)$ be the \mathbf{T}-distribution associated with M_{i} for $i=1,2$. If $\mathbf{T}(1) \neq \mathbf{T}(2)$, then M_{1} is not equivalent to M_{2}. In particular, if M_{2} is the transpose of M_{1} and $\mathbf{T}(1) \neq \mathbf{T}(2), M_{1}$ is not self-dual.

There are $103 W(14,8)$'s obtained in Lemmas 3.1-3.6. As a result, they can be classified into 65 inequivalent classes by using the \mathbf{C} - or the T -
distribution associated with each matrix in the following manner. Let M be a weighing matrix obtained in Lemmas 3.1-3.6. Then M is divided into two cases.

Case I: The case being used as the representative matrix of the i-th inequivalent class. In this case, the \mathbf{C}-distribution and/or the \mathbf{T}-distribution associated with M are attached. Furthermore M is named as W_{i} in Table 2. See Remark 3.2 for the expression of W_{i} in Table 2. For W_{i}, other informations are also attached in Table 2 as follows: If W_{i} is self-dual, first the notation SD and two signed permutations, say π and ρ, and secondly the \mathbf{C}-distribution and/or the \mathbf{T}-distribution associated with W_{i} are attached. This means that $W_{i}=W_{i}^{t(\pi, \rho)}$. If W_{i} is not self-dual, W_{i}^{t} is used as the representative matrix of the $(i+1)$-th inequivalent class. Then the notation $W_{i+1}=$ W_{i}^{t} is used, and the C-distributions and/or the T-distributions associated with W_{i} and W_{i}^{t} are also attached.

Case II: The case being not used as the representative matrix of inequivalent class. In this case, only two signed permutations, say π and ρ, are attached with the notations W_{l} or $P_{\alpha}\left(P_{\alpha}^{t}\right)$ together in Table 2. If W_{l} $(1 \leq l \leq 65)$ is attached, it means that $W_{l}=M^{(\pi, \rho)}$. If $P_{\alpha}\left(P_{\alpha}^{t}\right)$ is attached, M is of Type \mathbf{c}_{19}. Let $M=\left(m_{i j}\right)$ be a weighing matrix based on P_{19}^{β} given in Lemma 3.6, and π^{*} and ρ^{*} be permutations ignoring signs of π and ρ, respectively. Further let $L=\left(l_{a b}\right)$ be a submatrix of M, where $l_{a b}=m_{\pi^{*}(a) p^{*}(b)}$, and $\pi^{*}(a)$ and $\rho^{*}(b)$ be the a-th element of π^{*} and the b-th element of ρ^{*}, respectively. In this case, $L^{(\bar{\pi}, \bar{\rho})}=P_{\alpha}\left(P_{\alpha}^{t}\right)$ and $\alpha<\beta$, where $\bar{\pi}(\bar{\rho})$ is the signed permutation defined from $\pi(\rho)$ as follows: for $\pi=\pi\left(i_{1}, \underline{i_{2}}, \ldots, i_{t}\right)$ $\left(\rho=\rho\left(i_{1}, \underline{i_{2}}, \ldots, i_{t}\right)\right), \bar{\pi}=\pi(1, \underline{2}, \ldots, t) \quad(\bar{\rho}=\rho(1, \underline{2}, \ldots, t))$. This means that M is equivalent to one of weighing matrices constructed based on $P_{19}^{\alpha}\left(P_{19}^{\alpha t}\right)$ (see the proof of Lemma 3.6). Note that the notations A, B, C, D, E are used as elements of signed permutations in Table 2, where A, B, C, D, E correspond to $10,11,12,13,14$, respectively.

Summarizing the previous discussion, we have obtained the following:
Theorem 3.9. There are 65 inequivalent weighing matrices of order 14 and weight 8.

When $M \in \Delta(14,8)$ and $N \in \Delta(n, k)$, it follows that $M \otimes N \in \Delta(14 n, 8 k)$. Thus the classification of weighing matrices of order 14 and weight 8 is useful for further classification of $\Delta(14 n, 8 k)$ and $\Delta(m, 8)$ for $m \geq 15$.

Remark 3.5. All computer programs used in order to construct and classify weighing matrices are available on request. Matrices $W_{i}, 1 \leq i \leq 65$, expressed with the exact forms, which are representative matrices of inequivalent classes, are also available on request.

Table 1. T-distribution of t-matrices.

$\mathrm{T}_{1}=\left\{T_{2}\left(4^{4} 5^{12} 6^{16} 7^{6} 8^{8} 9^{8} 11^{1}\right), T_{3}\left(6^{4} 7^{4} 9^{8} 10^{6} 12^{1}\right)\right\}$
$\mathrm{T}_{2}=\left\{T_{2}\left(4^{12} 6^{24} 7^{12} 8^{12} 11^{6}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{3}=\left\{T_{2}\left(4^{8} 5^{8} 6^{20} 7^{10} 8^{10} 9^{8} 11^{2}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{4}=\left\{T_{2}\left(4^{4} 5^{16} 6^{20} 7^{10} 8^{10} 11^{6}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{5}=\left\{T_{2}\left(4^{4} 5^{8} 6^{22} 7^{13} 8^{3} 9^{4} 11^{1}\right), T_{3}\left(4^{4} 9^{16} 11^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{6}=\left\{T_{2}\left(4^{8} 5^{8} 6^{24} 7^{8} 8^{8} 9^{8} 11^{1} 12^{1}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{7}=\left\{T_{2}\left(4^{12} 6^{24} 7^{20} 8^{4} 11^{6}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}$
$\mathrm{T}_{8}=\left\{T_{2}\left(4^{6} 5^{8} 6^{18} 7^{11} 8^{5} 9^{4} 11^{3}\right), T_{3}\left(4^{4} 9^{16} 11^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{9}=\left\{T_{2}\left(4^{8} 6^{32} 7^{16} 8^{8} 11^{2}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{10}=\left\{T_{2}\left(4^{4} 5^{12} 6^{28} 7^{10} 8^{6} 9^{4} 11^{1} 12^{1}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{11}=\left\{T_{2}\left(4^{8} 5^{8} 6^{32} 7^{4} 8^{4} 9^{4} 10^{4} 11^{1} 12^{1}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{12}=\left\{T_{2}\left(4^{2} 5^{16} 6^{16} 7^{11} 8^{3} 9^{4} 11^{3}\right), T_{3}\left(4^{6} 5^{2} 9^{8} 10^{4} 11^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{13}=\left\{T_{2}\left(4^{8} 6^{32} 7^{20} 8^{4} 11^{2}\right), T_{4}\left(2^{10} 3^{2}\right)\right\}$
$\mathrm{T}_{14}=\left\{T_{2}\left(1^{6} 2^{3} 4^{6} 6^{12} 7^{3} 8^{12} 11^{3}\right), T_{3}\left(3^{3} 6^{9} 7^{6} 10^{12} 12^{3}\right)\right\}$
$\mathrm{T}_{15}=\left\{T_{2}\left(4^{4} 5^{16} 6^{24} 7^{16} 11^{5} 12^{1}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}$
$\mathrm{T}_{16}=\left\{T_{2}\left(1^{6} 2^{1} 3^{2} 4^{2} 5^{8} 6^{12} 7^{8} 8^{3} 11^{3}\right), T_{3}\left(2^{2} 3^{1} 4^{6} 5^{4} 6^{1} 9^{8} 10^{6} 11^{2} 12^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{17}=\left\{T_{2}\left(4^{6} 5^{8} 6^{18} 7^{8} 8^{8} 9^{4} 11^{3}\right), T_{3}\left(6^{2} 7^{2} 9^{16} 10^{2} 12^{1}\right)\right\}$
$\mathrm{T}_{18}=\left\{T_{2}\left(4^{8} 6^{32} 7^{24} 11^{2}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}$
$\mathrm{T}_{19}=\left\{T_{2}\left(4^{4} 5^{16} 6^{20} 7^{18} 8^{2} 11^{6}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}$
$\mathrm{T}_{20}=\left\{T_{2}\left(4^{8} 5^{8} 6^{20} 7^{18} 8^{2} 9^{8} 11^{2}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}$
$\mathrm{T}_{21}=\left\{T_{2}\left(4^{4} 5^{12} 6^{24} 7^{12} 8^{8} 9^{4} 11^{2}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{22}=\left\{T_{2}\left(4^{12} 6^{24} 7^{24} 11^{6}\right), T_{4}\left(2^{6} 3^{6}\right)\right\}$
$\mathrm{T}_{23}=\left\{T_{2}\left(1^{6} 2^{3} 4^{2} 5^{8} 6^{10} 7^{5} 8^{8} 11^{3}\right), T_{3}\left(3^{3} 4^{2} 5^{2} 6^{5} 7^{2} 9^{8} 10^{8} 12^{3}\right)\right\}$
$\mathrm{T}_{24}=\left\{T_{2}\left(1^{6} 2^{1} 3^{2} 4^{2} 5^{8} 6^{12} 7^{6} 8^{5} 11^{3}\right), T_{3}\left(2^{2} 3^{1} 4^{4} 5^{2} 6^{3} 7^{2} 9^{8} 10^{6} 11^{2} 12^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{25}=\left\{T_{2}\left(4^{2} 5^{16} 6^{16} 7^{6} 8^{8} 9^{4} 11^{3}\right), T_{3}\left(6^{4} 7^{4} 9^{8} 10^{6} 12^{1}\right)\right\}$
$\mathrm{T}_{26}=\left\{T_{2}\left(1^{6} 2^{3} 4^{4} 5^{4} 6^{10} 7^{8} 8^{5} 9^{4} 11^{1}\right), T_{3}\left(3^{3} 4^{8} 6^{1} 7^{2} 9^{8} 10^{6} 11^{2} 13^{3}\right)\right\}$
$\mathrm{T}_{27}=\left\{T_{2}\left(1^{6} 2^{3} 4^{4} 5^{4} 6^{10} 7^{5} 8^{8} 9^{4} 11^{1}\right), T_{3}\left(3^{3} 4^{2} 6^{7} 7^{2} 9^{8} 10^{6} 11^{2} 12^{3}\right)\right\}$
$\mathrm{T}_{28}=\left\{T_{2}\left(4^{4} 5^{12} 6^{20} 7^{4} 8^{6} 9^{8} 12^{1}\right), T_{3}\left(6^{4} 7^{4} 9^{8} 10^{6} 12^{1}\right)\right\}$
$\mathrm{T}_{29}=\left\{T_{2}\left(4^{4} 5^{12} 6^{16} 7^{11} 8^{3} 9^{8} 11^{1}\right), T_{3}\left(4^{6} 6^{2} 9^{8} 10^{2} 11^{4} 13^{1}\right)\right\}$
$\mathrm{T}_{30}=\left\{T_{2}\left(4^{4} 5^{12} 6^{16} 7^{8} 8^{6} 9^{8} 11^{1}\right), T_{3}\left(4^{2} 7^{2} 9^{16} 10^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{31}=\left\{T_{2}\left(4^{4} 5^{8} 6^{26} 7^{11} 8^{1} 9^{4} 12^{1}\right), T_{3}\left(4^{4} 9^{16} 11^{2} 13^{1}\right)\right\}$
$\mathrm{T}_{32}=\left\{T_{2}\left(4^{8} 6^{40} 7^{12} 8^{4} 12^{2}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{33}=\left\{T_{2}\left(5^{24} 6^{18} 7^{9} 8^{9} 11^{6}\right)^{4} T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{34}=\left\{T_{2}\left(1^{6} 3^{3} 5^{12} 6^{9} 7^{6} 8^{3} 9^{3} 11^{3}\right), T_{3}\left(2^{3} 4^{6} 5^{3} 9^{18} 14^{3}\right)\right\}$
$\mathrm{T}_{35}=\left\{T_{2}\left(4^{12} 6^{48} 12^{6}\right), T_{4}\left(2^{12}\right)\right\}$
$\mathrm{T}_{36}=\left\{T_{2}\left(1^{6} 2^{3} 4^{6} 6^{12} 7^{12} 8^{3} 11^{3}\right), T_{3}\left(3^{3} 4^{12} 6^{3} 10^{6} 11^{6} 13^{3}\right)\right\}$
$\mathrm{T}_{37}=\left\{T_{2}\left(4^{12} 6^{32} 7^{16} 11^{4} 12^{2}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}$
$\mathrm{T}_{38}=\left\{T_{2}\left(5^{20} 6^{17} 7^{10} 8^{1} 9^{3} 10^{1} 11^{3}\right), T_{3}\left(4^{4} 5^{3} 8^{2} 9^{10} 10^{4} 12^{1}\right)\right\}$
$\mathrm{T}_{39}=\left\{T_{2}\left(5^{20} 6^{15} 7^{8} 8^{5} 9^{4} 11^{3}\right), T_{3}\left(4^{2} 5^{2} 6^{1} 7^{1} 9^{12} 10^{4} 12^{1}\right)\right\}$

