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Summary

The classification problem of weighing matrices of orders not exceeding
14 has been completed by Chan et al. [2] and Ohmori [17, 18]. In this
paper, we first consider a construction problem of weighing matrices of order
8fl — 2 and weight 4a for a > 2. A general solution for the intersection pat-
tern condition, which is necessary to construct such weighing matrices, is given.
Furthermore, the complete classification of weighing matrices for the case
a = 2 is made.

1. Introduction

A weighing matrix W of order n and weight k is an n x n matrix with
elements +1, — 1 and 0 such that WWt = kln, k <n, where In is the identity
matrix of order n and Wt denotes the transpose of W. We refer to such a
matrix as a W(n, k). A W(n, ri) is called a Hadamard matrix of order n. It
is known that the order of a Hadamard matrix is 2 or a multiple of 4. In
fact, the concept of weighing matrices was introduced by Taussky [24] as a
generalization of Hadamard matrices. However, in the area of design theory,
weighing matrices appear naturally as the "coeffi nt" matrices of an orthog-
onal design (see Geramita and Seberry [4]) and ~s applications for weighing
designs (for example, see Chakrabarti [1], Federer [3], Raghavarao [22]).
Furthermore, weighing matrices have been studied in order to find optimal
solutions to the so-called weighing design problem of weighing objects whose
weights are small relative to the weights of moving parts of the balance being
used. It was shown by Raghavarao [21, 22] that if the variance of the errors
in the weights obtained by individual weighing is σ2 in the usual weighing

design set up, then using a W(n9 k) as a design of an experiment to weigh
n objects will give the variance σ2/k. Indeed, in the class of all such weighing
designs for n = 0 (mod 4), a Hadamard matrix is optimal. Furthermore, in

the class of all weighing designs for n = 2 (mod 4), a symmetric conference
matrix (that is a kind of W(n, n — 1)) is optimal. Weighing matrices also
have applications in the area of coding theory. A linear code is an /-dimen-
sional subspace of the m-dimensional space over Galois field GF(q). The
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weight of a vector is defined by the number of non-zero elements of the
vector. The minimum weight of a code, denoted by d, is the weight of the
non-zero vector having the smallest value of weight in the code. It is quite
useful to know the value of minimum weight d since a code of such d can

correct —-— errors. Thus, given m and /, it is worthwhile to obtain a

code having d as large as possible. There are many investigations for linear
codes constructed by using W(n, /c)'s over GF(3), for example, see [16], [19],
[20], [23]. Thus, the problem of classifying weighing matrices is important
in the area of discrete mathematics and statistics.

Two weighing (Hadamard) matrices are said to be equivalent if one can
be transformed into the other by using the following operations: (i) multiply
any row or column by — 1; (ii) interchange two rows or two columns. If a
W(n, k) is equivalent to its transpose, the matrix is said to be self-dual. It

is known that the complete classification of Hadamard matrices whose orders
are less than or equal to 24 has been completed (see Hall [5, 6, 7], Ito et al.
[9], Kimura [11], Wallis [27]). Furthermore, it has been shown (Kimura
[10, 12], Kimura and Ohmori [14, 15], Tonchev [25, 26]) that there are at

least 486 inequivalent Hadamard matrices of order 28. On the other hand,
the problem of classifying weighing matrices started recently. Chan, Rodger
and Seberry [2] classified the inequivalent weighing matrices of any order
with weights less than 6. For 1 < k < n < 13, all W(n, /c)'s have been classified
by Chan et al. [2] and Ohmori [17, 18]. As a next step of investigation,
it is appropriate to consider the classification problem of weighing matrices
of order 14. Geramita and Seberry [4] proved that if n = 2 (mod 4) then
for a W(n, k) to exist, k < n — 1 and k is the sum of two squares. Thus it
is now sufficient to consider only the cases of k = 1, 2, 4, 5, 8, 9, 10, 13 for
the classification problem of W(14, fc)'s. For the cases of k < 5 and k = 13,
it has been completed by Chan et al. [2]. The available construction of
W(n, fc)'s is fully based on the intersection pattern condition (IPC) which
consists of two linear equations with non-negative integral variables, because
it allows us to get considerable information about the structure of a weighing

matrix.
In this paper, we shall deal with the classification problem of

W(8a — 2, 4α)'s, where a is an integer greater than or equal to 2. In Section
2, we present a general solution for IPC. It is essential for the problem of
constructing weighing matrices to determine whether there are weighing matri-
ces having the "inner structure" associated with solutions of IPC or not. In
fact, for some solutions of IPC, it is shown in Section 2 that there is no
weighing matrix having the "inner structure" associated with them. In Section
3, we deal with the case a = 2. A set of W(14, 8)'s which contains all in-
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equivalent weighing matrices of order 14 and weight 8 is provided. Further-
more, all W(14, 8)'s are classified into matrices of some types by solutions of
IPC. The set of these matrices is obtained by first constructing all inequi-
valent admissible and feasible matrices belonging to each of types, secondly

extending feasible matrices to weighing matrices with the aid of a personal
computer or through the trial and error method, and thirdly removing equiva-
lent weighing matrices by using automorphism groups of feasible matrices.

These matrices are also classified into some classes by using the C- or T-
distribution associated with each weighing matrix. Two tables are also pre-

sented in Section 3. T-distributions are listed in Table 1. They are helpful

to classify weighing matrices. All weighing matrices W(14, 8)'s constructed in

Section 2 are given in Table 2. They are divided into representative matrices
of inequivalent classes and others. In conclusion, W(\4, 8)'s will be classified
into 65 inequivalent classes, and the result is useful for further classification

of all inequivalent W(\4n, 8fc)'s by combining a W(n, k) and W(14, 8)'s, and
of all inequivalent W(m, 8)'s, where m > 14.

2. General solution for IPC with parameters 8α — 2 and 4α

Let x and y be row (column) vectors of the same size, and x * y denote

the Hadamard product, i.e. elementwise product. In this case, | x * y | is called
the intersection number of x and y, where |z| means the number of non-zero
elements of a vector z. In particular, | x*x | is called the weight of x.

The following fundamental result is due to Chan et al. [2].

PROPOSITION 2.1. Let M be a weighing matrix of order n and weight fc,

and let m and n be different rows (columns) of M. Then |m*n| is even.
Further let x2i be the number of rows (columns) of M having the intersection
number 21 with m. Then the set of such non-negative integers {x2/} satisfies
the equations:

*1 *1

£ χ2l = n - 1 and £ 2/x2l = k(k - 1),
I=k0 I=k0

where /c0 = max<0, —-— >, k1 = - , and [s] is the largest integer not

exceeding s.

DEFINITION 2.1. Denote the set of all weighing matrices of order n and

weight k by A(n,k). Let m be a row (column) of Mezl(n, k) and c =

(X2fc0>
 x2k0+2> •••> X 2kj) be the vector whose elements are intersection numbers

associated with m, where fc0 = max<0, —-— > and ki = - . In this case,
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c is called the intersection pattern of m, and M is said to have an intersection
pattern c.

DEFINITION 2.2. For given positive integers n and k (n > fc), the following
equations are called the intersection pattern condition (IPC) with parameters
n and k:

(1) x 2 / > 0 ( f c 0 < / < / ί ι h

(2) Σ*2i = n-l,

(3) Σ 2lx2ί = k(k-l)9
I=k0

where fc0 = max^O, — - — > and kt = - . A solution {x2l} satisfying (1),

(2) and (3) is expressed as (x2ko,
 x2k0+2> •••> X2kί)- The set of solutions of IPC

is denoted by Γ(n, k).

REMARK 2.1. Let m be a row (column) of M e Δ(n, k) and c be the inter-
section pattern of m. Then Proposition 2.1 shows ceΓ(n, k). Conversely,
for c e Γ(n, k\ a matrix having an intersection pattern c, however, may exist
or may not in Δ(n, k).

Hereafter, we will deal with the case of n = 80 — 2 and k = 40, where
a > 2 (note that if a = 2, it corresponds to Λ(14, 8) which will be discussed
in detail in Section 3). In this case, k0 = 1 and k1 = 20, and hence IPC with
parameters 80 — 2 and 40 is stated as the following:

Σx 2 l = 8α-3, Σ Ix2l = 20(40 - 1) , * 2 / >0. (2.1)
1=1 i=l

Also, Δ(n, k) and Γ(n,k) are abbreviated as A and Γ, respectively.
A general solution of (2.1) will be obtained inductively in the following

manner: First the lower and the upper bounds for x4fl in (2.1) are given.

Secondly for 1 < i < 20 - 2 and 0 < j < i- 1, let χ4a_2j=z4a-2j be fixed τhen

the lower and the upper bounds forx 4 f l_ 2 l, say w < x4a_2i< w, are given so

that for w < z4 α_2 l < vv, there exists a solution of (2.1) having x4a-2j = Z4a-2j
(0 < j < i). In the following it will be discussed in detail.

LEMMA 2.1. Let y™ = -802 -h 180 - 6, ̂ 0) = 802 - 100 + 3 and /V

0) =
80 — 3. Let ΓQ be the set of solutions of the following:
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V*2, = yT, * 2 ( >o. (2.2)
1=1 1=1

Then Γ0 = Γ and for (x2,..., x4α) e Γ0

y.0) + yjr0) = yi0), >* 0 )£0, y y

0 ) >0. (2.4)

PROOF. (2.2) follows from (2.1). (2.3) is obtained by the second equality

of (2.2). (2.4) is obvious. Π

[ v(0) Ί
yβ_ . Further let x4a = z4a be fixed, where

w<0) < z4« < <>. Denote Γ1(z4β) = fa = (x2, ..., x4a-2)l(Ci, z4a) e Γ}, where

(cl5 z4a) means (x2, . . . , x4α_2, z4α).

Analogously to Lemma 2.1 one can prove the following:

LEMMA 2.2. Let y(" = y<0) - z4fl, y^ = ̂ 0) + (2a - 2)z4fl, and y^ =

^0) — (2α — I)z4fl. Lβί Γt be the set of solutions of the following equations:

1=1 1=1

Then 7\ = /;(z4fl) αnrf /or (x2, . . . , x4α_2) e Γx

Next, let w 1' = 0 and w<1( = - \. For 1 < i < 2α - 2, let x4a = z4fl,

^4fl-2 = z4α-2> •••» *4β-2<i-l) = Z4α-2(i-l) t»C fixed ΪΠ OΓdCΓ. FuΓthβΓ let y*,", yf,

y('\ w%\ w(β\ Γt and Γ^z^, z4a_2, , Z4fl-2i) be defined inductively, and suppose

that w<" < z4a_2l < wji", 0 < y^0, y ,̂ w£\ vή[\ where 0 < / < i - 1. In this case,

we now further define

υ(0 _ v(i-D _ 7
y — Jy Z4o-2(i-l) >
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^1(Z40> Z40-2> J Z40-2(i-l)) = {Ci = (X2> » X4a-2i)\(Ch Z4a-2(i-l)> - "> Z4a) E ϊ

wi° = I ? _β. _ and

- {j£> + (20 - i - 3)y;}} if y? + (20 - i - 3)y® < 0 and

0 otherwise .

Under the above notations we may proceed further.

LEMMA 2.3. Let 0 < i < 2α — 2 and /] fee t/ie seί of solutions of the

following:

2f'*2i = y,°, 'I ' (' - 1)*2. = °̂ , ^,>0. (2.5)
1=1 1=1

Then Γt = /!(z4a, . . . , z4β_2((_1)λ j^> > 0 and y(;» > 0.

PROOF. The first equality is straightforward. By the assumption

Z4a-2(i-l)
iiίr1) =

which yields )$> = )$ 1} - (20 - i)z4a_2(i_1} > 0. Let <v = (x2,..., x4β_2ί) e

/](z4β,..., z4β_2(ί_1)). By the definition of /]_1? (cί9 z4β_2(ί_1)) e /]_!. Hence

4α-2i

Σ v- _i_ T — ι,(i-DX2l ~r Z4a-2(i-l) ~ Jy

Thus
40-2ΐ

^7 = ^y ~~ Z40-2(i-l) = Σ X2/ ^ 0 Π
ί=l

LEMMA 2.4. For 0 < i < 20 - 2, 0 < w<° < w^}.

PROOF. By the definition of w(j\ it is clear that wj° > 0. When

wί° = 0, the statement holds, and then suppose that H£° > 0. If y(f = 0

(mod(20 - i - 1)), then

(20 - i - l)(wj£) - w«)

= ̂  - (20 - i - i)y; > + {y® + (20 - i - 2)y;>}(20 -1 -1)
= —y^ — (20 — i — 2)y(f + {y(£ H- (20 — i — 2)yy

l)}

= {^> + (2α - i - 2)yW} (2α - i - 2) > 0 .

Thus, w^I} < w(o\
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If y<f> φ 0 (mod(2α - i - 1)),

Γ yf 1 > yΐ - V" - j -2)
[2a - i - 1J ~ 2a-i-l

Thus

(2a - i - l)(w£> - w^) > yf - (2a - i - 2) - (2a - i - l)y!f>

= {y? + (2a - i - 2)y" -\}(2a - i - 2) .

Now yW + (2a - i - 2)y(? > 1. Because if y? + (2a - i - 2)y® = 0, yf = yf -

y%} = (2a — i — l)yf. Thus y(β} = 0 (mod(2α — i — 1)). This is a contradiction.

Hence w<f) < w^0. Π

LEMMA 2.5. // w<° > 0 for 0 < i < 2a - 2, ί/ieπ c = (0, . . . , 0, z4fl_2(ί+1),

z4fl_2ί = w^ and z4fl_2(ί+1) = y;> - w<°.

PROOF. It follows that z4α_2(ί+1) = y® + (2a - i - 2)y® > 0,

~ _|_ 7 _ V(0Z4α-2t T Z4α-2(i + l) ~ >y

and

(2α - i - I)z4α_2ί + (2a - i - 2)z4fl_2(ί+1)

4° + (2α - i - 3)y(γ}} + (2a - i -

Hence, c e 7] by Lemma 2.3. Π

THEOREM 2.1. For 0 < i < 20 - 2, /eί /] b^ ί/ie seί o/ solutions of (2.5). //

(x2,..., x4f l_2ί) e Γi9 then wi° < x4α_2ί < w^0.

