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1. Introduction

In this note we study the existence of positive entire solutions for the
singular semilinear elliptic equation

(1) - Δu + c(x)u = p(x)u~\ xεRN, N > 3, γ > 0

under the the hypothesis
(H) c and p are locally Holder continuous functions in RN with exponent

0, 0 < θ < 1, and φ) > 0 in RN.

An entire solution of (1) is defined to be a function ueC2

0ς
θ(RN) satisfying

(1) point wise in RN.
For the equation (1) with c(x) = 0, i.e.,

(2) -Δu = p(x)u~\ xeRN, N > 3,

Kusano and Swanson [9] proved the existence of a positive entire solution u
such that \x\N~2u(x) is bounded above and below as |x |->oo under the
assumptions that 0 < y < 1, p(x) > 0 in RN and

(3) f°°
J ^^^

where p*(t) = maxlxl=tp(x). This result was extented afterwards by Dalmasso
[2] to cover the case y > 1.

On the other hand, for the equation (1) with negative y, it is known that
if — 1 < y < 0, and p(x) satisfies p(x) > 0, φ 0 in RN and

Γ(4) ίp*(ί)Λ<oo,

then there exists a positive entire solution decaying to 0 at infinity (see e.g.
[4], [6], [7] and [10]). However, as far as we are aware, no such result is
obtained for the singular type equation (1) under the condition (4).

Our first result, Theorem 1 below, concerns the existence of positive entire
solutions of (1) which have uniform positive limits at infnity. In Theorem 2,
we show that there exists a decaying entire solution of (1) under the condition
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(4). Finally, Theorem 3 gives an extension of the results of Kusano and

Swanson [9] and Dalmasso [2] stated above. Our proof of Theorem 3 is

simpler than that of Dalmasso [2].

For other closely related papers to this note we refer to the papers

[3-5, 8, 11]. Among them, Fukagai [5] has studied the existence and

asymptotic behavior at infinity of positive entire solutions of (1) with

c(x) = m2 > 0, where m is a constant.

2. Statement of theorems

THEOREM 1. Assume that (H) holds. If

(5)
Λoo |*αo

tc*(t)dt < oo and tp*(t)dt < oo,

where c*(ί) = maX|x |=ic(x) and p*(t) = max\x\=t\p(x)\9 then there exist infinitely
many positive entire solutions u of (1) such that

(6) lim u(x) = ξ
|x|->αo

for some constants ξ > 0.

THEOREM 2. Assume that (H) holds and that p(x) > 0, φ 0, in RN. Then,

condition (4) is sufficient for (1) to have a positive entire solution u tending

uniformly to 0 as \x\ -> oo.

THEOREM 3. Assume that (H) holds (with c(x) = 0) and p(x) > 0, ^0 in

RN. Then, condition (3) is sufficient for (2) to have a positive entire solution
u such that

(7) k~l\x\2-" < u(x) < k\x\2~N, \x\ > 1,

for some constant k > 1.

REMARK 1. Theorem 3 has been proved by Kusano and Swanson [9]

and Dalmasso [2] under the condition that fc0p*(|x|) < p(x) < p*(\x\) in RN

for some 0 < fc0 < 1. We note that this condition is not assumed in Theorem
3.

3. Proof of theorems

The proofs of Theorems 1-3 are based on the following supersolution-
subsolution method by Akό and Kusano [1].
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THEOREM 0. Assume that (H) holds. If there exist functions V and
WεCfoc(RN) such that

(8) - A V(x) + c(x)V(x)

(9) - A W(x) + c(x)W(x) > p(x)W(xΓ\

(10) 0<V(x)<W(x), xεRN,

then (1) has an entire solution u satisfying V(x) < u(x) < W(x) in RN.

A function K(resp. W) satisfying (8) (resp. (9)) is called a subsolution (resp.
a supersolution) of (1).

PROOF OF THEOREM 1. Consider the linear elliptic equations

(11) - Av + c(x)υ = - \p(x)\9 xeRN

9

(12) - Jw + φ)w = \p(χ)\, xeRN.

By (5) and [7; Theorem 2.2] there exist positive solutions v and w in Cj£β(RN)
of (11) and (12), respectively, such that

(13) lim v(x)= lim w(x) = ξ
|x|-»oo |JC|-*QO

for some constant ξ > 0. Furthermore, the maximum principle combined with
(11)-(13) implies the relation

(14) 0 < φ) < w(x), xeRN.

For any fixed K > (mfxeRNv(x)Γyl(l + y\ put V(x) = κv(x) and W(x) = κw(x) for
xeRN. Then, the functions V and W are a subsolution and a supersolution

of (1), respectively, and satisfy (10). In fact,

-ΔV(x) + c(x)V(x)=-κ\p(x)\

= - κV(xγ\p(x)\V(xΓy < - |p(x)l V(*Γy

<p(x)V(xΓ\ xεRN.