Table 1 (continued)

```
\(\mathrm{T}_{40}=\left\{T_{2}\left(1^{6} 2^{1} 3^{2} 5^{12} 6^{11} 7^{8} 8^{2} 11^{3}\right), T_{3}\left(2^{2} 3^{1} 4^{2} 6^{4} 7^{3} 8^{4} 9^{8} 10^{4} 11^{2} 12^{2} 13^{1}\right)\right\}\)
\(T_{41}=\left\{T_{2}\left(4^{2} 5^{16} 6^{16} 7^{10} 8^{4} 9^{4} 11^{3}\right), T_{3}\left(4^{4} 9^{16} 11^{2} 13^{1}\right)\right\}\)
\(\mathrm{T}_{42}=\left\{T_{1}\left(2^{1}\right), T_{2}\left(1^{8} 2^{6} 4^{2} 5^{4} 6^{8} 8^{6} 12^{1}\right), T_{3}\left(1^{2} 3^{6} 5^{4} 6^{6} 9^{8} 10^{10} 12^{6}\right)\right\}\)
\(\mathrm{T}_{43}=\left\{T_{2}\left(4^{4} 5^{12} 6^{18} 7^{10} 8^{2} 9^{7} 10^{1} 11^{1}\right), T_{3}\left(6^{2} 7^{2} 8^{4} 9^{12} 10^{2} 12^{1}\right)\right\}\)
\(\mathrm{T}_{44}=\left\{T_{2}\left(4^{6} 5^{8} 6^{32} 7^{8} 8^{4} 9^{4} 10^{4}\right), T_{4}\left(2^{12}\right)\right\}\)
\(T_{45}=\left\{T_{2}\left(1^{6} 3^{3} 5^{12} 6^{9} 7^{8} 8^{1} 9^{3} 11^{3}\right), T_{3}\left(2^{3} 4^{4} 5^{1} 6^{2} 7^{2} 8^{4} 9^{14} 14^{3}\right)\right\}\)
\(\mathrm{T}_{46}=\left\{T_{2}\left(4^{8} 5^{8} 6^{24} 7^{16} 9^{8} 11^{1} 12^{1}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}\)
\(\mathrm{T}_{47}=\left\{T_{2}\left(4^{4} 5^{12} 6^{16} 7^{7} 8^{7} 9^{8} 11^{1}\right), T_{3}\left(6^{2} 7^{2} 9^{16} 10^{2} 12^{1}\right)\right\}\)
\(\mathrm{T}_{48}=\left\{T_{2}\left(4^{6} 5^{8} 6^{24} 7^{12} 8^{8} 9^{8}\right), T_{4}\left(2^{12}\right)\right\}\)
\(\mathrm{T}_{49}=\left\{T_{2}\left(5^{20} 6^{17} 7^{8} 8^{3} 9^{3} 10^{1} 11^{3}\right), T_{3}\left(4^{1} 5^{1} 6^{2} 7^{2} 8^{2} 9^{10} 10^{4} 12^{1}\right)\right\}\)
\(T_{50}=\left\{T_{2}\left(4^{2} 5^{16} 6^{18} 7^{10} 8^{2} 9^{3} 10^{1} 11^{3}\right), T_{3}\left(6^{2} 7^{2} 8^{4} 9^{12} 10^{2} 12^{1}\right)\right\}\)
\(T_{51}=\left\{T_{2}\left(4^{4} 5^{12} 6^{24} 7^{20} 9^{4} 11^{2}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}\)
\(T_{52}=\left\{T_{2}\left(1^{6} 2^{1} 3^{2} 4^{4} 5^{4} 6^{16} 7^{4} 8^{3} 9^{4} 12^{1}\right), T_{3}\left(2^{2} 3^{1} 4^{4} 6^{5} 7^{2} 9^{8} 10^{4} 11^{4} 12^{2} 13^{1}\right)\right\}\)
\(T_{53}=\left\{T_{2}\left(1^{6} 2^{3} 4^{4} 5^{4} 6^{14} 7^{1} 8^{8} 9^{4} 12^{1}\right), T_{3}\left(3^{3} 6^{7} 7^{4} 9^{8} 10^{8} 12^{3}\right)\right\}\)
\(T_{54}=\left\{T_{2}\left(4^{6} 5^{12} 6^{22} 7^{7} 8^{7} 9^{10} 10^{2}\right), T_{4}\left(2^{12}\right)\right\}\)
\(T_{55}=\left\{T_{1}\left(2^{1}\right), T_{2}\left(1^{8} 2^{4} 3^{2} 4^{2} 5^{4} 6^{10} 7^{1} 8^{3} 12^{1}\right), T_{3}\left(1^{2} 2^{2} 3^{4} 4^{4} 5^{2} 6^{2} 7^{2} 9^{8} 10^{8} 11^{2} 12^{3} 13^{3}\right)\right\}\)
\(T_{56}=\left\{T_{1}\left(2^{1}\right), T_{2}\left(1^{8} 2^{6} 4^{2} 5^{4} 6^{8} 8^{6} 12^{1}\right), T_{3}\left(1^{2} 3^{6} 6^{10} 9^{8} 10^{6} 11^{4} 12^{6}\right)\right\}\)
\(T_{57}=\left\{T_{2}\left(4^{4} 5^{12} 6^{16} 7^{9} 8^{5} 9^{8} 11^{1}\right), T_{3}\left(4^{2} 6^{2} 9^{16} 11^{2} 12^{1}\right)\right\}\)
\(T_{58}=\left\{T_{2}\left(4^{6} 5^{8} 6^{24} 7^{16} 8^{4} 9^{8}\right), T_{4}\left(2^{10} 3^{2}\right)\right\}\)
\(T_{59}=\left\{T_{2}\left(4^{2} 5^{16} 6^{16} 7^{10} 8^{1} 9^{8} 10^{1} 11^{1}\right), T_{3}\left(4^{2} 6^{2} 7^{2} 8^{4} 9^{10} 10^{2} 14^{1}\right)\right\}\)
\(T_{60}=\left\{T_{2}\left(1^{6} 2^{2} 3^{1} 4^{2} 5^{8} 6^{10} 7^{7} 8^{2} 9^{5} 10^{1} 11^{1}\right), T_{3}\left(2^{1} 3^{2} 4^{3} 6^{4} 7^{2} 8^{4} 9^{12} 10^{2} 12^{1} 14^{2}\right)\right\}\)
\(T_{61}=\left\{T_{2}\left(4^{8} 5^{8} 6^{28} 7^{10} 8^{2} 9^{4} 10^{4} 11^{2}\right), T_{4}\left(2^{10} 3^{2}\right)\right\}\)
\(\mathrm{T}_{62}=\left\{T_{2}\left(4^{4} 5^{8} 6^{22} 7^{15} 8^{1} 9^{4} 11^{1}\right), T_{3}\left(4^{1} 6^{2} 7^{1} 8^{4} 9^{12} 10^{1} 11^{1} 12^{1}\right)\right\}\)
\(T_{63}=\left\{T_{2}\left(4^{4} 5^{8} 6^{22} 7^{11} 8^{5} 9^{4} 11^{1}\right), T_{3}\left(4^{2} 7^{2} 9^{16} 10^{2} 13^{1}\right)\right\}\)
\(T_{64}=\left\{T_{2}\left(4^{4} 5^{12} 6^{18} 7^{7} 8^{5} 9^{7} 10^{1} 11^{1}\right), T_{3}\left(4^{1} 6^{2} 7^{1} 9^{16} 10^{1} 11^{1} 12^{1}\right)\right\}\)
\(\mathrm{T}_{65}=\left\{T_{2}\left(4^{6} 5^{8} 6^{22} 7^{9} 8^{3} 9^{4} 11^{2} 12^{1}\right), T_{3}\left(4^{4} 9^{16} 11^{2} 13^{1}\right)\right\}\)
\(T_{66}=\left\{T_{1}\left(1^{2} 2^{4}\right), T_{2}\left(1^{2} 2^{4} 6^{4} 12^{2}\right), T_{3}\left(1^{4} 2^{4} 3^{8} 4^{4} 6^{8} 10^{4} 12^{4} 15^{2}\right), T_{4}\left(1^{4} 2^{2} 3^{2} 4^{4}\right)\right\}\)
\(\mathrm{T}_{67}=\left\{T_{1}\left(1^{1}\right), T_{2}\left(1^{12} 3^{4} 4^{8} 6^{4} 7^{8} 11^{7} 12^{1}\right), T_{3}\left(2^{4} 4^{4} 6^{4} 7^{4} 10^{4} 15^{1}\right), T_{4}\left(1^{2} 2^{2} 3^{6} 4^{2}\right)\right\}\)
\(\mathrm{T}_{68}=\left\{T_{1}\left(1^{1}\right), T_{2}\left(1^{8} 2^{4} 3^{4} 4^{8} 6^{16} 11^{1} 12^{3}\right), T_{3}\left(1^{4} 6^{4} 7^{4} 10^{8} 15^{1}\right), T_{4}\left(1^{2} 2^{4} 3^{4} 4^{2}\right)\right\}\)
\(T_{69}=\left\{T_{1}\left(1^{2} 2^{4}\right), T_{2}\left(1^{8} 2^{8} 4^{4} 12^{2}\right), T_{3}\left(1^{8} 3^{8} 6^{8} 10^{8} 12^{4} 15^{2}\right), T_{4}\left(1^{4} 3^{4} 4^{4}\right)\right\}\)
\(\mathrm{T}_{70}=\left\{T_{1}\left(1^{1}\right), T_{2}\left(1^{12} 3^{4} 4^{8} 6^{12} 11^{5} 12^{3}\right), T_{3}\left(2^{4} 4^{8} 6^{4} 11^{4} 15^{1}\right), T_{4}\left(1^{2} 2^{6} 3^{2} 4^{2}\right)\right\}\)
\(\mathrm{T}_{71}=\left\{T_{1}\left(1^{2} 2^{4}\right), T_{2}\left(1^{12} 3^{4} 7^{4} 11^{2}\right), T_{3}\left(1^{4} 2^{8} 3^{4} 4^{12} 11^{4} 13^{4} 15^{2}\right), T_{4}\left(1^{4} 2^{4} 4^{4}\right)\right\}\)
\(\mathbf{T}_{72}=\left\{T_{1}\left(1^{1}\right), T_{2}\left(1^{8} 2^{4} 3^{4} 4^{8} 6^{8} 7^{8} 11^{3} 12^{1}\right), T_{3}\left(1^{4} 4^{4} 6^{4} 10^{4} 11^{4} 15^{1}\right), T_{4}\left(1^{2} 2^{4} 3^{4} 4^{2}\right)\right\}\)
\(\mathrm{T}_{73}=\left\{T_{1}\left(1^{2} 2^{4}\right), T_{2}\left(1^{8} 3^{8} 4^{4} 11^{2}\right), T_{3}\left(1^{8} 2^{8} 7^{8} 10^{8} 13^{4} 15^{2}\right), T_{4}\left(1^{4} 3^{4} 4^{4}\right)\right\}\)
\(\mathrm{T}_{74}=\left\{T_{1}\left(1^{2} 2^{4}\right), T_{2}\left(1^{12} 3^{4} 7^{4} 11^{2}\right), T_{3}\left(1^{4} 2^{8} 3^{4} 4^{8} 7^{4} 10^{4} 13^{4} 15^{2}\right), T_{4}\left(1^{4} 2^{2} 3^{2} 4^{4}\right)\right\}\)
\(T_{75}=\left\{T_{1}\left(1^{1}\right), T_{2}\left(1^{12} 3^{4} 4^{4} 6^{12} 7^{8} 11^{3} 12^{1}\right), T_{3}\left(2^{4} 4^{8} 6^{4} 11^{4} 15^{1}\right), T_{4}\left(1^{2} 2^{6} 3^{2} 4^{2}\right)\right\}\)
\(\mathrm{T}_{76}=\left\{T_{2}\left(4^{20} 6^{32} 11^{8} 12^{6}\right), T_{4}\left(2^{8} 3^{4}\right)\right\}\)
\(\mathrm{T}_{77}=\left\{T_{1}\left(1^{1}\right), T_{2}\left(1^{12} 2^{4} 4^{4} 6^{8} 7^{12} 11^{3} 12^{1}\right), T_{3}\left(3^{4} 4^{8} 6^{4} 10^{4} 15^{1}\right), T_{4}\left(1^{2} 2^{4} 3^{4} 4^{2}\right)\right\}\)
\(\mathrm{T}_{78}=\left\{T_{1}\left(1^{2} 2^{4}\right), T_{2}\left(1^{8} 3^{8} 4^{4} 11^{2}\right), T_{3}\left(1^{8} 2^{8} 4^{8} 11^{8} 13^{4} 15^{2}\right), T_{4}\left(1^{4} 2^{4} 4^{4}\right)\right\}\)
```