PROOF. The second inequality is clear by the definition of w^°. If n£l) =

0, the result follows. Suppose that w<° > 0 and let c = (x2,..., x4fl_2(ί+1),

*4 f l-2ΐ) e Γt. By Lemma 2.5, c = (0,..., 0, z4α_2(/+1), z4f l_2ί) e /], where z4fl_2ί =

w^ and z4fl_2(ί+1) = y® - w£}. Now, suppose that z4f l_2ί > x4f l_2ί. Then

2fl-(i + l)

Σ v ι v _ 7 ι 7 _ ,.(»)
Λ2ί T -X4α-2i ~ Z4α-2(i + l) ' Z4α-2i ~ Jy

and

Σ (' - 1)X2ί + (2fl - ί ~ l)*4α-2i

= (2fl - i - 2)z4β_2(ί+1) + (2α - ί - I)z4 f l_2 /.
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Hence

2α-(ί+l)

Σ (' ~ !)*2/ - (2α - ί - 2)z4fl_2(ί+1) = (2α - i - I)(z4fl_2ί - x4α_2ί)
1 = 1

and

Consequently

x2/ + x4α_2ί
1=1

- £ (2α - 1 - / - ί>2/ + *4a-2; - w<° = 0 .
1 = 1

This is a contradiction, because

)

(/ + 1 - 2α + i)*2i < 0 and x4f l_2ί - w<° < 0 .
1 = 1

Thus, x4 f l_2 l > z4f l_2l = w<°. This completes the proof. Π

DEFINITION 2.3. Let c = (x2, . . . , x4fl) and c = (x2, . . . , 3c4fl) e Γ. When
*4α < 3c4fl or there is a positive integer ι'0 such that x4α_2(ί_υ = x4fl-2(ί-i)

(1 < / < i0 - 1) and *4α-2i0 < ^4α-2i0»
 δ ^s sa^ to ^c 'αr^r *an c. This is

denoted by c > c.

The following corollary follows from Definition 2.3 and Theorem 2.1,
along with the definition of w£°.

COROLLARY 2.1. Let x2a = 7α — 3, x.2α+2 = a, x2 = 4a and x4a = 4a — 3.
Then (0, . . . , 0, x2fl, ^2α+2» 0, . . . , 0) and (x2, 0, . . . , 0, 3c4fl) are the smallest and
the largest solutions in Γ, respectively.

DEFINITION 2.4. Let M e A and c be the largest one among intersection
patterns of rows and columns of M. Then M is said to be of Type c. When
M is a matrix of Type c and c e Γ, where c < c, M is said to be of larger
type than Type c.

Let A be an s x t matrix whose elements are ±1 or 0. Define A *x r =
A* A, the Hadamard product. If there is no zero element in A, Afxt is
denoted by Jsxί. Then s x t zero matrix is denoted by O s x f. If s = ί, Afxt

and O sx ί are abbreviated as Af and Os, respectively. For matrices X and 7,
the Kronecker product of X and Y is denoted by X ® Y.

DEFINITION 2.5. Let Λ(z4β) be the set of matrices of Type c, where
c = (x2, . . . , x4f l_2, z4fl). Let M e Λ(z4fl). Then it can be assumed, without loss
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of generality, that

where s = z4fl + 1, t = 4a - 2, M$ = Jsx4α, and ML and MR are (8α - 3 - z4α) x
4α and (8α - 3 — z4fl) x (4a — 2) matrices, respectively. Submatrices ML, MΛ,

My and [ML j MR] are called an L-, an K-, a U- and a D-matrix of M,

respectively.

Hereafter, for any matrix in Λ(z4a) the above form will be always assumed.

The following lemma will be used to construct W(\4, 8)'s in Section 3.

LEMMA 2.6. Let A be a 3 x m matrix whose elements are +1 or 0, where

m>3. If AAί — m/3 and A* = J3xm, then m = 0 (mod 4).

PROOF. This can be easily shown by considering the structure of three

rows of A. Π

REMARK 2.2. When M e A, Lemma 2.6 means that it is impossible that
three rows (columns) (say n1 ? n2 and n3) in M exist such that |n 1 *n 2 *n 3 | =

|n 1 *n 2 | = |n 1*n 3 | = |n 2*n 3 | = w, where m = 2 (mod 4).

The following Theorems 2.2-2.5 are powerful to reduce the possibilities
of existence when W(%a — 2, 4α)'s are constructed by using solutions of IPC.
Note that for Λ(z4fl), 0 < z4fl < 4α - 3.

THEOREM 2.2. There is no weighing matrix of Type c or Type c, where
c = (χ2,..., 4a - 3) e Γ(4a - 3) and c = (3c2,..., 4a - 4) e Γ(4a - 4).

PROOF. Let Mezl(4α-3). By Corollary 2.1, M is of Type c, where

c = (4fl, 0,..., 0, 4a - 3). Let MR, ML and Mv be an R-, an L- and a (7-matrix

of M, respectively. By Definition 2.5, it can be assumed that Mj£ = «/4flX(4α-2)>

MS = J(4fl-2)x4α and Mj* = I2a (x) J2. This means that there exists a submatrix

^3x(4α-2) Of M* SUCh that ^3x(4α-2)^3x(4α-2) = (4fl-2)/3 and ^f x(4β-2) =

Λχ(4α-2) This contradicts to Lemma 2.6. Next, let M e Δ(4a — 4) and MR

be an R-matrix of M. Then, Mκ is a (4α -f 1) x (4α — 2) matrix satisfying

M^MΛ = 4α/4fl_2. Thus it can be assumed that MR = [,4(4α-2)x4fl ] 0(4β_2)xl]
r,

where Af4a_2)x4a = J(4α_2)x4fl. Hence, Mr e J(4α - 3). This contradicts to

MeΔ(4a-4\ Π

THEOREM 2.3. Let M E A(4a — 5) and M he o/ Type c, w/im? c =

(x2,..., x4a-2, 4a - 5) e Γ(4a - 5) wiίn a > 2. Γftβn x4a_2 is 0 or 2.

PROOF. By Theorem 2.1, 0 < x4a_2 < 2 + . Thus 0 < x4a_2 < 3.
\_a- IJ

Suppose that M is of Type c = (x2,..., x4fl_4, 1, 4a - 5). Then, an K-matrix
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Mκ of M can be assumed that

«^sxί

x2 Olx.

or

J ίx2

Λ x 2

/ 2 ®J 2 x l

Λ x 2

Jt

Oix,
Λ x r
Olx,

where s = 4a — 2 and ί = 4α — 4. In any case, this means that Mr is of Type

c = (x2, . . . , 3c4α_4, 2, 4α - 5) which means that c > c. This contradicts to the

assumption of Type c. Next, let M be of Type c = (x2, •••> χ4.a-4> 3, 4a — 5).
This case occurs only when a = 2. Thus M is of Type c = (7, 0, 3, 3). Then

an β-matrix MR of M can be assumed that M| = [J6x7 j /3 ® J 2 χiT Clearly,
M*RMR ^ 8/6 . Thus this case does not hold. Π

THEOREM 2.4. Let M e A(\) and M be of Type c = (x2, . . . , x4f l_2, 1).

PROOF. Let x2 > 5 and MD be a D-matrix of M. Since α > 2, MD

contains a submatrix N such that N* = | 5x(4α-2)] and is a 5 x 4α
matrix whose each row has just two Γs. Thus it can be assumed that

1 x 2 Oi x2

02

O \ O.5x(4α-6)

This, with Lemma 2.6 and Remark 2.2, shows that NtN^4aI5. D

THEOREM 2.5. Let M e A(ϋ) and M be of Type c = (x2, . . . , x4α_2, 0). Then

PROOF. Let x2 > 3 and MD be a D-matrix of M. Then MD has a

submatrix N = [A^ ' N2], where Λ^ is a 3 x 4a matrix whose each row con-

tains just two non-zero elements and N} = J^x(A.a-2y In tni§ case, let N3 =
NiNl — 2/3. Then it follows that elements of N3 are either ±2 or 0, in
order to keep the orthogonality with respect to rows of N. If there exists
a non-zero element in ΛΓ3, then M 6 A(\\ which contradicts to the assumption
of M of Type c. If N3 = 03, N2N2 = (4a - 2)/3, which is impossible by

Lemma 2.6. Π

3. Construction and classification of W(\4, 8)'s

In this section, we only consider a case a = 2 in the previous section.
This case has special interest as described in Section 1. By Theorem 2.1,
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there are 25 solutions of IPC with parameters 14 and 8. They are listed in

the following:

(X
2
 X

4
 X

6
 X

8
) (X

2
 *4 *6 *β)

C!

C
3

c
s

C
7

C
9

Cu

Cl3

Cl5

Cl7

Cl9

C21

C23

= (
= (
= (
= (
= (
= (
= (
= (
= (
= (
= (

= (

8

6

6

4

5

3

6

4

2

0

4

2

c
25
 = (0

0

3

2

6

3

7

0

4

8

12

3

7

11

0

0

2

0

3

1

6

4

2

0

6

4

2

5

4

3

3

2

2

1

1

1

1

0

0

0

)
)
)
)
)
)
)
)
)
)
)
)
).

c
2
 = ( 7

c
4
 = ( 7

c
6
 = (5

c
8
 = (6

r — ( 4
*ΊO — V ̂

c
12
 = (2

c
14
 = (5

c
16
 = (3

cιβ = (l

2̂0
 ==
 ( -*

C22 = ( 3

C
2
4 = ( 1

1

0

4

1

5

9

2

6

10

1

5

9

1

3

1

4

2

0

5

3

1

7

5

3

4

3

3

2

2

2

1

1

1

0

0

0

)
)
)
)
)
)
)
)
)
)
)
)

It follows from Theorems 2.2-2.5 that there is no weighing matrix of Type

c, for i = 1, 2, 3, 4, 6, 13, 14, 20, 21, 22.

DEFINITION 3.1. Let N and Nf be s x 6 matrices whose elements are ±1
or 0 and weights of columns are 8 for i = 1, 2. Λf* is said to be admissible
when all elements of N**N* are even. If N*N = 8/6, Λf is said to be feasi-
ble. When M is a weighing matrix of Type c and N is an fl-matrix of M,

both admissible matrix Λf* and feasible matrix N are said to be of Type

c. For two admissible matrices, N? and N}9 if there are permutation matric-
es Q1 and Q2 such that N} = Q1N?Q2, ΛΓ2* is said to be equivalent to JVf.

For two feasible matrices, Λ^ and N29 if there are signed permutation

matrices Q1 and Q2 such that JV2 = 61^162* N2

 is said to be equivalent to
N,.

One can find many admissible and feasible matrices. For example,

an admissible matrix, say A*, and a feasible matrix, say F9 are given as

follows.
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A* =

1

1

1

1

1

1

"1

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

— —

- 1
1 _

1 1

1 -

1 1

1 0

1 0
1 1

1 1

1 1

1 1

1 -

- 1

- 1

1 -
- -

1 1

1

1

0

1

0

1

1
-

1

-

-

1

1

1

1

0

0

1

0

0
-

-

1

1

1

1

0

1

1

0

0

0

-

-

1

1

1

1

1

0

1

0

1

1

0

0

0

0

0

0

0

0

1

1

Γ
1

0

0

0

0

0"

0

1

1

0

0

r

>F =

where the symbol "-" means -1. Throughout this paper, the symbol "-"

is used instead of -1. It can easily be shown that A* and F are of Type
c10 and of Type c5, respectively.

DEFINITION 3.2. Let MεΔ and MR be an K-matrix of M. Without loss

of generality, it can be assumed that MR = [L(6)' \ L(4)' | L(2)ί]ί, where the

weights of all rows of L(i) equal i for i = 2, 4, 6. In this case, L(ϊ) is called

an Ri-matrix of MR. Letting m be a column of Mκ, the portion belonging

to L(i) of m is called the Ri-part of m.

Note that the existence of a W(14, 8) implies the admissibility of an

K-matrix. The following theorem will be proved by showing the non-existence

of an admissible matrix for each type.

THEOREM 3.1. There is no weighing matrix of Type ct for i = 8, 11, 12, 16.

PROOF, (i) Type c8. Let MR be an β-matrix of such a weighing matrix.

Then, without loss of generality, it can be assumed that

';/6_x4|./6x2

~N*~]~N*

Thus M£ is notwhere the 4 x 6 matrix [JVt ] N"2] is an K2-matrix of MR.

admissible, because there exists at least one pair of columns having an odd

intersection number in the first four columns of Mj£.

(ii) Type cn. Let MR be an K-matrix of such a weighing matrix of

Type cn. Then, without loss of generality, it can be assumed that
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Nf N}

where the 7 x 6 matrix N = [Nt

as JV*, two cases, say N(\)* and
is an JR4-matrix of MR. Moreover,

, can be considered, where

with L? =
l

and N(2)* = [--*-_Lp-
| J 3x4_

. For both cases of N(l) and N(2\ one can-

not determine Kf and K% so that Mj£ is admissible.
(iii) Type c12. Let MR be an β-matrix of such a weighing matrix of

Type c12. Then, without loss of generality, it can be assumed that

03 X 1

X*

T*~
where K is a 6 x 5 matrix and the weight of a column of K is 6 or 4.
Let X; be the number of columns of K* having weight i, where i = 6 or 4.
Thus we have two equations similar to IPC: x4 + x6 = 5 and 4x4 + 6x6 =

3 x 6 . But there does not exist a non-negative solution. Hence, MR is not
admissible.