A similar argument holds for W. Therefore, the existence of a solution u of
(1) lying between V and W follows from Theorem 0. Furthermore, by (13)
u(x) tends to κ% as |x |-»σo. Since K can be taken arbitrarily as above,
equation (1) has an infinitude of entire solutions satisfying (6). This completes

the proof.

PROOF OF THEOREM 2. Take a positive function p* e Cfoc [0, oo) such that
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r(15) p*(ί) > p*(ί), t > 0, and tp*(t)dt < oo.

Suggested by the proof of Theorem 10 in Fukagai [5], we define a function

y by

fN-2 Γ00

= ̂ _^J ίp

(16) y(ί) = _ ίp*(ί)Λ , ί > 0 .

Then, >; satisfies j (ί) > 0 for ί > 0, lim^^ί) = 0 and

(17) /(ί) = - — — ίp*(ί)y(fΓ7, ί > 0,
N — 2

where ' = d/dt. Integrating (17) from ί to oo, we obtain

(18) y(t) = — L- Γ sp*(s)y(sΓ*ds, t > 0.

Using this y, we define a function z by

(19)

r z(ί) = y(0) for t = 0,

I t2"" Γ' 1 Γ00

(. z(t): sN-1p*(s)y(sΓyds + sp*(s)y(s)-vds for t > 0.
W N-2j0 ^ v ^ v ; JV-2J, ^

Then, z is a solution of the boundary value problem

(20) z"(ί) + :̂ ^ z'(ί) = - p*(t)j>(tΓy, ί > 0,

(21) z'(0) = 0 and lira z(t) = 0.
f->oθ

The relation (20) and z'(0) = 0 follow from (19). Integrating the first term in

(19) by parts and using (17), we obtain

Z(ί) = (N - 2)t2~N sN-3y(s)ds, t > 0
Jo

which implies that lim^^zίί) = 0. The relation (20) means that the function

W(x) = z(\x\) satisfies

Since c(x) > 0 and z(ί) > y(i) by (18) and (19), we see that
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(22) - AW(x) + c(x)W(x) > p * ( \ x \ ) W ( x Γ y > p(x)W(x)-\ xeRN,

which means that W is a supersolition of (1).

(23)

To construct a subsolution, we take a function veCι0*
θ(RN) such that

C - Av(x) + c(x)v(x) = p(x),

v(x) > 0, xeRN and lim υ(x) = 0.
|x|-»oo

The existence of such a v is guaranteed by (4) and [7; Theorem 2.2]. Let

K = mm{(supxeRNv(x)Γyl(ί + y), (supxeRNW(x)Γy},

and define V(x) = κv(x) for xeRN. Then, K is a subsolution of (1), since

(24) - Δ V(x) + φ)K(x) = κp(x) = /cp(x)K(xΠ K(x)y < p(x)V(xΓ7, xeRN.

Furthermore, from (22), (24) and the inequalities

κp(x) < (*upxeR*W(x)Γyp(x) < p(x)W(xΓ\

it follows that

- A(W(x) - V(x)) + c(x)(W(x) - V(x)) > 0, xεRN,

lim (W(x) - V(x)) = 0.
\x\^co

Applying the maximum principle to W— V, we see that V(x) < W(x) in
RN. Consequently, the assertion of Theorem 2 follows from Theorem 0. This
completes the proof.

PROOF OF THEOREM 3. Since $(0tN~1p*(t)dt < oo by (3), from [6;
Corollary 3.1] there exists a unique positive function veCι0*

e(RN) such that

xeRN

N <v(x)<kί\x\2~N, \x\> 1, for some k, > 1.
(25)

- 2~N

Then, as in the proof of Theorem 2, the function V(x) = κv(x) with
K = (supxeRNv(x)Γyl(l + y) is a subsolution of (2).

To construct a supersolution of (2), let us solve the linear equation

(26) -Aw = p(x)V(xΓy, xeRN.

By (3) and (25), the function g*(t) = maX|x ( = ί {p(x)V(x)~y} satisfies

I V-1 g*(t)dt< constant Γ tN-i + *N-2) < ao.
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Hence, by [6; Corollary 3.1] there exists a positive solution weC^* *(!?*) of

(26) such that

(27) fc2-
1 |x|2-" < w(x) < k2\x 2~N

for some fe2 > 1. Choosing a constant μ > 1 large enough so that

μw(x) > V(x) in RN, we see that the function W= μw satisfies

(28) - A W(x) = μp(x)V(xΓy > p(x)V(x)-y > p(x)W(x)-\ xeRN.

Therefore, by Theorem 0 there exists a solution u of (2) such that
0 < V(x) <u(x)< W(x) in RN. This solution obviously satisfies the relation

(7) by (25) and (27). Thus the proof is completed.
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