Table 1 (continued)

```
\(\mathrm{T}_{79}=\left\{T_{2}\left(4^{20} 6^{16} 7^{16} 11^{12} 12^{2}\right), T_{4}\left(2^{4} 3^{8}\right)\right\}\)
\(\mathrm{T}_{80}=\left\{T_{2}\left(4^{2} 5^{14} 6^{18} 7^{13} 8^{1} 9^{6} 11^{1}\right), T_{3}\left(4^{1} 6^{2} 7^{1} 8^{4} 9^{12} 10^{1} 11^{1} 12^{1}\right)\right\}\)
\(\mathrm{T}_{81}=\left\{T_{2}\left(4^{2} 5^{14} 6^{20} 7^{8} 8^{4} 9^{5} 10^{1} 11^{1}\right), T_{3}\left(4^{1} 6^{2} 7^{1} 9^{16} 10^{1} 11^{1} 12^{1}\right)\right\}\)
\(\mathbf{T}_{82}=\left\{T_{2}\left(4^{2} 5^{14} 6^{18} 7^{9} 8^{5} 9^{6} 11^{1}\right), T_{3}\left(4^{2} 7^{2} 9^{16} 10^{2} 13^{1}\right)\right\}\)
\(\mathrm{T}_{83}=\left\{T_{2}\left(4^{3} 5^{14} 6^{17} 7^{5} 8^{6} 9^{9} 10^{1}\right), T_{3}\left(6^{3} 7^{3} 9^{12} 10^{4} 12^{1}\right)\right\}\)
\(\mathrm{T}_{84}=\left\{T_{2}\left(1^{6} 2^{3} 4^{3} 5^{6} 6^{13} 7^{2} 8^{6} 9^{4} 10^{2}\right), T_{3}\left(3^{3} 4^{1} 6^{6} 7^{2} 9^{12} 10^{5} 11^{1} 12^{3}\right)\right\}\)
\(\mathrm{T}_{85}=\left\{T_{2}\left(4^{3} 5^{14} 6^{15} 7^{8} 8^{5} 9^{10}\right), T_{3}\left(4^{3} 6^{1} 7^{2} 9^{12} 10^{3} 11^{1} 13^{1}\right)\right\}\)
\(T_{86}=\left\{T_{2}\left(4^{2} 5^{14} 6^{20} 7^{11} 8^{1} 9^{5} 10^{1} 11^{1}\right), T_{3}\left(6^{2} 7^{2} 8^{4} 9^{12} 10^{2} 12^{1}\right)\right\}\)
\(T_{87}=\left\{T_{2}\left(4^{6} 5^{12} 6^{30} 7^{3} 8^{3} 9^{6} 10^{6}\right), T_{4}\left(2^{12}\right)\right\}\)
\(\mathrm{T}_{88}=\left\{T_{2}\left(4^{4} 5^{8} 6^{22} 7^{13} 8^{3} 9^{4} 11^{1}\right), T_{3}\left(4^{4} 9^{16} 11^{2} 13^{1}\right)\right\}\)
\(\mathrm{T}_{89}=\left\{T_{2}\left(1^{6} 2^{3} 4^{3} 5^{6} 6^{9} 7^{6} 8^{6} 9^{6}\right), T_{3}\left(3^{3} 4^{3} 6^{6} 9^{12} 10^{3} 11^{3} 12^{3}\right)\right\}\)
\(T_{90}=\left\{T_{2}\left(4^{3} 5^{14} 6^{15} 7^{8} 8^{5} 9^{10}\right), T_{3}\left(4^{2} 6^{3} 7^{1} 9^{12} 10^{2} 11^{2} 12^{1}\right)\right\}\)
\(\mathrm{T}_{91}=\left\{T_{2}\left(1^{6} 2^{3} 4^{3} 5^{6} 6^{9} 7^{6} 8^{6} 9^{6}\right), T_{3}\left(3^{3} 4^{6} 7^{3} 9^{12} 10^{6} 13^{3}\right)\right\}\)
```