(iv) Type c16. Let MR be an β-matrix of such a weighing matrix of
Type c16 and MR2 be an #2-matrix of MR. If MR2 has the submatrix 03xl,
it can be assumed that for the first column m of MΛ, m = [m^ ] m4 | mί

2]
ί,

where mt is the Ri-part of m, m6 = J3 x l, m4 = [Jlx5 | 0]' and m2 = 03xl.
Let ϊϊϊ (/m) be any column of MR. Then the intersection number of m
and m in the R4-paτt of MR must be odd. Thus there are two equations:
X! + x3 + x5 = 5 and xί 4- 3x3 + 5x5 = 15, where x^ is the number of columns
having the intersection number i with m in the R4-matrix of M. Only three
solutions (x l 5 x3, x5) = (2, 1, 2), (1, 3, 1) and (0, 5, 0) are obtained. However,
in each case, one cannot determine an Λ4-matrix of MR so that M$ is
admissible. Next, if MR2 does not have the submatrix 03xl, it can be assumed
that MR2 = /3 (x) J1X2. Then it follows that

M£4 =

"1
1

1

1

0

0

1
1

0

0

1

1

K*

κ*2

or ^ιi_^3_Ί
02 ! /2x4_Γ
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But it can also be shown that it is impossible to make

in each case. This completes the proof.

to be admissible

Π

Note that the existence of a W(14, 8) also implies the existence of a

feasible matrix. The following theorem will be proved by showing the non-

existence of a feasible matrix.

THEOREM 3.2. There is no weighing matrix of Type c10.

PROOF. Let MR be an ^-matrix of a weighing matrix of Type c10. Then,

without loss of generality, it can be assumed that

1R ~

Let mt be the ί'-th column of MR for 1 < i < 6. Then, without loss of general-

ity, it can be assumed that mί = (1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0)f. It follows that

there are three inequivalent cases to consider in order to decide on the second

row of MR, say m^, 1 < j < 3, where m^ = (1, 1, 1, 1, 0, -, -, -, -, 0, 0)', m(

2

2) =

(1, 1, -, -, 0, 1, 1, - - 0, 0)f, m(

2

3) = (1, 1, 1, -, 0, 1, -, -, -, 0, 0)'. But it is impossi-

ble to construct a feasible matrix based on the matrix [m1 \ m(

2

J)] for j = 2

and 3, because there is no 6 x 3 matrix S such that 5* = J6x3 and S*S = 6/3

by Lemma 2.6. There are exactly two inequivalent matrices, say Xί and X2,

based on the matrix [π^ j m(

2

υ] so that they are enlarged as large as possible

keeping on the orthogonality with respect to columns, where

"1

1

1

1

1

1

1

1

1

1

1

1

1 0

1 0

1 1

1 1

1 1

1 1

1

1

0

1

0

1

1

1

1

0

0

1

1

1

0

1

1

0

1

1

1

0

1

0

0

0

0

0

1

1

0"

0

1

1

0

0

"1 1

1 1

1 1

1 -

"1 1

1 1

1 1

1 -

1 -

1 1

1 1

- -

1 -

1 1

1 1

- -

1 -

- 1

0

0

1

1

0

0

1
-

-

1

-

0

1

1
-

0

1

0

1

-

1

0

1
-

1

0

0

1

-

0

-

1
-

0
-

1

1

-

-

0

1

-

-

0

-

0

0

0

0

0

0

0

0

1

0"

0

1

-

0"

0

1

1

0

However, they cannot be extended into a feasible matrix. D

Hereafter, it will be investigated successively in the following lemmas and

theorems whether there are weighing matrices of the remaining types or not.
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LEMMA 3.1. There is the unique weighing matrix of Type c5 up to

equivalence.

PROOF. Let M be a weighing matrix of Type c5 and MR =
[L(6)' ! L(4)' ! L(2)ί]ί be an ^-matrix of M, where L(i) is the ^'-matrix of

MR. Considering L(4)* and L(2)*, one can show that M£ is equivalent to
one of the following matrices:

•'6x2 6 x 4

•^6x3 | ^6x3

0 1 O j

o o i ! 2 x 3

1 1 0 1

1 0 1 ί °2x3

ί

J ' J ~

1 1 0 0 [

o o i i ! 2

i i o o i
o o i i ! °2

Clearly, the last two matrices are not admissible. Thus one can assume that

M$ is the first one.
Next, it will be shown that MR is unique up to equivalence. Let

m; be the i-th column of MR = [Xx ] X2~], where 1 < i < 6 and Xf =

C Λ x β ! 02 \ J2]', Xξ = [J4x6 ! J4x2 ! QφxjT. Suppose that m3 and m4 are
orthogonal in the Kό-parts of them. Then mί is not orthogonal to m3 and

m4 by Lemma 2.6. Thus, for 3 < i < 6, the number of positive elements of

πii is even. Hence, without loss of generality, it can be assumed that

"1

1

1

1

1 - -

1 1 1

1 - -

1 1 1

1 1
- -

- -

1 1

- -

- -

1 1

1 1

0 0"

0 0

0 0

0 0

Furthermore, two feasible matrices of Type c5, say S and T, can be con-

structed, where

s =

"1 -

1 -

1 1

1 1

1 1

1 1

"1 -

1 -

1 1

1 1

1 1

1 1

1 -

1 -

- -

1 1
- -

1 1

- 1

1 -

- -

1 1

- -

1 1

_ i
-j

1 1

- -

- -

1 1

- 1

1 -

1 1

- -

- -

1 1

0 0

0 0

- -
- -

1 1

1 1

0 0

0 0

- -

- -

1 1

1 1

_ _

1 1

0 0

0 0

0 0

0 0

i Γ
1 1

0 0

0 0

0 0

0 0
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Let π = (5, 6, 1, 2, 3, 4, 7, 8, 9, 10) and p = (1, 2, 5, 3, 4, 6) be two signed permu-

tations. Then S(π'p) = T, i.e., 5 is equivalent to T. For the notations π,

p and S(π'p), refer to Remark 3.1. Thus it follows that a feasible matrix
based on Mj£ can be uniquely constructed up to equivalence, say Pg, where

P5

X = 5.
Finally, one can show that there exists the unique weighing matrix of

Type c5 up to equivalence. Let Mv be a [/-matrix of M. Then, without

loss of generality, it can be assumed that

1 1 1 1 1 1 1 Γ

1 1 1 1 - - - -

1 1 - - 1 1 - -

1 1 - - - - 1 1

The trial and error approach produces the unique weighing matrix up to
equivalence, say (171, 1), based on P5

X and Mv, where

(£71,1) =

1 1 1 1 1 1 1

1 1 1 1 - - -

1 1 - - 1 1 -

1 1 - - - - 1

1 - 0 0 0 0 0 0 1

- 1 0 0 0 0 0 0 -

- 1 0 0 0 0 0 0 1

1 - 0 0 0 0 0 0 -

0 0 1 - 0 0 0 0 -

0 0 - 1 0 0 0 0 1 -

0 0 0 0 1 - 1 - 0 0

0 0 0 0 - 1 - 1 0 0

0 0 - 1 1 - - 1

1 0 0 0 0 0 0

- 0 0 0 0 0 0

- 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 1 1 1

- 1 1 1 1

1 - 1 - 1

- - 1 - 1

1 1 - - 1

- 1 - - 1

- 1 1

- 1 1

- 1 0 0 0 0

0 0 - 1 - 1 1 - - 1 0 0 0 0

For (171, 1) refer to Remark 3.2. This completes the proof. D

REMARK 3.1. The notation π(ι, 7,..., k) (ρ(i, j,..., k)) means a row (col-
umn) signed permutation on a matrix as follows: move the i-th row (column)
to the first row (column), the j'-th row (column) to the second row (column)
by multiplying -1 in addition, ..., the fe-th row (column) to the last row
(column). The notation X(π>p} means the matrix resulting from the operations
by row and column signed permutations π and p, respectively, on a matrix
X.
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REMARK 3.2. Many weighing matrices are constructed in Lemma 3.1

and the forthcoming Lemmas 3.2-3.6. They are listed with the abbreviated

forms in Table 2 of this section in the following manner: (i) the name of a

weighing matrix (for example, (171, 1)) is given; (ii) for each row of a weighing

matrix, the number is corresponded, i.e. for the row (m 1 ?..., w14) the number

Σl=ι ^i^"1, where m{ = mf(mod 3), 0 < m{ < 2; (iii) the number corresponding
to each row of a weighing matrix is given in order starting from the second

row, because the first row of the matrix is (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

which is common to all weighing matrices. For example, the weighing matrix

Wl9 named (171, 1), is expressed as follows:

(171,1) 6520 6232 3640 2388211 2414453 2978699
3004945 3103416 3116520 2603826 2602206 37062 38358

Here, for example, the number 3004945 corresponds to the 8-th row

(1, -, 0, 0, 0, 0, 0, 0, -, -, -, 1, -, 1) of (171, 1).

In the following, one will obtain many matrices, in the order of admissible,

feasible and weighing matrices for each type. But the methods to find them

are not described in detail, because they can be obtained with the same way

as in the proof of Lemma 3.1.

LEMMA 3.2. There are three inequίvalent feasible matrices, say P7, 1 <

ϊ < 3, of Type c7. At most nl

Ί inequivalent weighing matrices based on P7 can

be constructed with n\ = n7 = n7 = 1.

PROOF. Let M be a weighing matrix of Type c7 and MR be an K-matrix

of M. Then, M$ is unique up to equivalence, i.e., Mj£ = [J6x4 } J6 — /3 ® J2J-

Moreover, there are only three inequivalent feasible matrices, say P7, i = 1,

2, 3, based on Mj£, where

1 1 1 1 1 1

- - 1 1 1 1

- 1 - 1 - 1

1 - 1 - - 1

0 0 - - 1 1

0 0 - - 1 1

1 1 0 0 - 1

- - 0 0 - 1

1 - - 1 0 0

1 - - 1 0 0

"1

-

1

-

0

0
-

1

-

1

1

-

1

-

0

0

1

-

1

-

1

1

-

-

-

1

0

0

-

-

1

1

-

-

1

-

0

0

1

1

1

1

1

1

-

-

-

-

0

0

Γ
1

1

1

1

1

1

1

0

0
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1 1 1 1 1 1

- - 1 1 1 1

- 1 - - 1 1

1 - - - 1 1

0 0 - 1 - 1

0 0 1 - - 1

1 1 0 0 - 1

- - 0 0 - 1

- 1 - 1 0 0

1 - - 1 0 0

Thus a weighing matrix, say (Ki, 1), based on Pj can be uniquely constructed

up to equivalence by the trial and error. Such {(Vi, 1)} are listed in Table 2.

D

THEOREM 3.3. There is no weighing matrix of Type c9.

PROOF. Let MR be an Λ-matrix of a weighing matrix of Type c9 and

MR2 be an #2-matrix of MR. Then Mj£2 is equivalent to one of the following
matrices, say K(i)*9 1 < i < 8:

0 0 0 0 1 Γ

0 0 0 1 0 1

0 0 1 0 0 1

(3)

0 0 0 0 1 Γ

0 0 0 0 1 1

0 0 1 1 0 0

(6)

i Γ

" 0 0 0 0

0 0 0 0

0 0 0 0

(1)

" 0 0 0 0

0 0 0 1

0 0 0 1

(4)

i Γ
1 1

1 1

" 0 0 0 0 1 Γ

0 0 0 0 1 1

0 0 0 1 0 1

(2)

i Γ
0 1

1 0

" 0 0 0 0 1 Γ

0 0 0 1 0 1

0 0 1 0 1 0

(5)

"0 0 0 0 1 lΊ ΓO 0

0 0 0 1 0 1 0 0

^ 0 1 1 0 0 0 1 1

(7) (8)

where (i) corresponds to K(i)*. It can be shown that there is no admissible

matrix of Type c9 based on K(i)* except for i = 4, 8. Note that an admissible

matrix based on K(l)* can be constructed, but it is not of Type c9. Further-
more, one can construct uniquely an admissible matrix based on K(i)*9 say

Kf, i = 4, 8, up to equivalence, where
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1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

L
8 —

_/sx6_
0 0 1 1 1 1

1 1 0 0 1 1

1 1 1 1 0 0

0 0 0 0 1 1

0 0 1 1 0 0

1 1 0 0 0 0

Repeated applications of Lemma 2.6 show that XJ only is transformed to a
feasible matrix, say Ks, up to equivalence, where

"1

1

1

1

1

1

- 1 -

- 1 -

1 - -

1 - -

1 1 1

1 1 1

-

1
-

1

-

1

0

0

1

-

-

1

1

-

0

0

-

1

1

-

-

1

0

0

0

0

0

0

-

1

0

0
-

1

0

0

-

1

0

0

0

0

But it can be shown by computer calculation that a weighing matrix based
on Ks does not exist. Π

LEMMA 3.3. There are four inequivalent feasible matrices of Type c15,
say P[5, 1 < i < 4. At most n{5 inequivalent weighing matrices of Type c15

based on P{5 can be constructed with n{5 = 7, n^s = 2, nls = 2, n*5 = 0.

PROOF. Let M be a weighing matrix of Type c15 and MR be an Λ-matrix
of M. Let MR2 be an Λ2-matrix of MR. Then M 2̂ is equivalent to one
of the following matrices, say K(ϊ)*, 1 < i < 21:

1 1 0 0 0 0 '

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

(1)

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

(4)

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

(2)

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

(5)

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

(3)

1 1 0 0 0 0 '

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

(6)
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" 1 1 0 0 0 0 "

1 1 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

" 1 1 0 0 0 0 "

1 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

" 1 1 0 0 0 0 "

1 1 0 0 0 0

1 0 1 0 0 0

0 0 1 1 0 0

(7) " (8) " (9)

" 1 1 0 0 0 0 "

1 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 1 0

" 1 1 0 0 0 0 "

1 0 1 0 0 0

1 0 0 1 0 0

0 1 1 0 0 0

" 1 1 0 0 0 0 "

1 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

(10) " (11) " (12)

" 1 1 0 0 0 0 "

1 0 1 0 0 0

1 0 0 1 0 0

0 0 0 0 1 1

" 1 1 0 0 0 0 "

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

" 1 1 0 0 0 0 "

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 0 1 0

(13) (14) (15)

" 1 1 0 0 0 0 "

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

" 1 1 0 0 0 0 "

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 1 0 0

" 1 1 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

(16) " (17) " " (18)

" 1 1 0 0 0 0 "

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

" 1 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 1 0

0 0 0 1 0 1

" 1 1 0 0 0 0 "

1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 1

(19) ~ (20) " " (21)

where (i) corresponds to K(i)*.