Table 2. Weighing matrices

TABLE 2 (continued)

$(W 1,3)$	6520	2388211	2414453	3000726	3120930	2599416	W_{9}
2599920	2690054	2690086	301446	300978	31757	30461	
$3,4,1, \underline{2}, \mathbf{B}, \underline{\mathrm{C}}, \mathrm{D}, \underline{\mathrm{E}}, 8, \underline{7}, \underline{5}, 6,9, \underline{\mathrm{~A}}:$	$1, \underline{2}, 9, \mathrm{~A}, \mathrm{~B}, \mathrm{E}, \mathrm{D}, \mathrm{C}, 4,3,8,5,7,6$						
$(W 1,4)$	6520	2388211	2414453	3000726	3120930	2603664	W_{11}
2602368	2690054	2690086	300960	301464	27995	27527	
$\mathbf{C}\left(15^{14}\right)$	$\mathbf{T}\left(69^{14}\right)$						$W_{12}=W_{11}^{t}$
$\mathbf{C}\left(15^{14}\right)$	$\mathbf{T}\left(78^{14}\right)$						W_{13}
$(W 1,5)$	6520	2388211	2414453	3000726	3120930	2599416	
2599920	2691756	2691288	299744	299776	31757	30461	
SD E, D, 1, 2, 5, 8, 3, 4, 6, 7, $\underline{\mathrm{B}}, \mathrm{C}, \underline{9}, \underline{\mathrm{~A}}: 3,4,7,8,5,9, \mathrm{~A}, 6, \underline{\mathrm{D}}, \underline{\mathrm{E}}, \underline{\mathrm{B}}, \mathrm{C}, 2,1$							
$\mathbf{C}\left(15^{2} 17^{12}\right)$							

$\left(\begin{array}{llllllll}W 1,6) & 6520 & 2388211 & 2414453 & 3000726 & 3120930 & 2599416 & W_{7}\end{array}\right.$ $2599920 \quad 2695518 \quad 2694222 \quad 299744 \quad 299776 \quad 27995 \quad 27527$
$5,6,1,2, \mathrm{D}, \underline{\mathrm{E}}, \mathrm{B}, \underline{\mathrm{C}}, 7, \underline{8}, \underline{3}, 4,9, \underline{\mathrm{~A}}: 8, \underline{5}, \mathrm{C}, \underline{\mathrm{B}}, \underline{\mathrm{A}}, \underline{\mathrm{D}}, \mathrm{E}, 9,6,7,1,2,3,4$
$\left(\begin{array}{llllllll}W 1,7) & 6520 & 2388211 & 2414453 & 3000726 & 3120930 & 2603664 & W_{9}\end{array}\right.$
$\begin{array}{llllllll}2602368 & 2691270 & 2691774 & 299744 & 299776 & 27995 & 27527\end{array}$
$5, \underline{6}, 1,2, \mathrm{D}, \underline{\mathrm{E}}, \mathrm{B}, \underline{\mathrm{C}}, 9, \underline{\mathrm{~A}}, \underline{3}, 4,7, \underline{8}: \underline{5}, 8, \underline{\mathrm{~B}}, \mathrm{C}, 9, \underline{\mathrm{~A}}, \underline{\mathrm{D}}, \mathrm{E}, 6,7,1,2,3,4$

$(W 2,1)$	6520	2388211	2414453	2631006	2644146	2956014	W_{8}

$3074598 \quad 2687909 \quad 2714155 \quad 296990 \quad 297022 \quad 38376 \quad 37080$
$6, \underline{7}, \mathrm{D}, \mathrm{E}, 9, \mathrm{~A}, \mathrm{C}, \mathrm{B}, 1, \underline{2}, \underline{4}, 3,8, \underline{5}: \underline{7}, 8, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \underline{2}, 1, \underline{\mathrm{E}}, \underline{\mathrm{A}}, \underline{9}, 5,6,4,3$

$(W 2,2)$	6520	2388211	2414453	2633310	2648538	2953710	W_{10}
3071826	2685155	2711401	300816	299520	37304	37336	

$3,4,9, A, D, E, 1, \underline{2}, \mathrm{C}, \mathrm{B}, \underline{6}, 7, \underline{8}, 5: \underline{E}, \mathrm{D}, 1,2,8, \underline{7}, \mathrm{~B}, \mathrm{C}, 6, \underline{5}, 9, \underline{A}, \underline{4}, 3$

$(W 3,1)$	6520	2388211	2650651	2948238	3158190	2422229	W_{12}

$\begin{array}{llllllll}2540813 & 2694510 & 2707650 & 296990 & 297022 & 38376 & 37080\end{array}$
$1,2,8,5,9, A, E, D, 3,4, C, B, 7,6: 1,2, \underline{B}, C, 3, \underline{7}, \underline{8}, 4, \mathrm{E}, \underline{\mathrm{D}}, 6,5, \underline{9}, \underline{\mathrm{~A}}$

$(W 3,2)$	6520	2388211	2650651	2948238	3158190	2421059	W_{10}
2539175	2695680	2709288	300816	299520	34550	34582	
$3,4,1, \underline{2}, \mathrm{~B}, \underline{\mathrm{C}}, \underline{9}, \mathrm{~A}, \mathrm{D}, \mathrm{E}, 6,5,8, \underline{7}: 1, \underline{2}, \mathrm{E}, \mathrm{D}, \mathrm{B}, \mathrm{A}, 9, \mathrm{C}, 4,3,5,8,7,6$							
$(X 1,1)$	6520	2388211	2650651	2954844	3075048	2691288	W_{14}
2704896	288728	288760	334206	346842	2131277	2129981	
SD $6, \underline{7}, \mathrm{~B}, \underline{\mathrm{C}}, \underline{\mathrm{D}}, \mathrm{E}, \underline{3}, 4,9, \mathrm{~A}, 2, \underline{1}, 5,8: \underline{\mathrm{C}}, \mathrm{B}, 8, \underline{7}, \mathrm{D}, 1, \underline{2}, \underline{\mathrm{E}}, 9, \mathrm{~A}, 3, \underline{4}, \underline{5}, 6$ $\mathrm{C}\left(17^{8} 19^{6}\right)$							
$(X 2,1)$	6520	2388211	2945934	2600550	2179530	3134059	W_{15}
2684669	328094	328126	346680	345384	2131925	2661318	
C($17^{4} 19^{2} 22^{4} 24^{4}$)							
$\mathbf{C}\left(17^{8} 19^{6}\right)$							
$(X 2,2)$	6520	2388211	2948238	2600550	2183922	3129667	W_{17}
2684669	328094	328126	346680	345384	2127533	2663406	
C($\left.17^{6} 22^{6} 24^{2}\right)$							
$\mathrm{C}\left(17^{12} 19\right.$							W_{18}

Table 2 (continued)

$(X 3,1)$	6520	2388211	2414453	2604312	2958120	1984158	W_{16}
1997262	683280	696420	325139	351385	2657686	2657654	
$\underline{9}, \mathrm{~A}, \underline{8}, 7,2, \mathrm{E}, \underline{\mathrm{D}}, 1,4,3, \underline{B}, \underline{C}, \underline{5}, \underline{6}: 3, \underline{4}, \mathrm{~B}, \underline{\mathrm{C}}, 8, \underline{\mathrm{E}}, \underline{7}, \mathrm{D}, \mathrm{A}, 9, \underline{1}, 2, \underline{5}, 6$							
$(Y 1,1)$	6520	2388211	2129333	2599902	2182770	2858657	W_{19}
3021768 2	2756232	2789323	332262	341216	292734	341248	
C($18^{4} 19^{2} 23^{2} 25^{6}$)							
C($19^{6} 24^{8}$)							
$(Y 2,1)$	6520	2388211	2660814	2421419	2521008	2494458	W_{21}
2740397 2	2793049	2706840	288728	288760	332262	346842	
SD $1,2,7, \mathrm{~B}, 8, \underline{\mathrm{~A}}, 9, \underline{5}, 6, \underline{\mathrm{C}}, \underline{3}, 4, \underline{\mathrm{E}}, \mathrm{D}: 1,2, \underline{B}, \mathrm{C}, \underline{8}, 9,3, \underline{5}, 7, \underline{6}, 4, \underline{\mathrm{~A}}, \mathrm{E}, \underline{\mathrm{D}}$							
$(Z 2,1)$	6520	2362534	2362370	2603322	2601846	2684359	W_{22}
26944942	2704848	2712423	324173	329806	345648	348657	
SD 9, $\underline{\mathrm{A}}, \mathrm{E}, \mathrm{D}, \underline{\mathrm{B}}, \underline{\mathrm{C}}, \underline{3}, 7,8,4, \underline{1}, \underline{5}, 6,2: 7, \underline{\mathrm{~A}}, \mathrm{~B}, \underline{\mathrm{E}}, 9, \underline{8}, \mathrm{D}, \underline{\mathrm{C}}, \underline{2}, \underline{1}, 3,4,5,6$ $\mathbf{C}\left(19^{6} 25^{8}\right) \quad \mathbf{T}\left(12^{8} 15^{4} 32^{2}\right)$							
$(Z 2,2)$	6520	2362534	2362370	2603322	2601846	2684359	W_{23}
26926942	2704728	2714343	325973	329806	343536	348969	
$\begin{aligned} & \mathrm{SD} 9, \mathrm{~A}, \mathrm{E}, \mathrm{D}, \mathrm{C}, \mathrm{~B}, \underline{5}, \underline{1}, 2,6, \underline{7}, \underline{3}, 4,8: 7, \underline{\mathbf{A}}, \mathbf{B}, \underline{\mathrm{E}}, 9, \underline{8}, \mathrm{D}, \underline{\mathrm{C}}, 1,2,5,6,3,4 \\ & \mathbf{C}\left(19^{6} 25^{8}\right) \end{aligned}$							
$(Z 2,3)$	6520	2362036	2362004	2604312	2601720	2683861	W_{24}
2693660	2703744	2714859	326597	328624	344880	348183	
C($19^{6} 24^{8}$)	T($36^{8} 37$						
C(19 ${ }^{14}$)	T(15 ${ }^{12} 3$						
$(Z 3,1)$	5578	2362012	2423981	2539767	2604312	2683493	W_{26}
26904362	2706832	2715363	266952	290396	330004	345738	
SD E, D, 2, $5,4,8, \underline{3}, \underline{1}, \underline{6}, \underline{7}, 9, \mathrm{C}, \mathrm{B}, \mathrm{A}: 5,7,3,8,9,4,6, \mathrm{~A}, \underline{\mathrm{C}}, \underline{\mathrm{D}}, \mathrm{E}, \mathrm{B}, 1, \underline{2}$ $\mathbf{C}\left(19^{6} 24^{8}\right) \quad \mathbf{T}\left(2^{8} 6^{4} 7^{2}\right)$							
$(Z 3,2)$	4282	2362012	2423981	2539767	2604312	2683493	W_{27}
26936762	2703592	2715363	266952	290396	332596	343146	
$\mathbf{C}\left(19^{2} 24^{4} 25^{8}\right) \quad \mathrm{T}\left(12^{4} 16^{4} 1^{2} 13^{2} 28^{2}\right)$							
C($19{ }^{6} 25^{8}$)	T(38	$\left.{ }^{8} 10^{4} 19^{2}\right)$					
$(Z 3,3)$	5578	2362012	2423369	2540379	2604312	2684267	W_{29}
26904362	2706832	2714589	268284	289064	328672	346296	
$\mathbf{C}\left(19^{6} 25^{8}\right) \quad \mathbf{T}\left(8^{8} 3^{4} 9^{2}\right)$							
C(19925 ${ }^{8}$)	T($17^{8} 6^{4}$	18^{2})					
$(Z 3,4)$	4282	2362012	2423369	2540379	2604312	2684267	W_{31}
26936762	2703592	2714589	268284	289064	333208	341760	
C(19224425 ${ }^{8}$)) $\quad \mathrm{T}\left(1^{2}\right.$	$8^{2} 13^{2} 26^{2}$	$\left.7^{2} 29^{2} 65^{2}\right)$				
C($19{ }^{6} 25^{8}$)	T(50	${ }^{8} 10^{2} 11^{2} 51$					W_{32}

Table 2 (continued)

Table 2 (continued)

$(Z 4,8)$	5746	2362012	2423981	2501263	2523830	2724201	
2786568	2690436	2713905	263984	293364	332946	342796	
$\mathrm{~B}, \mathrm{E}, 3,6,5,4, \underline{7}, \underline{\mathrm{~A}}, \underline{9}, \underline{8}, 1, \underline{\mathrm{C}}, \underline{\mathrm{D}}, 2:$	$2,3, \underline{7}, \underline{8}, 9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, 6,5,1,4, \mathrm{E}, \mathrm{D}$						
$(Z 4,9)$	4288	2362012	2423421	2500493	2525346	2726705	
2783166	2694682	2710371	267312	289550	329618	345810	W_{41}
$\mathrm{C}, \mathrm{D}, \mathrm{A}, 8,7,9,5,3,4,6,2, \mathrm{~B}, \underline{\mathrm{E}}, 1:$	$\underline{9}, \underline{4}, 5, \underline{\mathrm{~A}}, \mathrm{~B}, \mathrm{C}, \underline{1}, 7, \underline{3}, 8,2, \underline{6}, \underline{\mathrm{D}}, \mathrm{E}$						
$(Z 4,10)$	4288	2362012	2423421	2504979	2520914	2726219	
2783652	2690436	2714563	268284	289064	328646	346296	W_{41}
$\mathrm{~B}, \mathrm{E}, 3,6,5,4, \underline{7}, \underline{\mathrm{~A}}, \underline{9}, \underline{8}, 1, \underline{\mathrm{C}}, \mathrm{D}, \underline{2}:$	$2,3, \underline{7}, \underline{8}, 9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, 6,5,1,4, \mathrm{E}, \mathrm{D}$						
$(Z 5,1)$	6226	2362012	2324846	2603664	2521452	2728001	
2788953	2691732	2705536	326353	348615	293232	342902	W_{47}
$\mathrm{C}\left(19^{2} 25^{12}\right)$	$\mathrm{T}\left(43^{8} 5^{4} 44^{2}\right)$						
$\mathrm{C}\left(19^{2} 25^{12}\right)$	$\mathrm{T}\left(30^{4} 57^{4} 5^{2} 31^{2} 58^{2}\right)$				$W_{48}=W_{47}^{t}$		
$(Z 5,2)$	6226	2362012	2324846	2603664	2521452	2727227	W_{49}
2789727	2691732	2705536	326353	349389	293844	341516	

SD E, D, 5, 6, 3, 1, 7, 4, 8, 2, $\underline{A}, \underline{B}, 9, C: 6, A, 5,8,3,4,7,9, D, \underline{B}, \underline{C}, E, 2,1$ $\mathbf{C}\left(19^{2} 24^{4} 25^{8}\right) \quad \mathbf{T}\left(59^{4} 60^{4} 5^{2} 31^{2} 61^{2}\right)$

$(Z 6,1)$	5740	2362012	2324846	2603288	2520940	2727603	P_{3}^{t}

$\begin{array}{llllllll}2790213 & 2684037 & 2713257 & 332590 & 342216 & 293144 & 343152\end{array}$
1, 2, B, D, C, E: 9, A, B, C, 3, 4, 6, 7, 1, 2, 5, 8

$(Z 6,2)$	6226	2362012	2324846	2603664	2521452	2728001
2788953	2685073	2712195	332526	342902	293232	342442

$\underline{2}, 1, \underline{\mathrm{D}}, \underline{\mathrm{B}}, \mathrm{C}, \mathrm{E}: 9, \underline{\mathrm{~A}}, \underline{\mathrm{~B}}, \mathrm{C}, 4,3, \underline{7}, \underline{6}, 8, \underline{2}, 5, \underline{1}$

$(26,3)$	4126	2362012	2324846	2603664	2521452	2723567	P_{3}^{t}
2791287	2689291	2710077	332526	342902	293232	342442	
$1,2, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{E}: \mathrm{C}, \underline{\mathrm{A}}, \underline{\mathrm{B}}, 9,1, \underline{4}, 7, \underline{6}, 2, \underline{8}, \underline{5}, 3$							
$(Z 6,4)$	4288	2362012	2324846	2599068	2525346	2723333	P_{3}^{t}
2789727	2688121	2713743	333912	341516	293844	341830	
1, 2, B, D, C, E: C, $\underline{\text { A }}$, $\underline{B}, 9,1, \underline{6}, 3, \underline{5}, 2, \underline{8}, \underline{4}, 7$							
$(Z 6,5)$	5578	2362012	2324846	2599068	2525346	2724681	P_{3}^{t}
2788703	2689119	2712421	333886	341568	293792	341856	
$\underline{1}, 2, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{E}: \mathrm{C}, \underline{\mathrm{A}}, \underline{\mathrm{B}}, 9, \underline{5}, 3, \underline{6}, 4, \underline{8}, 2,7, \underline{1}$							
$(Z 6,6)$	4126	2362012	2324846	2603314	2520914	2727603	P_{3}^{t}
2790213	2684037	2713257	332616	342164	293196	343126	
1, 2, B, C, D, E: C, $\underline{\mathbf{A}}, \underline{\mathrm{B}}, 9,1, \underline{7}, 3, \underline{6}, 2, \underline{8}, \underline{4}, 5$							
$(\mathrm{Z7}, 1)$	5578	2362012	2601720	2152388	2184096	2952494	W_{50}
3074598	2695134	2703754	263100	291656	331750	341598	