Suppose that K(i)* can be extended to an admissible matrix K* of Type c15

so that the #2-matrix of K* is K(i)*. If there exists a column of weight 0
in K(i)*9 the weights of columns in the Λ4-matrix of K* are 4. Consequently,
weights of the other columns of X* must be even in the K2-matrix. Thus
the cases of K(i)* are removed for i = 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18,
19. Furthermore, K(i)* for i = 1, 3 are also removed, because weighing matri-
ces constructed based on these cases are of larger types than Type c15. In
a similar way, it follows that for i = 16, 20, 21, K(i)* cannot be extended to
the admissible matrices. From K(i)* for i= 13, 14, 17, one can uniquely
construct an admissible matrix Kf up to equivalence, where
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Λ xό

0 1 1 0 1 1

0 1 0 1 1 1

0 0 1 1 1 1

1 1 1 1 0 0

X(13)*

.«,.
Λx6

1 1 0 0 1 1

1 1 0 0 1 1

0 0 1 1 1 1

0 0 1 1 1 1

X(14)

, «?7 =

Γ Λxβ Ί

1 1 0 0 1 1

0 0 1 1 1 1

1 0 1 0 1 1

0 1 0 1 1 1

K(17)

But some repeated applications of Lemma 2.6 show that it is impossible to
construct a feasible matrix based on XJ3 or Kf7. Moreover, there are only
four inequivalent feasible matrices, say P{5, 1 < i < 4, based on £J4, where

"1 1 1 1 1 Γ

- - 1 1 1 1

1 - - 1 - 1

1 - 1 - - 1

0 0 - - 1 1

0 0 - - 1 1

- 1 0 0 - 1

- 1 0 0 - 1

0 0 - 1 0 0

0 0 - 1 0 0

1 1 0 0 0 0

1 1 0 0 0 0

'

"1 1 1 1 1 Γ

- - 1 1 1 1

- 1 - - 1 1

1 - - - 1 1

0 0 - 1 - 1

0 0 1 - - 1

1 1 0 0 - 1

- - 0 0 - 1

0 0 - 1 0 0

0 0 - 1 0 0

- 1 0 0 0 0

- 1 0 0 0 0

'

"1 1 1 1 1 Γ

- - - - 1 1

- - 1 1 - 1

1 1 - - - 1

0 0 - 1 1 1

0 0 1 - 1 1

- 1 0 0 - 1

1 - 0 0 - 1

0 0 - 1 0 0

0 0 - 1 0 0

- 1 0 0 0 0

- 1 0 0 0 0

(1) (2)

" 1 1 1 1 1 1 "

- - 1 1 1 1

1 1

- 1 1

1

1 1 - -

(3)

0 0 - 1 - 1

0 0 1 - - 1

- 1 0 0 - 1

1 - 0 0 - 1

0 0 - 1 0 0

0 0 - 1 0 0

- 1 0 0 0 0

- 1 0 0 0 0

(4)

and (i) corresponds to P{5. By computer search at most n{5 inequivalent

weighing matrices, say (Wi,l)9 1 <l<n{5, based on P{5 can be constructed
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with n\5 = 7, n\5 = 2, n\5 = 2 and n\5 = 0. For the method of constructing

weighing matrices with the aid of a computer, refer to Remark 3.3. Such

{(Wi, /)} are listed in Table 2. Π

REMARK 3.3. The present algorithm for construction of weighing matrices

of Type c is described as follows: (i) construct a set of column vectors of

size 14 and weight 8 which are orthogonal to each column of a feasible

matrix of Type c, and choose eight vectors with the first elements being all

ones which are orthogonal to each other in the set; (ii) remove weighing

matrices obtained in (i) which are matrices of larger types than Type c; (iii)

remove equivalent matrices by using automorphism groups of feasible matrices

and automorphism groups of the (/-matrices of weighing matrices obtained.

The computation was performed on a PC-9801 computer.

Our algorithm will be used for constructing weighing matrices of each

type hereafter.

LEMMA 3.4. There are five inequivalent feasible matrices of Type c17, say

P[Ί, 1 < i < 5. At most n[Ί inequivalent weighing matrices c of Type c17

based on P[Ί can be constructed with n\Ί = 1, n\Ί = 2, n\Ί = 1, n\Ί = 0 and

n\Ί = 0.

PROOF. Let K be an R-matrix of a weighing matrix of Type c17. Then

K* is equivalent to one of three inequivalent admissible matrices, say Kf,

1 < i < 3, of Type c17, as follows:

1 1

1 1

0 0

0 0

1 1

1 1

1 1

1 1

0 0

0 0

Λ x 6

0 0

0 0

1 1

1 1

1 1

1

1 1

1

0 0

0 0

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0

1 1

1 1

1 0 1 1 0 1

1 0 1 1 0 1

0 1 1 1 0 1

0 1 1 1 0 1

1 1 1 0 1 0

1 1 1 0 1 0

1 1 0 1 1 0

1 1 0 1 1 0

0 0 0 0 1 1

0 0 0 0 1 1

o o i i i
0 1 0 1 1 1

1 0 1 1 0 1

1 0 1 1 0 1

1 1 1 0 1 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1

By Lemma 2.6, it is impossible to be extended to a feasible matrix of Type

c17 based on K%. However, there are only four inequivalent feasible matrices

of Type c17 based on Kf, say P{7, 1 < i < 4, and only one inequivalent

feasible matrix based on K$, say P ,̂ where
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Γ17 -

p3
M7

"1
-

0

0

-

1

-

-

-

1

0

0

"1

-

0

0

-

1

1

-

1

-

0

0

1
-

0

0

1

-

-

-

1

-

0

0

1

-

0

0

1

-

1

1

-

-

0

0

1
-

-

1

0

0

1

1

-

-

0

0

1

1

-

-

0

0
-

-

-

-

0

0

1
-

1
-

0

0

1

1

1

1

0

0

1

1

-

-

0

0

1

1

1

1

0

0

p5
M7

1

1

-

-

-

-

0

0

0

0

1

1

1

1

1

1

-

-

0

0

0

0
-

-

=

Γ
1

1

1

1

1

0

0

0

0

1

1

Γ
1

1

1

1

1

0

0

0

0

1

1

2
17 =

4
PΠ =

" 1 1 1 1

- - 1 1

0 0 - -

- - 0 0

0 0 - -

1 1 0 0

- 1 - 1

- 1 - 1

1 - - 1

1 - - 1

0 0 0 0

0 0 0 0

" 1 1 1 1

- - • 1 1

0 0 - -

0 0 - -

1 1 0 0

- - 0 0

- 1 - 1

- 1 - 1

1 - - 1

1 - - 1

0 0 0 0

0 0 0 0

~1 1 1 1 1 Γ
- - 1 1 1 1

0 0 - - 1 1

0 0 - 1 - 1

- 1 0 - 0 1

1 - 0 - 0 1

- 1 - 0 1 0 *

1 - - 0 1 0

1 1 - 1 0 0

- - - 1 0 0

0 0 0 0 - 1

0 0 0 0 - 1

1
-

1

1

-

-

0

0

0

0

1

-

1

1

1

1

-

-

0

0

0

0
-

-

Γ
1

1

1

1

1

0

0

0

0

1

1

Γ
1

1

1

1

1

0

0

0

0

1

1

By using a computer, at most n[Ί inequivalent weighing matrices, say (Xi, /),
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1 < / < n[7, based on P[η can be constructed with n\Ί = 1, n\Ί = 2, n\Ί = 1,

n\Ί = o, n\Ί = 0. Such {(Xi, /)} are listed in Table 2. Π

LEMMA 3.5. There are two ίnequivalent feasible matrices of Type c18, say

PIS, 1 < j < 2. At most n[s ίnequivalent weighing matrices based on P[s can

be constructed with n}8 = 1 and = 1.

PROOF. Let K be an Λ-matrix of a weighing matrix of Type c18. Then

is equivalent to the following admissible matrix:

h ίί1

Λ x 2 |

_Q*x2 |

1 1 1

L*

J4

where L*'L* = 2/4 -f J4, i.e., L*f is the incidence matrix of a BIBD with

parameters (4, 6, 3, 2, 1) (see Raghavarao (1971) for the definition of a BIBD).
Without loss of generality, it can be expressed as

L* =

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

Then one can construct two inequivalent feasible matrices, say
based on the above admissible matrix, where

and

1 1 1 1 1

0 0 0 0 1

0 0 -

- - 0 0 1

0 1 0 1 -

1 0 0 - -

1 0 -

- 0

- 1 0 0

1 0 0

1 0 0

1 0 0

0 -

- 0

- 1

1 - -

- - 1

1

1

1 1

1

- 1

- 1

- 1

- 1

1 - -

p2 _
M8 —

1 1 1 1 1 1

o o o o - i
0 0 - 1 1 1

0 - 0 - 1 1

- 0 0 - 1 1

0 1 1 0 - 1

- 0 - 0 - 1

1 - 0 0 - 1

- - 1 1 0 0

- - 1 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

By computer search, at most n{8 inequivalent weighing matrices, say (Yi, /),
1 < / < n{8, based on P[8 can be constructed with nJ 8 = 1 and n?8 = 1. Such
{(Yi, /)} are listed in Table 2. Π
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LEMMA 3.6. There are 19 ίnequivalent feasible matrices of Type c19, say

P{9, 1 < i < 19. At most n{9 ίnequiυalent weighing matrices based on P(9 can

be constructed with n\9 = 0, n\9 ==• 3, n\9 = 8, n*9 = 10, n\9 = 2, «f9 = 6, n[9 =
Q
 M
8 _ /:

 M
9 _ A

 M
10 _ c ~11 _ o

 M
12 _ f.

 M
13 _ /:

 M
14 _ i

 M
15 __ i

 M
16 _y, n19 — o, n19 — q, n19 — j, n19 — o, nl9 — o, π19 — o, n19 = i, n19 = i, π19 =

*117 —nιg —
18 — 1 M 1 9 —
19 — i, n19 —

PROOF. Let K be an K-matrix of a weighing matrix of Type c19. Then

X* is equivalent to one of three inequivalent admissible matrices of Type c19

as follows:

"0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

K*

i Γ
1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0

J J

"0 0 1

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

fc^*

1

1

1

1

0

0

1

1

0

0

1

1

"0 0 1

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 1

0 1

1 0

1 0

0 0

0 0

1

1

1

1

0

0

0

0

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0

One can construct /f inequivalent feasible matrices based on Kf, 1 < i < 3,

respectively, where (Il9 /2, /3) = (5, 8, 6). They are numbered as P{9, 1 < / < 19,

where
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(1)

(4)

(7)

"0 0 1 1 1 Γ

0 0 1 1 1 1

0 0 - - 1 1

0 0 - - 1 1

1 1 0 0 - 1

1 1 0 0 - 1

- - 0 0 - 1

- - 0 0 - 1

- 1 - 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

1 - - 1 0 0

"0 0 1 1 1 Γ

0 0 - 1 1 1

0 1 0 - 1 1

0 - 0 - 1 1

1 0 1 0 - 1

1 0 - 0 - 1

- 1 0 0 - 1

- - 0 0 - 1

1 1 1 1 0 0

- - 1 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

"0 0 1 1 1 Γ

0 0 - - 1 1

1 1 0 0 1 1

- - 0 0 1 1

0 0 - 1 - 1

0 0 1 - - 1

- 1 0 0 - 1

1 - 0 0 - 1

1 1 1 1 0 0

- - 1 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

>

(2)

»

(5)

9

(8)

"0 0 1 1 1 Γ

0 0 1 1 1 1

0 0 - - 1 1

0 0 - - 1 1

1 1 0 0 - 1

- 1 0 0 - 1

1 - 0 0 - 1

- - 0 0 - 1

1 1 - 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

- - - 1 0 0

"0 0 1 1 1 Γ

0 1 0 1 1 1

0 0 - - 1 1

0 - 0 - 1 1

1 0 1 0 - 1

- 0 - 0 - 1

- 1 0 0 - 1

1 - 0 0 - 1

1 1 - 1 0 0

- - - 1 0 0

- - 1 1 0 0

1 - - 1 0 0

"0 0 1 1 1 Γ

0 0 - - 1 1

1 1 0 0 1 1

- - 0 0 1 1

0 1 0 1 - 1

0 - 0 - - 1

1 0 1 0 - 1

- 0 - 0 - 1

- 1 - 1 0 0

1 - - 1 0 0

- - 1 1 0 0

1 - - 1 0 0

ί

(3)

5

(6)

9

(9)

"00 1 1 1 Γ

0 0 - 1 1 1

0 0 1 - 1 1

0 0 - - 1 1

1 1 0 0 - 1

- 1 0 0 - 1

1 - 0 0 - 1

- - 0 0 - 1

1 1 1 1 0 0

- - 1 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

"0 0 1 1 1 Γ

0 1 0 1 1 1

0 0 - - 1 1

0 - 0 - 1 1

1 0 1 0 - 1

- 0 - 0 - 1

1 1 0 0 - 1

- - 0 0 - 1

- 1 - 1 0 0

1 - - 1 0 0

- - 1 1 0 0

1 - - 1 0 0

"0 0 1 1 1 Γ

0 0 - - 1 1

1 1 0 0 1 1

- - 0 0 1 1

0 1 0 1 - 1

0 - 0 - - 1

- 0 1 0 - 1

1 0 - 0 - 1

- 1 - 1 0 0

1 - - 1 0 0

1 - 1 1 0 0

- - - 1 0 0
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(10)

(13)

(16)

" 0 0 1 1 1 1

0 0 - - 1 1

1 1 0 0 1 1

- - 0 0 1 1

0 0 - 1 - 1

0 0 1 -

- 1 0 0 - 1

1 - 0 0 - 1

- 1 1 1 0 0

1 - 1 1 0 0

1 1 - 1 0 0

- - - 1 0 0

0 0 1 1 1 1

0 1 0 - 1 1

1 0 - 0 1 1

- - 0 0 1 1

0 0 - 1 - 1

0 - 0 - - 1

1 0 1 0 - 1

- 1 0 0 - 1

- 1 1 1 0 0

1 - 1 1 0 0

1 1 - 1 0 0

- - - 1 0 0

0 0 1 1 1 Γ

0 1 0 - 1 1

1 0 - 0 1 1

0 1 0 1 - 1

0 0 1 - - 1

- 0 - 0 - 1

- - 0 1 0 1

1 - 0 - 0 1

- - 1 0 1 0

- 1 - 0 1 0

1 1 1 1 0 0

1 - - 1 0 0

Γ
1

1

1

1

1

1

1

0

0

0

0

Γ
1

1

1

1

1

1

1

0

0

0

0

J

(11)

>

(14)

"0 0 1 1 1 Γ

0 1 0 - 1 1

1 0 - 0 1 1

- - 0 0 1 1

0 0 1 1 - 1

0 1 0 - - 1

1 0 - 0 - 1

- - 0 0 - 1

- 1 - 1 0 0

1 - - 1 0 0

1 1 1 1 0 0

- 1 - 1 0 0

"0 0 1 1 1 Γ

0 1 0 1 1 1

0 0 - - 1 1

0 - 0 1 - 1

1 0 1 0 - 1

- 0 - 0 - 1

1 1 0 - 0 1

- - 0 - 0 1

- - 1 0 1 0

1 - - 0 1 0

- 1 - 1 0 0

1 - - 1 0 0

)

(12)

ί

(15)

0 0 1 1 1 Γ

0 1 0 - 1 1

1 0 - 0 1 1

- - 0 0 1 1

0 0 - 1 - 1

0 - 0 - - 1

1 0 1 0 - 1

- 1 0 0 - 1

1 1 1 1 0 0

- - 1 1 0 0

- 1 - 1 0 0

1 - - 1 0 0

"0 0 1 1 1 Γ

0 1 0 1 1 1

0 0 - - 1 1

0 - 0 1 - 1

1 0 1 0 - 1

- 0 - 0 - 1

- 1 0 - 0 1

1 - 0 - 0 1

- - 1 0 1 0

1 - - 0 1 0

1 1 - 1 0 0

- - - 1 0 0

(17)

0 0 1 1 1 Γ

0 1 0 - 1 1

1 0 - 0 1 1

0 1 0 1 - 1

0 0 1 - - 1

- 0 - 0 - 1

- - 0 1 0 1

1 - 0 - 0 1

- 1 1 0 1 0

- - - 0 1 0

1 - 1 1 0 0

1 1 - 1 0 0 (18)

0 0 1 1 1 Γ

0 0 - - 1 1

0 1 0 1 1 1

0 - 0 1 - 1

1 1 0 0 - 1

- - 0 0 - 1

1 0 1 - 0 1

- 0 - - 0 1

- - 1 0 1 0

1 - - 0 1 0

- 1 - 1 0 0

1 - - 1 0 0
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"0

0

0

0

1

-

-

1

1

-

-

1

0

0

1

-

1

-

0

0

-

-

1

-

1

-

0

0

0

0

1
_

1

-

-

-

1

-

1

1

0

0
-

-

0

0

1

1

1

1

1

-

-

-

0

0

1

1

0

0

Γ
1

1

1

1

1

1

1

0

0

0

0
(19) L

and (0 corresponds to P{9. By computer search, many weighing matrices

based on P}9 can be constructed. For example, by algorithm (i) described

in Remark 3.3, one can construct 480 weighing matrices based on P*9. Let

G = <0/X 1 < / < 5, be an automorphism group of P ,̂ having {gt} as genera-

tors, where

0ι = (π(L 2, 3, 4, 5, 6, 7, 8, 9, 10, Π, 12), p(l, 2, 3, 4, 5, 6)),

g2 = (π(l, 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 11), p(l, 2, 4, 3, 5, 6)),

03 = (π(l, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12), p(l, 2, 3, 4, 6, 5)),

04 = (π(4, 3, 2, 1, 5, 6, 7, 8, 10, 9, 12, 11), p(l, 2, 3, 4, 5, 6)),

05 = (π(5, 6, 7, 8, 1, 2, 3, 4, 9, 10, 11, 12), p(3, 4, 1, 2, 5, 6)).

Using G in order to remove equivalent matrices, one can reduce from 480

matrices to 15 ones. Furthermore, by removing matrices being not of Type

c19, at most nl9 = 8 inequivalent weighing matrices based on P?9 can be

constructed. The same method can be performed for other feasible matrices,

in order to construct weighing matrices. As a result, n{9 weighing matrices

based on P|9, say (Zi, /), can be constructed for 1 < i < 19 and 1 < / < n{9.

Such {(Zi, /)} are listed in Table 2. Note that the construction is performed

in the order starting from P^9. Π

THEOREM 3.4. There is no weighing matrix of Type c23.

PROOF. Let M be a weighing matrix of Type c23 and MR be an Λ-matrix

of M. For MR2 being an JR2-matrix of MR, M£2 is equivalent to one of 21

matrices presented in the proof of Lemma 3.3. If K* is an admissible matrix

based on K(i)*, 1 < i < 21, where K(i)* is one of the matrices as in the proof
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of Lemma 3.3, then it can be shown that the type of weighing matrix having

X* as an β-matrix is larger than Type c23. This contradicts to the assumption

of the matrix M of Type c23. D

THEOREM 3.5. There are two inequίvalent admissible matrices and four

ίnequivalent feasible matrices of Type c24, say P24, 1 ̂  * 5̂  4. All weighing

matrices constructed based on those matrices are of larger types than Type c24.

PROOF. Let K be an /^-matrix of a weighing matrix of Type c24. Then

K* is equivalent to one of two inequivalent admissible matrices of Type c24,

say X? and X* Moreover, it can be shown that there are one and three

inequivalent feasible matrices based on K% and Kf, say P24 and P|4, 2 < i < 4,

respectively, where

"1 1 1 1 1 Γ

1 0 1 0 1 1

1 0 1 0 1 1

0 1 1 1 0 1

0 1 1 1 0 1

1 1 1 0 0 1

1 1 0 1 1 0

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

1 1 1 1 1 1

- 0 - 0 1 1

- 0 1 0 - 1

0 - - 1 0 1

0 - 1 - 0 1

1 1 - 0 0 1

- - 0 1 1 0

1 - 0 - 1 0

- 1 1 0 1 0

1 - 1 1 0 0

0 0 0 0 - 1

0 0 0 - 0 1

- 0 0 0 - 1 0 -

, «! =

9

1 1 1 1 1 Γ

0 0 1 1 1 1

0 1 0 1 1 1

0 1 0 1 1 1

1 1 0 0 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 1 1 1 0 0

0 0 0 0 1 1

0 0 1 1 0 0

1 1 0 0 0 0

1 1 1 1 1 1

0 0 - 1 1 1

0 - 0 - 1 1

0 1 0 - - 1

1 - 0 0 - 1

- - 1 0 0 1

- 1 - 0 0 1

- 0 1 - 1 0

1 0 - - 1 0

- - - 1 0 0

0 0 0 0 - 1

0 0 1 1 0 0

— 1 0 0 0 0 -

(1) (2)
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Ί
0
0

0
1
-

-
-

1

1

0

0

1

1

0
-

1
-

-

1

0

0
-

0

0

1

1
-

0

0

0
1

-
-

-

-

0
1

0

1

1
-

-

0

0

0

1
-

1

0

1

0

1
-

1

-

-

0

0

1

1

0

1

0

0

Γ
1

1

1

1

1

1

0

0

0

1

0

0

ί

"1

0

0

0
-

-

1

-

-

-

0

0

1

1

0
-

-

1

1

-
0

0
-

0

0

1

(3)

1

1

0

0

0
-

-
-

1

1

0
1

0

1
-

-

1

0

0

0

1
-

1

0
1

0

1 Γ
- 1

1 1

- 1

- 1

0 1

0 1

1 0

1 0

0 0

1 1

0 0

0 0

(4)

and (ϊ) corresponds to P24. The computer search shows that all weighing

matrices constructed based on P1

24 are of larger types than Type c24. D

THEOREM 3.6. There exists the unique admissible matrix of Type c25 and

there are two ίnequivalent feasible matrices, say P25 and P25, based on the

admissible matrix. All weighing matrices constructed based on P25, 1 < ί < 2,

are of larger types than Type c25.

PROOF. Let K be an K-matrix of a weighing matrix of Type c25. Then

K* is equivalent to the admissible matrix K*. Furthermore, it can be shown

that there are two inequivalent feasible matrices, say P|5, i = 1, 2, based on

K*. Here

" 0 0 1 1 1 1

0 1 0 1 1 1

0 1 0 1 1 1

1 0 1 0 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 0 0 1

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 1 1

0 0 1 1 0 0

" 0 0 1 1 1 1

1 1 0 0 1 1

- 1 0 0 - 1

0 - - 1 0 1

0 1 - - 0 1

- - 0 - 0 1

1 - 1 0 0 1

- 0 1 - 1 0

1 0 - - 1 0

- 1 0 1 1 0

- - - 0 1 0

0 0 0 0 - 1

0 0 - 1 0 0
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2 _
—

0 0 1 1 1 Γ

1 1 0 0 - 1

- - 0 0 - 1

0 1 - 1 0 1

0 - - - 0 1

- 1 0 - 0 1

1 - 1 0 0 1

- 0 - 1 1 0

- 0 1 - 1 0

1 1 0 - 1 0

1 - - 0 1 0

0 0 0 0 1 1

0 0 1 1 0 0

Using a computer, it can be shown that all weighing matrices constructed
based on P25 are of larger types than Type c25. Π

Now, a set of W(14, 8)'s constructed in Lemmas 3.1-3.6 contains all

inequivalent weighing matrices of order 14 and weight 8. Thus weighing

matrices in the set will be classified into some inequivalent classes.

DEFINITION 3.3. Let M e A and C = C( i"1 j"j - - -) be the distribution
of types of rows of M, for 1 < i < j < 25, nt > 1, n 3 > 1, where nt is the
number of rows of M having Type

distribution associated with M.
In this case, C is called the C-

The following result is straightforward.

THEOREM 3.7. Let M{eA and Cf be the C-distribution of Mf, i = 1, 2. //

G! φ C2, then M1 is not equivalent to M2. In particular, if M2 is the transpose

matrix of Mx and Cx φ C2, Mx is not self-dual.

There are many inequivalent weighing matrices having the same C-distri-
bution. Thus, another criterion is needed to determine whether two matrices
are equivalent or not.

DEFINITION 3.4. Let M e A and m = (m l9 m2,..., m14), m( = (m{9 m 2,...,

mj 4) be three different rows of M, where i = 1, 2. Define a 3 x 8 matrix

T = (t^) associated with m, where tol = mjt / 0 and ί f / = m r 1 < / < 8, i = 1, 2.
T is called a t-matrix associated with m if |t 1*t 2 | > |t1*t3 |, ίί =JίxS, and

the first non-zero elements of t2 and t3 are ones, where tt is the i-th row of

T. Let Ti and T2 be two ί-matrices associated with m. If there are two
signed matrices P and Q such that T2 = P^Q, then T2 is said to be equivalent

to T;.
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The following lemma is straightforward.

LEMMA 3.7. Let M e A and m be a row of M. Then a t-matrix associated

with m is equivalent to one of following matrices.

1 1 1 1 1 1 1 Γ

1 - 0 0 0 0 0 0

1 - 0 0 0 0 0 0

(1)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

0 0 0 0 1 - 0 0

(3)

1 1 11 1

1 1 -

1 0 -

1 1 1

- 0 0 0 0

0 0 0 0 0

(5)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 0 0 0 1 - - 0

(7)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 0 - 0 1 - 0 0

(9)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 - 1 0 - 0 0 0

(11)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 - 1 - 0 0 0 0

(13)

1 1 1 1 Γ

- - - 0 0

0 0 0 0 0 0 1 -

(15)

1 1 1 1 1 1 1 Γ

1 - 0 0 0 0 0 0

0 0 1 - 0 0 0 0

(2)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 - 0 0 0 0 0 0

(4)

1 1 1 1 1 1 1 1

1 1 - - 0 0 0 0

0 0 0 0 1 1 - -

(6)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 - 0 0 1 - 0 0

(8)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 1 0 0 - - 0 0

(10)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 1 - 0 - 0 0 0

(12)

1 1 1 1 1 1 1 Γ

1 1 - - 0 0 0 0

1 1 - - 0 0 0 0

(14)

1 1 1 1 1 1 1 Γ

1 1 1 - - - 0 0

1 - 0 0 0 0 0 0

(16)
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" 1 1 1 1 1 1 1 1 "

1 1 1 - - - 0 0

1 0 0 - 0 0 0 0

(17)

"1 1 1 1 1 1 1 Γ
1 1 1 - - - 0 0

1 1 0 0 0 0 - -

(19)

" 1 1 1 1 1 1 1 1 "

1 1 1 - - - 0 0

1 0 0 - 0 0 1 -

(21)

" 1 1 1 1 1 1 1 1 "

1 1 1 - - - 0 0

1 - 0 1 0 0 - 0

(23)

"1 1 1 1 1 1 1 Γ
1 1 1 - - - 0 0

1 1 - - 0 0 0 0

(25)

" 1 1 1 1 1 1 1 1

1 1 1 - - - 0 0

1 1 - 1 0 0 - -

(27)

"1 1 1 1 1 1 1 Γ

1 1 1 - - - 0 0

1 1 - 1 - - 0 0

(29)

1 1 1 1 1 1 1 1

1 1 1 1 - - - -

1 - 0 0 1 - 0 0

(31)

1 1 1 1 1 1 1 1

1 1 1 1 - - - -

1 1 - - 1 - 0 0

(33)

"1

1

1

1

1

1

~1

1

1

"1
1

1

Ί
1

1

"1

1

1

"1

1

1

"1

1

1

"1

1

1

1

1
-

1

1

0

1

1

1

1

1
-

1

1
-

1

1

1

1

1
-

1

1

1

1

1

1

1

1

0

1

1

0

1

1
-

1

1

0

1

1

0

1

1
-

1

1

0

1

1
-

1

1
-

1 1
- -

0 0

(18)

1 1
- -

1 0

(20)

1 1
- -

0 0

(22)

1 1
- -

1 -

(24)

1 1

- -

1 -

(26)

1 1

- -

1 -

(28)

1 1

1 -

0 0

(30)

1 1

1 -

- 0

(32)

1 1

1 -

- 1

(34)

1
-

0

1
-

0

1
-

0

1
-

0

1
-

0

1
-

0

1

-

0

1
-

0

1
-

1

1

0
1

1

0
-

1

0
-

1

0

0

1

0
1

1

0
-

1
-

0

1
-

0

1
-

-

1

0
-

Γ
0
-

Γ
0

0

Γ
0

0

Γ
0
-

Γ
0

0

Γ
-

0

Γ
-

0

Γ
-

-
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"1

1

1

1

-

0

1

0
-

1

0

0

1

0

0

1

0

0

1

0

0

Γ
0

0

(35)

"1

1

1

1

1

0

1

1

0

1

-

0

1

-

0

1

-

0

1

0

-

Γ
0

0

(37)

"1

1

1

1

1

0

1

-

0

1

-

0

1

0

-

1

0

0

1

0

0

Γ
0

0

(36)

"1

1

1

1

1

1

1

1

-

1

-

-

1

-

0

1

-

0

1

0

-

Γ
0

0

(38)

REMARK 3.4. For each of rows (columns) of weighing matrices obtained
in Lemmas 3.1-3.6, ί-matrices are searched. As a result, there is no weighing

matrix having a ί-matrix equivalent to the i-th matrix (i) for 35 < i < 38.