Table 2 (continued)

$(Z 7,2)$	4282	2362012	2601720	2152388	2184096	2952494	W_{51}
3074598	2690598	2708290	263100	291656	328510	344838	
$\mathbf{C}\left(19^{6} 24^{8}\right)$	$\mathbf{T}\left(14^{8} 2^{6}\right)$					$W_{52}=W_{51}^{t}$	
$\mathbf{C}\left(19^{14}\right)$	$\mathbf{T}\left(4^{12} 2^{2}\right)$				P_{3}^{t}		
$(Z 7,3)$	5578	2362012	2601720	2153720	2182764	2953268	
3073050	2694576	2705086	263712	291044	331750	341598	

$6,9,5, \mathrm{~A}, 2,1: 3,1,6,7,2,4,5,8, \mathrm{E}, 9, \underline{\mathrm{D}}, \underline{\mathrm{A}}$
$\begin{array}{llllllll}(Z 7,4) & 4282 & 2362012 & 2601720 & 2153720 & 2182764 & 2953268 & P_{4}^{t}\end{array}$
$\begin{array}{llllllll}3073050 & 2691984 & 2707678 & 263712 & 291044 & 328510 & 344838\end{array}$
$\underline{6}, \underline{9}, 5, \mathrm{~A}, 2,1: 3,1,8,5,6,7,4,2,9, \mathrm{E}, \underline{\mathrm{A}}, \underline{\mathrm{D}}$

$(Z 7,5)$	5578	2362012	2601720	2152388	2184096	2952884	W_{51}

$3074208 \quad 2695680 \quad 2703208 \quad 263100 \quad 291656$
B, E, 1, C, $\underline{6}, 4, \underline{2}, \mathrm{D}, \underline{9}, 8, \underline{5}, 3, \underline{\mathrm{~A}}, 7: 3, \underline{5}, \underline{6}, 2,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \underline{\mathrm{D}}, \underline{\mathrm{E}}, 1,4,7,8$

$(Z 7,6)$	4282	2362012	2601720	2152388	2184096	2956124	W_{53}
3070968	2695680	2703208	263100	291656	328510	346290	
$\mathbf{C}\left(19^{2} 24^{12}\right)$	$\mathbf{T}\left(14^{12} 2^{2}\right)$					$W_{54}=W_{53}^{t}$	
$\mathbf{C}\left(19^{14}\right)$	$\mathbf{T}\left(33^{8} 4^{6}\right)$					P^{t}	

$(Z 7,7)$	5578	2362012	2601720	2153720	2182764	2953442	P_{4}^{t}

$\begin{array}{llllllll}3072876 & 2694906 & 2704756 & 263712 & 291044 & 331750 & 341754\end{array}$ $\underline{8}, 4,3, \underline{7}, 2,1: 1,3,7,6,4,2,8,5, \mathrm{D}, \mathrm{B}, \underline{\mathrm{C}}, \underline{\mathrm{E}}$

$(Z 7,8)$	4282	2362012	2601720	2153720	2182764	2954738
3071580	2694906	2704756	263712	291044	328510	346290
$8,3,4,7,2,1:$	$8,5,1,3,7,6,4,2, \mathrm{E}, \mathrm{C}, \underline{\mathrm{B}}, \underline{\mathrm{D}}$			P_{4}^{t}		

$(Z 7,9)$	6520	2362012	2601720	2153720	2182764	2952500	P_{3}^{t}
3076056	2690592	2706832	263712	291044	328510	346290	

| $(Z 8,1)$ | 5578 | 2362012 | 2601080 | 2153766 | 2183124 | 2859221 | P_{3}^{t} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}3051019 & 2725659 & 2790315 & 330778 & 342726 & 291170 & 342084\end{array}$ $1, \underline{2}, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{E}: \mathrm{C}, \underline{\mathrm{A}}, \underline{\mathrm{B}}, 9,2, \underline{3}, 7, \underline{5}, 8, \underline{4}, \underline{1}, 6$

$(Z 8,2)$	4282	2362012	2598200	2154414	2182764	2855333	P_{2}^{t}

$\begin{array}{llllllll}3052243 & 2728899 & 2792331 & 332596 & 342204 & 291044 & 343146\end{array}$ $\mathrm{B}, \mathrm{D}, 5,6,3,4: \mathrm{D}, \mathrm{E}, \underline{2}, 4,3, \underline{1}, \underline{\mathrm{~B}}, \underline{\mathrm{C}}, \underline{9}, \underline{\mathrm{~A}}, \underline{8}, 5$

```
(Z8,3) 4288
```

$\begin{array}{llllllll}3055581 & 2723041 & 2792259 & 332722 & 342726 & 291170 & 342084\end{array}$
$\underline{1}, 2, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{E}: \mathrm{C}, \underline{\mathrm{A}}, \underline{\mathrm{B}}, 9, \underline{3}, 2, \underline{5}, 7, \underline{4}, 6,8, \underline{1}$

| $(Z 8,4)$ | 5578 | 2362012 | 2601720 | 2152388 | 2184096 | 2854235 | P_{3}^{t} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $3054759 \quad 2723359 \quad 2793627 \quad 331750 \quad 341754 \quad 291656$ $\underline{1}, 2, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{E}: \mathrm{C}, \underline{\mathrm{A}}, \underline{\mathrm{B}}, 9, \underline{5}, 6, \underline{3}, 2, \underline{4}, 8,7, \underline{1}$

| $(Z 8,5)$ | 4282 | 2362012 | 2601720 | 2153720 | 2182764 | 2855333 | P_{2}^{t} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $\begin{array}{llllllll}3055281 & 2723035 & 2792331 & 332596 & 342204 & 291044 & 343146\end{array}$ E, D, 2, 4, $\underline{6}, \underline{7}: \mathrm{E}, \underline{\mathrm{C}}, 2, \underline{1}, 5, \underline{7}, \mathrm{~A}, \underline{4}, 3, \underline{9}, 8, \underline{6}$

Table 2 (continued)

$(\mathrm{Z}, 6)$	5584	2362012	2601720	2153772	2182712	2856245	P_{2}^{t}
3052755	2728413	2788567	332622	342152	291096	343120	
E, D, 1, 2, 6, 7: 1, 2, C, ㅌ, 4, $\underline{8}, 9, \underline{5}, 6, \underline{\mathrm{~A}}, 7, \underline{3}$							
(Z9, 1)	5578	2362012	2601720	2152388	2184096	2854235	P_{s}^{t}
3054759	2730726	2786260	331750	341754	284529	348725	
$\left(\begin{array}{l}\text { (}\end{array}\right.$, 2)	4282	2362012	2601720	2153720	2182764	2855333	P_{5}^{t}
3055281	2732022	2783344	332596	342204	282783	351407	
C, D, E, B, 2, 1: $1,3,8,5,7,2,4,6, \mathrm{C}, \underline{9}, \mathrm{~A}, \underline{\mathrm{~B}}$							
$(Z 9,3)$	4126	2362012	2601720	2153720	2182764	2854787	W_{55}
3055671	2731632	2783890	332596	342204	282783	351407	
SD, E, $\underline{\mathrm{D}}, 7,4,3,5,1,8,6,2, \mathrm{~A}, \mathrm{~B}, 9, \underline{\mathrm{C}}: 7, \mathrm{~A}, 5,4,6,9,3,8, \mathrm{D}, \mathrm{B}, \mathrm{C}, \underline{\mathrm{E}}, \underline{2}, 1$							
C(19925 ${ }^{12}$)	T(4785	${ }^{4} 48^{2}$)					

| $($ Z9, 4) | 5578 | 2362012 | 2601720 | 2152388 | 2184096 | 2854235 | $W_{5 S}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 3054759 | 2730180 | 2786806 | 331750 | 341598 | 284859 | 348551 | |

$3, \underline{\mathrm{~A}}, 5, \underline{7}, \underline{9}, 6,4, \underline{8}, \underline{\mathrm{C}}, \mathrm{D}, \underline{\mathrm{E}}, \mathrm{B}, 2,1: \mathrm{D}, \mathrm{E}, 1,8,2,6,3,5,7,4, \mathrm{C}, \underline{9}, \mathrm{~A}, \underline{\mathrm{~B}}$
$\left(\begin{array}{lllllllll} \\ (Z 10,1) & 5578 & 2362012 & 2601720 & 2152388 & 2184096 & 2952494 & P_{7}^{t}\end{array}\right.$
$\begin{array}{lllllll}3074598 & 2695134 & 2703754 & 271737 & 283019 & 323113 & 350235\end{array}$
$\underline{4}, 8,3, \underline{7}, 2,1: 1,3,6,7,2,4,8,5, B, D, \underline{C}, \underline{E}$

$($ Z 10, 2)	4282	2362012	2601720	2152388	2184096	2952494	W_{56}
3074598	2690598	2708290	269955	284801	323113	350235	

SD $9, \mathrm{~A}, \mathrm{E}, \mathrm{C}, 4, \underline{2}, \underline{\mathrm{D}}, \underline{\mathrm{B}}, 3, \underline{1}, 8, \underline{5}, 6, \underline{7}: 5,9, \underline{6}, \mathrm{~A}, \underline{\mathrm{E}}, \underline{\mathrm{B}}, \mathrm{C}, \mathrm{D}, \underline{2}, 1,4,8,3,7$ $\mathbf{C}\left(19^{6} 25^{8}\right) \quad \mathbf{T}\left(25^{8} 4^{4} 9^{2}\right)$

| $($ Z 10, 3) | 5578 | 2362012 | 2601720 | 2153720 | 2182764 | 2953268 | P_{3}^{t} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $3073050 \quad 2694576 \quad 2705086 \quad 271737 \quad 283019 \quad 321565 \quad 351783$ $6,9,5, \mathrm{~A}, 2,1: 3,1,6,7,2,4,5,8, \mathrm{E}, 9, \underline{\mathrm{D}}, \underline{\mathrm{A}}$

$(Z 10,4)$	4282	2362012	2601720	2153720	2182764	2953268	P_{4}^{t}
3073050	2691984	2707678	269955	284801	321565	351783	

A, $6,5,9,2,1: 1,2,3,4,5,6,7,8,9, A, D, E$

($\mathrm{Z} 10,5$)	5578	2362012	2601720	2153720	2182764	2953442	P_{4}^{t}
3072876	2694906	2704756	271407	283349	322111	351393	
8, 3, 4, 7, 2, 1: 7, 6, 1, 3, 8, 5, 4, 2, E, , C, $\underline{\mathrm{D}}$							
($\mathrm{Z} 11,1$)	5740	2362012	2501945	2251227	2184096	2893781	P_{3}
3035962	2783916	2713257	333182	341592	263100	331750	
6, 4, 5, 3, 7, 8, 9, A, 1, D, C, 2: 5, 6, 2, 3, D, E							
(Z11, 2)	5740	2362012	2501945	2255691	2179848	2894429	P_{3}^{t}
3037258	2784636	2710377	332534	342888	264396	330454	
$(\mathrm{Z} 11,3)$	5584	2362012	2502821	2252259	2183124	2894267	P_{3}^{t}
3035572	2782398	2713743	332696	342078	264072	330778	
1, 2, C, D	B, E: C	A, ㅂ, $\underline{9}$,	4, 1, $\underline{6}, 8$, $\underline{5}, 3,2$,			

Table 2 (continued)

$(Z 11,4)$	4120	2362012	2502821	2252457	2182926	2895725	P_{3}^{t}
3032662	2787216	2710377	329780	343542	266988	329320	
$\underline{1}, 2, \mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{E}:$	$\mathrm{C}, \mathrm{A}, \underline{\mathrm{B}}, \underline{9}, \underline{4}, \mathbf{1}, \underline{6}, 7, \underline{5}, 2,3, \underline{8}$						
$(Z 11,5)$	4120	2362012	2502821	2252457	2182926	2896131	P_{2}
3032982	2787130	2709737	328920	343622	267068	329700	

$1, \underline{2}, \mathrm{~B}, \underline{\mathrm{E}}, 4,9, \underline{8}, \underline{5}, 3, \mathrm{~A}, \underline{7}, \underline{6}: \mathrm{D}, \mathrm{E}, 2,4,5,7$
$\left(\begin{array}{llllllll}(Z 11,6) & 5584 & 2362012 & 2502821 & 2251945 & 2182712 & 2896131 & P_{3}^{t}\end{array}\right.$
$\begin{array}{llllllll}3032982 & 2787480 & 2710113 & 328920 & 343622 & 267068 & 329700\end{array}$
$1,2, \mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{E}: \mathrm{C}, \mathrm{A}, \underline{\mathrm{B}}, \underline{9}, 2, \underline{5}, 4, \underline{7}, 6, \underline{1}, \underline{8}, 3$
$\begin{array}{lrrrrrrr}(Z 11,7) & 5746 & 2362012 & 2502873 & 2252457 & 2182874 & 2894627 & P_{3}^{t}\end{array}$
$\begin{array}{llllllll}3035886 & 2782074 & 2713393 & 330338 & 342204 & 264198 & 332596\end{array}$
$\underline{1}, 2, \mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{E}: \mathrm{C}, \mathrm{A}, \underline{\mathrm{B}}, \underline{9}, \underline{8}, 1, \underline{5}, 3, \underline{4}, 6,2, \underline{7}$

$(Z 11,8)$	5746	2362012	2502873	2252457	2182874	2896079	P_{2}

3032982	2787156	2709763	328868	343674	267120	329674
$1,2, B, \underline{E}, 4,9, \underline{8}, \underline{5}, 6,7, \underline{A}, \underline{3}:$	D, E, 1, $2,5,7$					

$(Z 12,1)$	5578	2362012	2501945	2251227	2184096	2952884
3053701	2724651	2695680	263100	291656	331750	341754

$(Z 12,2)$	5740	2362012	2501945	2255691	2179848	2953046	P_{3}^{t}
3053701	2728899	2691054	265170	289586	329680	343662	

343662
B, E, C, D, 2, 1: 3, 1, 7, 5, 8, 6, 2, 4, C, $\underline{9}, \underline{B}, \mathrm{~A}$

$(Z 12,3)$	5578	2362012	2502821	2252259	2183124	2952494	P_{7}^{t}

$\begin{array}{llllllll}3054673 & 2724165 & 2694648 & 264072 & 291170 & 330778 & 342084\end{array}$
B, E, C, D, $\underline{2}, 1: 8,4,2,5,1,6,7,3, \mathrm{C}, \underline{9}, \underline{B}, \mathrm{~A}$
$\begin{array}{llllllll}(Z 12,4) & 5578 & 2362012 & 2501945 & 2251227 & 2184096 & 2956500 & P_{3}\end{array}$
$3052269 \quad 2727515 \quad 2690632 \quad 263100 \quad 291656 \quad 333182 \quad 341754$ 9, 7, A, 8, 6, 4, 5, 3, 1, ㅂ, 2, E: $2,3,5,6, \underline{\mathrm{D}}, \mathrm{E}$

$(Z 12,5)$	5578	2362012	2502821	2252259	2183124	2955138	P_{1}^{t}

$3052755 \quad 2728001 \quad 2690086 \quad 264072 \quad 291170 \quad 332696 \quad 342084$
B, E, C, D, 2, 1: 6, 1, 3, 7, 4, 8, 5, 2, $\underline{9}, \mathrm{C}, \mathrm{A}, \underline{\mathrm{B}}$

$(Z 12,6)$	5584	2362012	2502821	2251945	2182712	2955144	P_{3}^{t}

$\begin{array}{lllllllll}3052755 & 2728413 & 2690394 & 264146 & 291096 & 332622 & 342152\end{array}$
C, D, B, E, 2, 1: 6, 7, 2, 1, 3, 4, 8, 5, C, 9, B, \underline{A}

$(Z 13,1)$	5578	2362012	2501945	2251227	2184096	2952884	P_{3}^{t}

$3053701 \quad 2724651 \quad 2695680 \quad 271407 \quad 283349 \quad 323443 \quad 35006$
B, E, C, D, 2, 1: 3, 1, 7, 6, 8, 5, 2, 4, C, 9, B, A

| $(Z 13,2)$ | 5740 | 2362012 | 2501945 | 2255691 | 2179848 | 2953046 | P_{4} |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | $3053701 \quad 2728899 \quad 2691054 \quad 269661 \quad 285095 \quad 325189 \quad 348153$ $3,4,6,5, \mathrm{~A}, 9,7,8, \underline{\mathrm{~B}}, \underline{1}, 2, \mathrm{E}: 6,5, \underline{3}, \underline{2}, \mathrm{D}, \mathrm{E}$

Table 2 (continued)

$(Z 13,3)$	5578	2362012	2502821	2252259	2183124	2952494	P_{7}^{t}
3054673	2724165	2694648	272709	282533	322141	350721	
1, $\underline{2}, \mathrm{~B}, \mathrm{E}, \mathrm{C}, \mathrm{D}: \mathrm{C}, 9,2, \underline{5}, \underline{\mathrm{~B}}, \mathrm{~A}, \underline{6}, 1,8, \underline{4}, \underline{3}, 7$							
$(Z 13,4)$	5578	2362012	2501945	2251227	2184096	2956500	P_{4}
3052269	2727515	2690632	269897	284859	326385	348551	
$6,5,3,4,7,8, \mathrm{~A}, 9, \underline{\mathrm{E}}, 2,1, \mathrm{~B}: \underline{5}, 1, \underline{7}, 2, \mathrm{D}, \mathrm{E}$							
$(Z 13,5)$	5578	2362012	2502821	2252259	2183124	2955138	P_{3}^{t}
3052755	2728001	2690086	270713	284529	326055	348725	
B, E, C, D, $\underline{2}, 1: 2,4,8,5,6,7,3,1, \mathrm{C}, 9, \underline{B}, \mathrm{~A}$							
$(\mathrm{Z} 13,6)$	5584	2362012	2502821	2251945	2182712	2955144	

| 3052755 | 2728413 | 2690394 | 270633 | 284609 | 326135 | 348639 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

P_{4} $4,6,3,5,7,9,8, A, \underline{2}, \mathrm{C}, \mathrm{D}, \underline{1}: \underline{6}, 4,8, \underline{1}, \mathrm{D}, \mathrm{E}$