For the ϊ'-th matrix (i) in Lemma 3.7, let 7i(i) = (ϊ) (for 1 < i < 2), T2(ί) =
(i + 2) (for 1 < i < 12), T3(i) = (i + 14) (for 1 < i < 15), T4(ί) = (ί + 29) (for
1 < i < 5), for the sake of convenience.

Let M e A and m be a row of M. Then one can make 78 ί-matrices

associated with m, each of which is equivalent to one of the first 34 matrices
given in Lemma 3.7. Hence the distribution of such ί-matrices associated

with m is obtained.

DEFINITION 3.5. The distribution of ί-matrices associated with m is de-

noted by { . . . , 7]( . . . , jn*J9 ...),...}, where Tj( . . . , 7'"", . . . ) means that there are

riij ί-matrices associated with m equivalent to Tt(j). In this case, the distribu-

tion is called the Ύ -distribution associated with m.

Note that nu — 78. For all weighing matrices obtained in Lemmas

3.1-3.6, and then for all rows (columns) of each matrices, T-distributions are

derived and hence 91 different T-distributions can be obtained. They are
listed as Tf, 1 < i < 91, in Table 1 of this section.

DEFINITION 3.6. Let Me A and T = T(..., i1, ...) be the distribution of
T-distributions associated with rows of M, where i1 means that there are /
rows having the T-distribution Tf for / > 1. In this case, T is called the
Ύ -distribution associated with M.

The next is straightforward.

THEOREM 3.8. Let MteA and Ύ(i) be the Ύ -distribution associated with

Mi for i = 1, 2. // T(l) φ T(2), then M1 is not equivalent to M2. In particular,

if M2 is the transpose of M^ and T(l) Φ T(2), M^ is not self-dual.

There are 103 W(14, 8)'s obtained in Lemmas 3.1-3.6. As a result, they
can be classified into 65 inequivalent classes by using the C- or the T-
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distribution associated with each matrix in the following manner. Let M be

a weighing matrix obtained in Lemmas 3.1-3.6. Then M is divided into two

cases.

Case I: The case being used as the representative matrix of the i-th
inequivalent class. In this case, the C-distribution and/or the T-distribution

associated with M are attached. Furthermore M is named as Wt in Table

2. See Remark 3.2 for the expression of Wt in Table 2. For Wi9 other

informations are also attached in Table 2 as follows: If W{ is self-dual, first

the notation SD and two signed permutations, say π and p, and secondly

the C-distribution and/or the T-distribution associated with Wt are attached.

This means that W{ = W^p). If Wt is not self-dual, W? is used as the repre-

sentative matrix of the (i + l)-th inequivalent class. Then the notation Wi+1 =

Wl is used, and the C-distributions and/or the T-distributions associated with

Wi and Wl are also attached.

Case II: The case being not used as the representative matrix of inequi-

valent class. In this case, only two signed permutations, say π and p, are

attached with the notations Wt or Pα (Pα') together in Table 2. If Wl

(1 < / < 65) is attached, it means that Wl = M(π'p). If Pα (Pα') is attached,

M is of Type c19. Let M = (mfj) be a weighing matrix based on Pf9 given

in Lemma 3.6, and π* and p* be permutations ignoring signs of π and p,

respectively. Further let L = (lab) be a submatrix of M, where lab = mπ*(fl)p*(ί)),

and π*(α) and ρ*(b) be the α-th element of π* and the b-ih element of

p*, respectively. In this case, L(π'p) = Pα (P^) and α < /?, where π (p) is the

signed permutation defined from π (p) as follows: for π = π(il9 i^ ..., ίt)

(P = P(h , Ϊ2, - - - , it))> π = π(l, 2, . . . , ί) (p = p(l, 2, . . . , ί)) This means that M
is equivalent to one of weighing matrices constructed based on PJ9 (PJ9) (see

the proof of Lemma 3.6). Note that the notations A, B, C, D, E are used

as elements of signed permutations in Table 2, where A, B, C, D, E correspond

to 10, 11, 12, 13, 14, respectively.

Summarizing the previous discussion, we have obtained the following:

THEOREM 3.9. There are 65 inequivalent weighing matrices of order 14

and weight 8.

When MEZf(14, 8) and NeΛ(n,fc), it follows that M® Ne J(14«, 8fc).

Thus the classification of weighing matrices of order 14 and weight 8 is useful

for further classification of J(14n, 8fe) and A(m, 8) for m > 15.

REMARK 3.5. All computer programs used in order to construct and

classify weighing matrices are available on request. Matrices Wi9 1 < ί < 65,

expressed with the exact forms, which are representative matrices of inequi-

valent classes, are also available on request.
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TABLE 1. T-distribution of f -matrices.

Tj = {Γ2(44512616768898111),

T2 = {Γ2(412624712812116), Γ4(212)}

T3 = {Γ2(485862071081098112), Γ4(212)}

T4 = {Γ2(44516620710810116), Γ4(212)}

T5 = {Γ2(44586227138394111), T3(44916112131)}

T6 = {Γ2(4858624788898111121), Γ4(212)}

T7 = {T2(41262472084116), T4(2834)}

T8 = {T2(46586187118594113), Γ3(44916112131)}

T9 = {T2(4863271688112), T4(212)}

TIO = {Γ2(445126287108694111121), Γ4(212)}

TII = {Γ2(4858632748494104111121), Γ4(212)}

T12 = {Γ2(425166167n8394ll3), Γ3(465298104112131)}

T13 = {Γ2(4863272084112), Γ4(21032)}

T14 = {Γ2(16234661273812113), T3(3369761012123)}

T15 = {T2(44516624716115121), T4(2834)}

Tie = {T2(16213242586127883113), T3(223146546198106112122131)}

T17 = {Γ2(4658618788894113), T3(6272916102121)}

TIB = {T2(48632724112), Γ4(2834)}

T19 = {Γ2(4451662071882116), Γ4(2834)}

T20 = {T2(48586207188298112), T4(2834)}

T2i = (T2(445126247128894112), T4(212)}

T22 = {Γ2(412624724116), Γ4(2636)}

T23 = {Γ2(162342586107588113), Γ3(334252657298108123)}

T24 = {Γ2(16213242586127685113), Γ3(22314452637298106112122131)}

T25 - (Γ2(42516616768894113), Γ3(647498106121)}

T26 = {Γ2(16234454610788594111), T3(3348617298106112133)}

T27 = {Γ2(16234454610758894111), Γ3(3342677298106112123)}

T28 = {Γ2(44512620748698121), Γ3(647498106121)}

T29 = {Γ2(445126167118398111), Γ3(466298102114131)}

T30 = {Γ2(44512616788698111), Γ3(4272916102131)}

T31 = {Γ2(44586267118194121), Γ3(44916112131)}

T32 = {Γ2(4864071284122), Γ4(212)}

T33 = {Γ2(5246187989116)4Γ4(212)}

T34 = (Γ2(163351269768393113), Γ3(234653918143)}

T35 = {72(412648126),Γ4(212)}

T36 = {T2(16234661271283113), Γ3(3341263106116133)}

T37 = {T2(412632716114122), T4(2834)}

T38 = {T2(5206177108193101113), Γ3(445382910104121)}

T39 = (Γ2(520615788594113), Γ3(42526171912104121)}
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TABLE 1 (continued)

T40 = {T2(l62l325l26llls82n3), T3(22314264738498104112122131)}

T41 = {T2(425166167108494113), Γ3(44916112131)}

T42 = {7\(21), T2(182642546886121), Γ3(12365466981010126)}

T43 = {Γ2(445126187108297101111), Γ3(627284912102121)}

T44 = {Γ2(4658632788494104), Γ4(212)}

T45 = {Γ2(163351269788193113), Γ3(234451627284914143)}

T46 = {T2(485862471698111121), T4(2834)}

T47 = {Γ2(44512616778798111), Γ3(6272916102121)}

T48 = {Γ2(46586247128898), Γ4(212)}

T49 = {T2(520617788393101113), T3(4151627282910104121)}

T50 = {T2(425166187108293101113), Γ3(627284912102121)}

T51 = {Γ2(4451262472094112), Γ4(2834)}

T52 = {Γ2(1621324454616748394121), Γ3(223144657298104114122131)}

T53 = {T2(16234454614718894121), Γ3(33677498108123)}

T54 = {T2(465126227787910102), T4(212)}

T55 = (Γ1(21), Γ2(18243242546107183121), T3(1222344452627298108112123133)}

T56 = (T1(21), T2(182642546886121), T3(123661098106114126)}

T57 = {T2(44512616798598111), T3(4262916112121)}

T58 = (Γ2(46586247168498), T4(21032)}

T59 = {Γ2(425166167108198101111), Γ3(42627284910102141)}

T60 = {T2(1622314258610778295101111), Γ3(213243647284912102121142)}

T61 = {Γ2(48586287108294104112), Γ4(21032)}

T62 = {Γ2(44586227158194111), Γ3(41627184912101111121)}

T63 = {Γ2(44586227118594111), T3(4272916102131)}

T64 = {Γ2(44512618778597101111), Γ3(416271916101111121)}

T65 = {Γ2(4658622798394112121), T3(44916112131)}

T66 = (Γ1(1224), Γ2(122464122), Γ3(1424384468104124152), T4(14223244)}

T67 = {^(l1), T2(112344864781Γ121), Γ3(24446474104151), Γ4(12223642)}

T68 = {^(l1), Γ2(18243448616111123), T3(146474108151), Γ4(12243442)}

T69 = {7;(1224), Γ2(182844122), Γ3(183868108124152), T4(143444)}

T70 = {^(l1), T2(1123448612115123), Γ3(244864114151), Γ4(12263242)}

T71 = (T1(1224), T2(1123474112), T3(142834412114134152), Γ4(142444)}

T72 - (Tjίl1), Γ2(182434486878113121), Γ3(144464104114151), Γ4(12243442)}

T73 = (T1(1224), Γ2(183844112), Γ3(182878108134152), T4(143444)}

T74 = (T1(1224), T2(1123474112), Γ3(1428344874104134152), Γ4(14223244)}

T75 = {^(l1), T2(112344461278113121), Γ3(244864114151), Γ4(12263242)}

T76 = {T2(420632118126),T4(2834)}

T77 = {^(l1), T2(112244468712113121), Γ3(344864104151), Γ4(12243442)}

T78 = (T1(1224), Γ2(183844112), Γ3(182848118134152), Γ4(142444)}
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TABLE 1 (continued)

T79 = {Γ2(4206167161112122), Γ4(2438)}

T80 = {Γ2(425146187138196111), Γ3(41627184912101111121)}

TBI = {72(42514620788495101111), Γ3(416271916101111121)}

T82 = {T2(42514618798596111), T3(4272916102131)}

T83 = {T2(43514617758699101), Γ3(6373912104121)}

T84 = {T2(16234356613728694102), Γ3(33416672912105111123)}

T85 = {Γ2(435146157885910), T3(436172912103111131)}

T86 = {Γ2(425146207118195101111), Γ3(627284912102121)}

T87 = {Γ2(46512630738396106), T4(212)}

T88 = {T2(44586227138394111), Γ3(44916112131)}

T89 = (Γ2(1623435669768696), Γ3(334366912103113123)}

T90 = {Γ2(435146157885910), T3(426371912102112121)}

T91 = (Γ2(1623435669768696), T3(334673912106133)}

TABLE 2. Weighing matrices

(1/1,1) 6520 6232 3640 2388211 2414453 2978699 W,

3004945 3103416 3116520 2603826 2602206 37062 38358

SD 5, 6, 7, 8, E, C, B, D, 9, A, 1, 2, 3, 4: B, C, E, D, 2, 1, 4, 3, 9, A, 7, 6, 8, 5

C(58154192)

(Kl, 1) 6520 6232 3640 2388211 2414453 2624405 W2

2650651 2958120 3074760 2690478 2703582 331740 344880

C(78196)

C(1512192) W3

(72,1) 6520 6232 3640 2388211 2414453 2985318 W
4

3116538 2603826 2602206 2683499 2709745 345384 346680

SD 5, 6, 8, 7, 9, A, D, E, 1, 2, B, C, 3, 4: D, E, 9, A, 1, 2, 3, 4, 8, 7, B, C, 6, 5

C(7
4
15

6
17

4
)

(73,1) 6520 6232 3640 2388211 2414453 2631024 W
5

2644128 2958120 3074760 2683859 2710105 331740 344880

C(7
4
15

4
17

4
19

2
)

C(15
10
17

4
) W

6

(Wl,l) 6520 2388211 2414453 3000726 3120930 2598200 W
Ί

2598232 2691270 2691774 301446 300978 31757 30461

C(15
4
17

8
19

2
) T(72

4
74

4
75

4
76

2
)