$(Z 14,1)$	5740	2362012	2324846	2603664	2875098	2727515	W_{57}
2789925	1976809	2003445	648822	696062	332526	342928	
$\mathbf{C}\left(19^{2} 25^{12}\right)$	$\mathbf{T}\left(80^{4} 81^{4} 82^{4} 54^{2}\right)$						
$\mathbf{C}\left(24^{2} 25^{12}\right)$	$\mathbf{T}\left(62^{4} 83^{4} 63^{2} 84^{2} 85^{2}\right)$			$W_{58}=W_{57}^{t}$			
$(Z 15,1)$	5740	2362012	2324846	2603664	2875098	2727515	W_{59}
2789925	1982010	1998244	648822	696062	327325	348129	

2789925
SD $5,6, A, C, \underline{8}, \underline{1}, 7, \underline{9}, 4, \underline{E}, \underline{B}, 2, \mathrm{D}, 3: 1,2, \underline{5}, \underline{6}, 7,9, \mathrm{C}, \mathrm{E}, \underline{8}, 3, \underline{B}, 4, \mathrm{D}, \underline{\mathrm{A}}$ $\mathbf{C}\left(19^{2} 25^{12}\right) \quad \mathbf{T}\left(62^{4} 64^{4} 30^{2} 54^{2} 63^{2}\right)$
$\begin{array}{llllllll}(Z 16,1) & 5584 & 2362012 & 2502821 & 2252259 & 2859221 & 3070618 & P_{7}^{t}\end{array}$
$\begin{array}{llllllll}2790315 & 1826688 & 1999434 & 647606 & 687214 & 264072 & 342078\end{array}$
9, A, B, C, 7, 3: B, 1, E, $\underset{2}{ }, \underline{3}, \mathrm{D}, 4, \mathrm{C}, \underline{\mathrm{A}}, 6,9,8$

$(Z 17,1)$	5584	2362012	2502821	2252259	2859221	3070618	W_{60}
2790315	1826688	1999434	629139	707145	282539	322147	
$\mathbf{C}\left(19^{14}\right)$	$\mathbf{T}\left(33^{14}\right)$						$W_{61}=W_{60}^{t}$
$\mathbf{C}\left(24^{14}\right)$	$\mathbf{T}\left(14^{14}\right)$					W_{60}	
$(Z 17,2)$	4126	2362012	2502821	2256507	2857763	3070618	
2793789	1824618	1995132	627807	704355	283151	322759	

$9, \mathrm{~A}, \mathrm{E}, 2,7,1, \underline{\mathrm{D}}, 3, \underline{6}, \underline{4}, \mathrm{C}, \mathrm{B}, 8,5: \underline{6}, \underline{\mathrm{~A}}, \underline{9}, \mathrm{C}, 3, \mathrm{E}, 2, \underline{5}, \underline{\mathrm{D}}, 8, \underline{\mathrm{~B}}, 7, \underline{4}, 1$
$\begin{array}{llllllll}(Z 17,3) & 4282 & 2362012 & 2502873 & 2252207 & 2859273 & 3070592 & W_{60}\end{array}$
$2790289 \quad 1826636 \quad 1999408 \quad 629139 \quad 707145 \quad 282591 \quad 322173$
$9, \mathrm{~A}, \underline{\mathrm{E}}, 1,7, \underline{2}, \underline{\mathrm{D}}, 3, \underline{6}, \underline{4}, \mathrm{C}, \mathrm{B}, 8, \underline{5}: \underline{6}, \underline{\mathrm{~A}}, \underline{9}, \mathrm{C}, \underline{1}, \mathrm{E}, 2,8, \underline{\mathrm{D}}, 7, \underline{\mathrm{~B}}, \underline{5}, 3,4$

$(Z 17,4)$	4126	2362012	2502585	2252207	2858823	3070598	W_{60}
2790451	1826930	1999702	627807	706593	284079	322725	
$7, \underline{\mathbf{A}, \underline{9}, \mathrm{C}, \underline{1}, \mathrm{E}, \underline{4}, 8, \underline{\mathrm{D}}, \underline{\mathbf{5}}, \underline{\mathrm{B}}, \underline{6}, 2, \underline{3}:} \mathbf{9 , \mathrm { A } , \mathrm { E } , 2 , 7 , \underline { 1 } , \underline { \mathrm { D } } , 3 , \underline { 6 } , \underline { 4 } , \mathrm { C } , \mathrm { B } , 8 , \underline { 5 }}$							
$(Z 18,1)$	4282	2362012	2601720	2322902	2877528	2684045	
2714811	2018659	2081637	643550	701334	332914	342054	W_{62}
$\mathbf{C}\left(19^{2} 25^{12}\right)$	$\mathbf{T}\left(86^{12} 87^{2}\right)$						
$\mathbf{C}\left(24^{2} 25^{12}\right)$	$\mathbf{T}\left(85^{6} 88^{6} 89^{2}\right)$			$W_{63}=W_{62}^{t}$			

Table 2 (continued)

$(Z 19,1)$	4282	2362012	2601720	2322902	2877528	2684045	W_{64}
2714811	2020944	2079352	641289	703595	332914	342054	
$\mathbf{C}\left(19^{2} 25^{12}\right)$	$\mathbf{T}\left(86^{12} 87^{2}\right)$						
$\mathbf{C}\left(24^{2} 25^{12}\right)$	$\mathbf{T}\left(5^{6} 90^{6} 91^{2}\right)$				$W_{65}=W_{64}^{t}$		

Acknowledgments

The author is grateful to Professor Yasunori Fujikoshi, Hiroshima University, for his encouragement and guidance. The author also would like to express his deep gratitude to Professor Sanpei Kageyama, Hiroshima University, for his critical reading and valuable suggestions. Further thanks are due to Professor Hiroshi Kimura, Ehime University, for his helpful discussions while working on the subject. In addition, the author extends his warmest thanks to Professor Jennifer Seberry, University College, Australia, for her recommending studies on the subject.

References

[1] M. C. Chakrabarti, Mathematics of Design and Analysis of Experiments, Asia Publishing House, Bombay, 1962.
[2] H. C. Chan, C. A. Rodger and J. Seberry, On inequivalent weighing matrices, ARS Combin., A 21 (1986), 299-333.
[3] W. T. Federer, Experimental Design: Theory and Application, Macmillan, New York, 1955.
[4] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York, 1979.
[5] M. Hall, Hadamard matrices of order 16, J.P.L. Research Summary 32-10, 1 (1961), 21-26.
[6] M. Hall, Hadamard matrices of order 20, J.P.L. Technical Report 32-761, Pasadena, 1965.
[7] M. Jr. Hall, Combinatorial Theory, 2nd. ed., John Wiley, New York, 1986.
[8] Q. M. Hussain, On the totality of the solutions for the symmetrical incomplete block designs $\lambda=2, k=5$ or 6 , Sankhyā, 7 (1945), 204-208.
[9] N. Ito, J. S. Leon, J. Q. Longyear, Classification of 3-(24, 12, 5) designs and 24-dimensional Hadamard matrices, J. Combin. Theory, A 31 (1981), 66-93.
[10] H. Kimura, Hadamard matrices of order 28 with automorphism groups of order two, J. Combin. Theory, A 43 (1986), 98-102.
[11] H. Kimura, New Hadamard matrix of order 24, Graphs Combin., 5 (1989), 235-242.
[12] H. Kimura, Classification of Hadamard matrices of order 28 with Hall sets and new matrices. Preprint.
[13] H. Kimura and H. Ohmori, A characterization of some partial geometric spaces, Osaka J. Math., 22 (1985), 401-410.
[14] H. Kimura and H. Ohmori, Construction of Hadamard matrices of order 28, Graphs Combin., 2 (1986), 247-257.
[15] H. Kimura and H. Ohmori, Hadamard matrices of order 28, Mem. Fac. Educ. Ehime Univ., Nat. Sci., 7 (1987), 7-57.
[16] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam, 1977.
[17] H. Ohmori, On the classifications of weighing matrices of order 12, J. Combin. Math. Combin. Comput., 5 (1989), 161-216.
[18] H. Ohmori, Classification of weighing matrices of order 13 and weight 9, (to appear in Ann. Discrete Math.).
[19] V. Pless, Symmetry codes over GF(3) and new 5-designs, J. Combin. Theory, 12 (1972), 119-142.
[20] V. Pless, Symmetry codes and their invariant subcodes, J. Combin. Theory, A 18 (1975) 116-125.
[21] D. Raghavarao, Some aspects of weighing designs, Ann. Math. Stat. 31 (1960), 878-884.
[22] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, John Wiley, New York, 1971.
[23] J. Seberry and K. Wehrhahan, A class of codes generated by circulant weighing matrices, Lecture Notes in Mathematics, 686 (1978), 282-289, Springer, Berlin.
[24] O. Taussky, (1, 2, 4, 8)-sums of squares and Hadamard matrices, Proc. Symp. in Pure Mathematics, Amer. Math. Soc., Providence, R.I., 1971, 229-233.
[25] V. D. Tonchev, Hadamard matrices of order 28 with automorphisms of order 13, J. Combin. Theory, A 35 (1983), 43-57.
[26] V. D. Tonchev, Hadamard matrices of order 28 with automorphisms of order 7, J. Combin. Theory, A 40 (1985), 62-81.
[27] W. D. Wallis, Combinatorial Designs, Marcel Dekker, New York, 1988.

Department of Mathematics
Faculty of Education
Ehime University
Matsuyama, 790 Japan