C(15
4
17

8
19

2
) T(66

4
68

4
77

4
79

2
) W

s

(̂ 1,2) 6520 2388211 2414453 3000726 3120930 2598200 W
9

2598232 2695518 2694222 300960 301464 27995 27527

C(15
6
17

8
) T(66

4
67

4
68

4
69

2
)

C(15
6
17

8
) T(70

4
71

4
72

4
73

2
) W

lo
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TABLE 2 (continued)

(Wl,3) 6520 2388211 2414453 3000726 3120930 2599416 W
9

2599920 2690054 2690086 301446 300978 31757 30461

3, 4, 1, 2, B, C, D, E, 8, 7, 5, 6, 9, A: 1, 2, 9, A, B, E, D, C, 4, 3, 8, 5, 7, 6

(̂ 1,4) 6520 2388211 2414453 3000726 3120930 2603664 W
n

2602368 2690054 2690086 300960 301464 27995 27527

C(15
14
) T(69

14
)

C(15
14
) T(78

14
) W

ί2
 = W{,

(Wl,5) 6520 2388211 2414453 3000726 3120930 2599416 W
ί3

2599920 2691756 2691288 299744 299776 31757 30461

SD E, D, 1, 2, 5, 8, 3, 4, 6, 7, B, C, 9, A: 3, 4, 7, 8, 5, 9, A, 6, D, E, B, C, 2, 1

C(15
2
17

12
)

(Wl,6) 6520 2388211 2414453 3000726 3120930 2599416 W
Ί

2599920 2695518 2694222 299744 299776 27995 27527

5, 6, 1, 2, D, E, B, C, 7, 8, 3, 4, 9, A: 8, 5, C, B, A, D, E, 9, 6, 7, 1, 2, 3, 4

(Wl,7) 6520 2388211 2414453 3000726 3120930 2603664 W
9

2602368 2691270 2691774 299744 299776 27995 27527

5, 6, 1, 2, D, E, B, C, 9, A, 3, 4, 7, 8: 5, 8, B, C, 9, A, D, E, 6, 7, 1, 2, 3, 4

, 1) 6520 2388211 2414453 2631006 2644146 2956014 W
8

3074598 2687909 2714155 296990 297022 38376 37080

6, 7, D, E, 9, A, C, B, 1, 2, 4, 3, 8, 5: 7, 8, B, C, D, 2, 1, E, A, 9, 5, 6, 4, 3

2, 2) 6520 2388211 2414453 2633310 2648538 2953710 W
lo

3071826 2685155 2711401 300816 299520 37304 37336

3, 4, 9, A, D, E, 1, 2, C, B, 6, 7, 8, 5: E, D, 1, 2, 8, 7, B, C, 6, 5, 9, A, 4, 3

(W3, 1) 6520 2388211 2650651 2948238 3158190 2422229 W
12

2540813 2694510 2707650 296990 297022 38376 37080

1, 2, 8, 5, 9, A, E, D, 3, 4, C, B, 7, 6: 1, 2, B, C, 3, 7, 8, 4, E, D, 6, 5, 9, A

(W3,2) 6520 2388211 2650651 2948238 3158190 2421059 W
w

2539175 2695680 2709288 300816 299520 34550 34582

3, 4, 1, 2, B, C, 9, A, D, E, 6, 5, 8, 7: 1, 2, E, D, B, A, 9, C, 4, 3, 5, 8, 7, 6

(ATI, 1) 6520 2388211 2650651 2954844 3075048 2691288 W
ί4

2704896 288728 288760 334206 346842 2131277 2129981

SD 6, 7, B, C, D, E, 3, 4, 9, A, 2, i, 5, 8: C, B, 8, 7, D, 1, 2, E, 9, A, 3, 4, 5, 6

C(17
8
19

6
)

(X2, 1) 6520 2388211 2945934 2600550 2179530 3134059 W
15

2684669 328094 328126 346680 345384 2131925 2661318

C(17
4
19

2
22

4
24

4
)

C(17
8
19

6
) W

16

(A"2,2) 6520 2388211 2948238 2600550 2183922 3129667 W
17

2684669 328094 328126 346680 345384 2127533 2663406

C(17
6
22

6
24

2
)

C(17
12
19

2
) W

18
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TABLE 2 (continued)

(AΓ3, 1) 6520 2388211 2414453 2604312 2958120 1984158 W
16

1997262 683280 696420 325139 351385 2657686 2657654

9, A, 8, 7, 2, E, D, 1, 4, 3, B, C, 5, 6: 3, 4, B, C, 8, E, 7, D, A, 9, 1, 2, 5, 6

(71,1) 6520 2388211 2129333 2599902 2182770 2858657 W
ί9

3021768 2756232 2789323 332262 341216 292734 341248

C(18
4
19

2
23

2
25

6
)

C(19
6
24

8
) W

2Q
 = W<

9

(72,1) 6520 2388211 2660814 2421419 2521008 2494458 W
2ί

2740397 2793049 2706840 288728 288760 332262 346842

SD 1, 2, 7, B, 8, A, 9, 5, 6, C, 3, 4, E, D: 1, 2, B, C, 8, 9, 3, 5, 7, 6, 4, A, E, D

C(18
4
19

2
22

2
24

6
)

(Z2, 1) 6520 2362534 2362370 2603322 2601846 2684359 W
22

2694494 2704848 2712423 324173 329806 345648 348657

SD 9, A, E, D, B, C, 3, 7, 8, 4, J_, 5, 6, 2: 7, A, B, E, 9, 8, D, C, 2, 1, 3, 4, 5, 6

C(19
6
25

8
) T(12

8
15

4
32

2
)

(Z2,2) 6520 2362534 2362370 2603322 2601846 2684359 W
23

2692694 2704728 2714343 325973 329806 343536 348969

SD 9, A, E, D, C, B, 5, 1, 2, 6, 7, 3, 4, 8: 7, A, B, E, 9, 8, D, C, 1, 2, 5, 6, 3, 4

C(19
6
25

8
) T(8

8
46

4
32

2
)

(Z2,3) 6520 2362036 2362004 2604312 2601720 2683861 W
24

2693660 2703744 2714859 326597 328624 344880 348183

C(19
6
24

8
) T(36

8
37

6
)

C(19
14
) T(15

12
35

2
) W

25
 = W

24

(Z3,1) 5578 2362012 2423981 2539767 2604312 2683493 W
26

2690436 2706832 2715363 266952 290396 330004 345738

SD E, D, 2, 5, 4, 8, 3, I, 6, 7, 9, C, B, A: 5, 7, 3, 8, 9, 4, 6, A, C, D, E, B, 1, 2

C(19
6
24

8
) T(2

8
6
4
7
2
)

(Z3,2) 4282 2362012 2423981 2539767 2604312 2683493 W
2Ί

2693676 2703592 2715363 266952 290396 332596 343146

C(19
2
24

4
25

8
) T(12

4
16

4
1
2
13

2
28

2
)

C(19
6
25

8
) T(38

8
10

4
19

2
) W

28
 = W

2Ί

(Z3,3) 5578 2362012 2423369 2540379 2604312 2684267 W
29

2690436 2706832 2714589 268284 289064 328672 346296

C(19
6
25

8
) T(8

8
3
4
9
2
)

C(19
6
25

8
) T(17

8
6
4
18

2
) W

30
 = W

29

(Z3,4) 4282 2362012 2423369 2540379 2604312 2684267 W
3ί

2693676 2703592 2714589 268284 289064 333208 341760

C(19
2
24

4
25

8
) T(1

2
8
2
13

2
26

2
27

2
29

2
65

2
)

C(19
6
25

8
) T(50

8
10

2
11

2
51

2
) W

32
 = W

31
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TABLE 2 (continued)

(Z3, 5)
2691984

4282 2362012

2707678 2712195

2423369
264198

2540379
293150

2604312
333208

2684267
341760

3̂3

C(192236256) T(29455412222562)
C(196248)

(Z3,6)
2695128
C(192244258

C(196258)

(Z3,7)
2695128
C(1922412)
C(196248)

(Z3, 8)
2695518
C(196248)
C(196248)

(Z4, 1)
2786568
B, E, C, D,

T(458114202)

4282 2362012
2703592 2710281
) T(1412424492)

T(398104192)

4282 2362012
2703592 2711667
T(26427452472)
T(408114202)

4126 2362012
2703202 2710281
T(2483422)
T(2386472)

4120 2362012
2690436 2713905
1, 2: 3, 1, 6, 8, 7.

2423981
266952

2423369
268284

2423981
266952

2423981
264036

, 5, 4, 2,

2539767
290396

2540379
289064

2539767
290396

2501237
293312

C, 9, B,

2604312
329674

2604312
328126

2604312
330004

2523856
332920

A

2687123
346068

2685737
346842

2687123
345738

2724201
342822

W34 = W33

3̂5

3̂6 = WSs

3̂7

3̂8 = W57

W39

w — w*
"40 ~~ "'39

n

(Z4,2) 5578 2362012 2423369 2504927 2520940 2726271 W41

2783652 2690436 2714589 268284 289064 328672 346296
C(196258) T(41821432)
C(192244258) T(14174534182) W42

(Z4,3) 4120 2362012 2423981 2501237 2523856 2725653 W43
2783664 2695518 2710275 266958 290390 329998 345744
C(196248) T(34836)
C(192236256) T(16426222)

(Z4,4) 5584 2362012 2423981 2501613 2524368 2724201 W45
2786568 2690060 2713393 264036 293312 332920 342822
C(196258) T(49821442)
C(192244258) T(23425412132282) W46

(Z4,5) 5584 2362012 2423981 2501613 2524368 2725653 P3
2783664 2695142 2709763 266958 290390 329998 345744
B, E, C, D, 1, 2: 2, 1, 6, 7, 8, 5, 4, 3, C, 9, B, A

(Z4,6) 5578 2362012 2423369 2500545 2525346 2726757 W41
2783166 2694656 2710345 267312 289550 329644 345810
D, C, 4, 6, 3, 5, 7, 9, 8, A, 1, E, B, 2: C, 1, 5, B, 7, 9, 4, A, 6, 2, 8, 3, D, E

(Z4,7) 4282 2362012 2423981 2501613 2524368 2725653 P3
2783664 2695168 2709737 266906 290442 330024 345718
C, D, B, E, 2, 1: 3, 1, 5, 8, 2, 4, 6, 7, C, 9, B, A
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TABLE 2 (continued)

(Z4,8) 5746 2362012 2423981 2501263 2523830 2724201 W
4ί

2786568 2690436 2713905 263984 293364 332946 342796

B, E, 3, 6, 5, 4, 7, A, 9, 8, 1, C, D, 2: 2, 3, 7, 8, 9, A, B, C, 6, 5, 1, 4, E, D

(Z4,9) 4288 2362012 2423421 2500493 2525346 2726705 W
4ί

2783166 2694682 2710371 267312 289550 329618 345810

C, D, A, 8, 7, 9, 5, 3, 4, 6, 2, B, E, 1: 9, 4, 5, A, B, C, 1, 7, 3, 8, 2, 6, D, E

(Z4,10) 4288 2362012 2423421 2504979 2520914 2726219 W
4ί

2783652 2690436 2714563 268284 289064 328646 346296

B, E, 3, 6, 5, 4, 7, A, 9, 8, 1, C, D, 2: 2, 3, 7, 8, 9, A, B, C, 6, 5, 1, 4, E, D

(Z5, 1) 6226 2362012 2324846 2603664 2521452 2728001 W
41

2788953 2691732 2705536 326353 348615 293232 342902

C(19
2
25

12
) T(43

8
5
4
44

2
)

C(19
2
25

12
) T(30

4
57

4
5
2
31

2
58

2
) W

48
 = W

41

(Z5,2) 6226 2362012 2324846 2603664 2521452 2727227 W
49

2789727 2691732 2705536 326353 349389 293844 341516

SD E, D, 5, 6, 3, 1, 7, 4, 8, 2, A, B, 9, C: 6, A, 5, 8, 3, 4, 7, 9, D, B, C, E, 2, 1

C(19
2
24

4
25

8
) T(59

4
60

4
5
2
31

2
61

2
)

(Z6, 1) 5740 2362012 2324846 2603288 2520940 2727603 PJ

2790213 2684037 2713257 332590 342216 293144 343152

1, 2, B, D, C, E: 9, A, B, C, 3, 4, 6, 7, 1, 2, 5, 8

(Z6,2) 6226 2362012 2324846 2603664 2521452 2728001 J*

2788953 2685073 2712195 332526 342902 293232 342442

2, 1, D, B, C, E: 9, A, B, C, 4, 3, 7, 6, 8, 2, 5, i

(Z6,3) 4126 2362012 2324846 2603664 2521452 2723567 P<
3

2791287 2689291 2710077 332526 342902 293232 342442

1, 2, B, D, C, E: C, A, B, 9, 1, 4, 7, 6, 2, 8, 5, 3

(Z6,4) 4288 2362012 2324846 2599068 2525346 2723333 PJ

2789727 2688121 2713743 333912 341516 293844 341830

1, 2, B, D, C, E: C, A, B, 9, 1, 6, 3, 5, 2, 8, 4, 7

(Z6,5) 5578 2362012 2324846 2599068 2525346 2724681 P'
3

2788703 2689119 2712421 333886 341568 293792 341856

1, 2, B, D, C, E: C, A, B, 9, 5, 3, 6, 4, 8, 2, 7, i

(Z6,6) 4126 2362012 2324846 2603314 2520914 2727603 P'
3

2790213 2684037 2713257 332616 342164 293196 343126

1, 2, B, C, D, E: C, A, B, 9, 1, 7, 3, 6, 2, 8, 4, 5

(Z7, 1) 5578 2362012 2601720 2152388 2184096 2952494 W
50

3074598 2695134 2703754 263100 291656 331750 341598

SD 9, A, 2, 4, 5, 8, 3, I, 7, 6, E, C, B, D: B, 9, 6, E, A, 5, C, D, 8, 4, 3, 7, 1, 2

C(19
14
) T(2

14
)
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TABLE 2 (continued)

(Z7,2) 4282 2362012 2601720 2152388 2184096 2952494 W5ί

3074598 2690598 2708290 263100 291656 328510 344838

C(196248) T(14826)

C(1914) T(41222) W52 = W^

(Z7,3) 5578 2362012 2601720 2153720 2182764 2953268 P<
3

3073050 2694576 2705086 263712 291044 331750 341598

6, 9, 5, A, 2, 1: 3, 1, 6, 7, 2, 4, 5, 8, E, 9, D, A

(Z7,4) 4282 2362012 2601720 2153720 2182764 2953268 PJ

3073050 2691984 2707678 263712 291044 328510 344838

6, 9, 5, A, 2, 1: 3, 1, 8, 5, 6, 7, 4, 2, 9, E, A, D

(Z7,5) 5578 2362012 2601720 2152388 2184096 2952884 W
5ί

3074208 2695680 2703208 263100 291656 331750 341754

B, E, 1, C, 6, 4, 2, D, 9, 8, 5, 3, A, 7: 3, 5, 6, 2, 9, A, B, C, D, E, 1, 4, 7, 8

(Z7,6) 4282 2362012 2601720 2152388 2184096 2956124 W
53

3070968 2695680 2703208 263100 291656 328510 346290

C(19
2
24

12
) T(14

12
2
2
)

C(19
14
) T(33

8
4
6
) W

54
, = W^

3

(21,1) 5578 2362012 2601720 2153720 2182764 2953442 PJ

3072876 2694906 2704756 263712 291044 331750 341754

8, 4, 3, 7, 2, 1: 1, 3, 7, 6, 4, 2, 8, 5, D, B, C, E

(Z7,8) 4282 2362012 2601720 2153720 2182764 2954738 Pi

3071580 2694906 2704756 263712 291044 328510 346290

8, 3, 4, 7, 2, 1: 8, 5, 1, 3, 7, 6, 4, 2, E, C, B, D

(Z7,9) 6520 2362012 2601720 2153720 2182764 2952500 P̂

3076056 2690592 2706832 263712 291044 328510 346290

4, 8, 3, 7, 2, 1: 4, 2, 1, 3, 7, 6, 8, 5, E, C, D, B

(Z8,1) 5578 2362012 2601080 2153766 2183124 2859221 P̂

3051019 2725659 2790315 330778 342726 291170 342084

1, 2, B, D, C, E: C, A, B, 9, 2, 3, 7, 5, 8, 4, i, 6

(Z8,2) 4282 2362012 2598200 2154414 2182764 2855333 P<

3052243 2728899 2792331 332596 342204 291044 343146

B, D, 5, 6, 3, 4: D, E, 2, 4, 3, 1, B, C, 9, A, 8, 5

(Z8,3) 4288 2362012 2601132 2153714 2183124 2855333 P̂

3055581 2723041 2792259 332722 342726 291170 342084

i, 2, B, D, C, E: C, A, B, 9, 3, 2, 5, 7, 4, 6, 8, I

(Z8,4) 5578 2362012 2601720 2152388 2184096 2854235 P<

3054759 2723359 2793627 331750 341754 291656 341598

I, 2, B, D, C, E: C, A, B, 9, 5, 6, 3, 2, 4, 8, 7, \

(Z8,5) 4282 2362012 2601720 2153720 2182764 2855333 P\

3055281 2723035 2792331 332596 342204 291044 343146

E, D, 2, 4, 6, 7: E, C, 2, 1, 5, 7, A, 4, 3, 9, 8, 6
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TABLE 2 (continued)

(Z8,6) 5584 2362012 2601720 2153772 2182712 2856245 P\
3052755 2728413 2788567 332622 342152 291096 343120
E, D, 1, 2, 6, 7: 1, 2, C, E, 4, 8, 9, 5, 6, A, 7, 3

(Z9, 1) 5578 2362012 2601720 2152388 2184096 2854235 PJ
3054759 2730726 2786260 331750 341754 284529 348725
D, C, B, E, 2, 1: 7, 6, 1, 3, 4, 2, 8, 5, 9, C, A, B

(Z9,2) 4282 2362012 2601720 2153720 2182764 2855333 P<5
3055281 2732022 2783344 332596 342204 282783 351407
C, D, E, B, 2, 1: 1, 3, 8, 5, 7, 2, 4, 6, C, 9, A, B

(Z9,3) 4126 2362012 2601720 2153720 2182764 2854787 W55
3055671 2731632 2783890 332596 342204 282783 351407
SD, E, D, 7, 4, 3, 5, 1, 8, 6, 2, A, B, 9, C: 7, A, 5, 4, 6, 9, 3, 8, D, B, C, E, 2, 1
C(1922512) T(47854482)

(Z9,4) 5578 2362012 2601720 2152388 2184096 2854235 W55
3054759 2730180 2786806 331750 341598 284859 348551
3, A, 5, 7, 9, 6, 4, 8, C, D, E, B, 2, 1: D, E, 1, 8, 2, 6, 3, 5, 7, 4, C, 9, A, B

(Z10,1) 5578 2362012 2601720 2152388 2184096 2952494 P}
3074598 2695134 2703754 271737 283019 323113 350235
4, 8, 3, 7, 2, 1: 1, 3, 6, 7, 2, 4, 8, 5, B, D, C, E

(Z10,2) 4282 2362012 2601720 2152388 2184096 2952494 W56
3074598 2690598 2708290 269955 284801 323113 350235
SD 9, A, E, C, 4, 2, D, B, 3, i, 8, 5, 6, 7: 5, 9, 6, A, E, B, C, D, 2, 1, 4, 8, 3, 7
C(196258) T(2584492)

(Z10,3) 5578 2362012 2601720 2153720 2182764 2953268 PJ
3073050 2694576 2705086 271737 283019 321565 351783
6, 9, 5, A, 2, 1: 3, 1, 6, 7, 2, 4, 5, 8, E, 9, D, A

(Z10,4) 4282 2362012 2601720 2153720 2182764 2953268 PJ
3073050 2691984 2707678 269955 284801 321565 351783
A, 6, 5, 9, 2, 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, D, E

(Z10,5) 5578 2362012 2601720 2153720 2182764 2953442 Pi
3072876 2694906 2704756 271407 283349 322111 351393
8, 3, 4, 7, 2, 1: 7, 6, 1, 3, 8, 5, 4, 2, E, B, C, D

(Zll, 1) 5740 2362012 2501945 2251227 2184096 2893781 P3
3035962 2783916 2713257 333182 341592 263100 331750
6, 4, 5, 3, 7, 8, 9, A, 1, D, C, 2: 5, 6, 2, 3, D, E

(Zll, 2) 5740 2362012 2501945 2255691 2179848 2894429 P£
3037258 2784636 2710377 332534 342888 264396 330454
1, 2, C, D, B, E: C, A, B, 9, 1, 4, 8, 5, 3, 7, 6, 2

(Zll, 3) 5584 2362012 2502821 2252259 2183124 2894267 PJ
3035572 2782398 2713743 332696 342078 264072 330778
i, 2, C, D, B, E: C, A, B, 9, 4, 1, 6, 8, 5, 3, 2, 7
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TABLE 2 (continued)

(Zll, 4) 4120 2362012 2502821 2252457 2182926 2895725 P<3
3032662 2787216 2710377 329780 343542 266988 329320
1, 2, C, D, B, E: C, A, B, 9, 4, 1, 6, 7, 5, 2, 3, 8

(Zll,5) 4120 2362012 2502821 2252457 2182926 2896131 P2
3032982 2787130 2709737 328920 343622 267068 329700
1, 2, B, E, 4, 9, 8, 5, 3, A, 7, 6: D, E, 2, 4, 5, 7

(Zll, 6) 5584 2362012 2502821 2251945 2182712 2896131 PJ
3032982 2787480 2710113 328920 343622 267068 329700
1, 2, C, D, B, E: C, A, B, 9, 2, 5, 4, 7, 6, 1, 8, 3

(Zll, 7) 5746 2362012 2502873 2252457 2182874 2894627 P̂
3035886 2782074 2713393 330338 342204 264198 332596
i, 2, C, D, B, E: C, A, B, 9, 8, 1, 5, 3, 4, 6, 2, 7

(Zll, 8) 5746 2362012 2502873 2252457 2182874 2896079 P2
3032982 2787156 2709763 328868 343674 267120 329674
1, 2, B, E, 4, 9, 8, 5, 6, 7, A, 3: D, E, 1, 2, 5, 7

(Z12, 1) 5578 2362012 2501945 2251227 2184096 2952884 PJ0
3053701 2724651 2695680 263100 291656 331750 341754
1, 2, C, D, B, E: C, 9, 3, 6, B, A, 2, 5, 4, 8, 1, 7

(Z12,2) 5740 2362012 2501945 2255691 2179848 2953046 PJ
3053701 2728899 2691054 265170 289586 329680 343662
B, E, C, D, 2, 1: 3, 1, 7, 5, 8, 6, 2, 4, C, 9, B, A

(Z12,3) 5578 2362012 2502821 2252259 2183124 2952494 P}
3054673 2724165 2694648 264072 291170 330778 342084
B, E, C, D, 2, 1: 8, 4, 2, 5, 1, 6, 7, 3, C, 9, B, A

(Z12,4) 5578 2362012 2501945 2251227 2184096 2956500 P3
3052269 2727515 2690632 263100 291656 333182 341754
9, 7, A, 8, 6, 4, 5, 3, 1, B, 2, E: 2, 3, 5, 6, D, E

(Z12,5) 5578 2362012 2502821 2252259 2183124 2955138 P{0
3052755 2728001 2690086 264072 291170 332696 342084
B, E, C, D, 2, 1: 6, 1, 3, 7, 4, 8, 5, 2, 9, C, A, B

(Z12,6) 5584 2362012 2502821 2251945 2182712 2955144 P̂
3052755 2728413 2690394 264146 291096 332622 342152
C, D, B, E, 2, 1: 6, 7, 2, 1, 3, 4, 8, 5, C, 9, B, A

(Z13,1) 5578 2362012 2501945 2251227 2184096 2952884 P̂
3053701 2724651 2695680 271407 283349 323443 350061
B, E, C, D, 2, 1: 3, 1, 7, 6, 8, 5, 2, 4, C, 9, B, A

(Z13,2) 5740 2362012 2501945 2255691 2179848 2953046 P4
3053701 2728899 2691054 269661 285095 325189 348153
3, 4, 6, 5, A, 9, 7, 8, B, i, 2, E: 6, 5, 3, 2, D, E
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TABLE 2 (continued)

(Z13,3) 5578 2362012 2502821 2252259 2183124 2952494 P*
Ί

3054673 2724165 2694648 272709 282533 322141 350721

1, 2, B, E, C, D: C, 9, 2, 5, B, A, 6, 1, 8, 4, 3, 7

(Z13,4) 5578 2362012 2501945 2251227 2184096 2956500 P
4

3052269 2727515 2690632 269897 284859 326385 348551

6, 5, 3, 4, 7, 8, A, 9, E, 2, 1, B: 5, 1, 7, 2, D, E

(Z13,5) 5578 2362012 2502821 2252259 2183124 2955138 P
3

3052755 2728001 2690086 270713 284529 326055 348725

B, E, C, D, 2, 1: 2, 4, 8, 5, 6, 7, 3, 1, C, 9, B, A

(Z13,6) 5584 2362012 2502821 2251945 2182712 2955144 P
4

3052755 2728413 2690394 270633 284609 326135 348639

4, 6, 3, 5, 7, 9, 8, A, 2, C, D, I: 6, 4, 8, i, D, E

(Z14, 1) 5740 2362012 2324846 2603664 2875098 2727515 W
51

2789925 1976809 2003445 648822 696062 332526 342928

C(19
2
25

12
) T(80

4
81

4
82

4
54

2
)

C(24
2
25

12
) T(62

4
83

4
63

2
84

2
85

2
)

(Z15,1) 5740 2362012 2324846 2603664 2875098 2727515 W
5

2789925 1982010 1998244 648822 696062 327325 348129

SD 5, 6, A, C, 8, I, 7, 9, 4, E, B, 2, D, 3: 1, 2, 5, 6, 7, 9, C, E, 8, 3, B, 4, D, A

C(19
2
25

12
) T(62

4
64

4
30

2
54

2
63

2
)

(Z16,1) 5584 2362012 2502821 2252259 2859221 3070618 P*
Ί

2790315 1826688 1999434 647606 687214 264072 342078

9, A, B, C, 7, 3: B, 1, E, 2, 3, D, 4, C, A, 6, 9, 8

(Z17,1) 5584 2362012 2502821 2252259 2859221 3070618 W
6

2790315 1826688 1999434 629139 707145 282539 322147

C(19
14
) T(33

14
)

C(24
14
) T(14

14
) W

6

(Z17,2) 4126 2362012 2502821 2256507 2857763 3070618 W
6

2793789 1824618 1995132 627807 704355 283151 322759

9, A, E, 2, 7, 1, D, 3, 6, 4, C, B, 8, 5: 6, A, 9, C, 3, E, 2, 5, D, 8, B, 7, 4, 1

(Z17,3) 4282 2362012 2502873 2252207 2859273 3070592 W
6

2790289 1826636 1999408 629139 707145 282591 322173

9, A, E, 1, 7, 2, D, 3, 6, 4, C, B, 8, 5: 6, A, 9, C, i, E, 2, 8, D, 7, B, 5, 3, 4

(Z17,4) 4126 2362012 2502585 2252207 2858823 3070598 W
6

2790451 1826930 1999702 627807 706593 284079 322725

7, A, 9, C, i, E, 4, 8, D, 5, B, 6, 2, 3: 9, A, E, 2, 7, i, D, 3, 6, 4, C, B, 8, 5

(Z18,1) 4282 2362012 2601720 2322902 2877528 2684045 W
6

2714811 2018659 2081637 643550 701334 332914 342054

C(19
2
25

12
) T(86

12
87

2
)

C(24
2
25

12
) T(85

6
88

6
89

2
) W

6
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TABLE 2 (continued)

(Z19, 1)

2714811

C(19
2
25

12
)

C(24
2
25

12
)

4282 2362012

2020944 2079352

T(86
12
87

2
)

T(5
6
90

6
91

2
)

2601720

641289

2322902

703595

2877528

332914

2684045

342054

6̂4

W
65
 = Wg

4
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