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0. Introduction

Factor Analysis (FA) is a branch of multivariate statistical analysis which is
concerned with the internal relationships of a set of variables. Since Spearman
[28] originated FA, it was developed by psychometricians. From 1940,
statisticians have been concerned with FA (see e.g. Lawley [15], Rao [20],
Anderson and Rubin [3], Lawley and Maxwell [16], [17]). Factor analysis
has been used in many fields of sciences in addition to psychology. Recently
program packages applying FA have been developed. However, it may be
noted that FA still involves some fundamental problems, and hence an
investigation of it is very important.

In an FA model, we assume that an observed p-dimensional vector x
follows

0.1) x=p+ Af+u,

where u is a mean vector, 4 is a p x k (p > k) factor loading matrix of rank k, f
is a common factor vector and u is a unique factor vector. Further, suppose
that E{f} =0, E{u} =0, E{uw'} is a diagonal matrix with positive diagonal
elements, say ¥, E{fu'} =0 and E{ff'} =1 (a unit matrix). Then, a
variance-covariance matrix 2 of x can be decomposed as
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0.2) S=AA + V.

Since the righthand side of (0.2) is a sum of a positive semidefinite matrix and a
positive definite matrix, X is positive definite. Formula (0.2) is called a
Sfundamental equation of factor analysis.

If a column of AG contains only one nonzero element for some nonsingular
matrix G, a factor corresponding to this column is called a specific factor. If
AG contains more than one nonzero element in every column for any
nonsingular matrix G, A is called a common factor matrix.

When k =1, it is called a monofactor case. This model is quite simple,
however, it is useful in practice. In fact, in the analysis of empirical data,
researchers often assume that the data have a complete simple structure; each
row of A has only one nonzero element. This structure can be reduced to
some sets of monofactor structure. For example, consider the case where A
is of the following form after changing the order of rows suitably;

0 0 0 A4 4sy 462 472 ‘

If we set
Xy =(xy X3 X3), X3 =(xX4 X5 Xg X7), 0y = (g My U3),
/ ll 0 /
By = (1g Hs pg pq), A= S f=01 1),
uy = (uy uy uz) and u, = (uy us ug u,),
then,

Namely, this structure is reduced to two sets of monofactor structure.

The present paper treats an identification problem of the FA model (Part I)
and an adequacy problem of Principal Component Analysis as substitute use
for FA (Part II).

Main inferential problems in the FA model are to estimate a number k of
factors and matrices 4 and ¥, based on samples of x. However, before getting
these estimates, we need to clear the identification problem which is divided
into two parts:

(P1) the existence of a decomposition,
(P2) uniqueness of the decompositions.
In fact, if the existence of a decomposition is not guaranteed, the object of
estimation is vague. Further, even if the decompositions exist, it is not clear
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which common (or unique) factors are estimated on the condition that the
decompositions are not unique.

Problem (P1) has been recognized insufficiently. First we review the
results which have been obtained hitherto. Next we study the region where the
decompositions of X exist. For the case p=3 and k=1, its area is
calculated. As for (P2), main sufficient conditions for uniqueness which have
been obtained up to now are due to Anderson and Rubin [3] and Tumura
and Sato [34]. For a review on (P2), see Shapiro [26] and some comments
on his paper due to Sato [25]. In the present paper, we give necessary
and/or sufficient conditions for their sufficient conditions, in the forms
commonly met in practice. Using the results, it is seen that we can examine
uniqueness easily. Further we propose the loading matrix whose most elements
are unique. For such a loading matrix A4, even if A is not unique, the
estimates corresponding to the unique part is meaningful.

It is well known that Principal Component Analysis (PCA) and FA
resemble each other but have rather different aims (Chap. 7 of Jolliffe [9];
Chap. 14 of Anderson [2]). However, PCA is very often used for the same
purpose as FA without careful consideration. In fact, when PCA is applied,
researchers calculate not only principal components but correlations between
principal components and original variables (see e.g. §4.3.7 of Chatfield and
Collins [6]). The correlations are called factor loadings. Using the (rotated)
factor loadings, it is quite common to try to discern a latent structure. This
is what is called substitute use of PCA for FA (see e.g. Chap. 3 of Okuno,
Kume, Haga and Yoshizawa [19]).

One of the reasons why substitute use is often applied is that there exists a
serious difficulty in estimating parameters in FA, that is, we quite often
encounter an improper solution (Joreskog [10]; Tumura, Fukutomi and Asoo
[33]). Several ideas for overcoming the difficulty have been proposed
(Joreskog [10]; Koopman [14]; Martin and McDonald [18]; Akaike
[1]). Some causes of improper solutions have been investigated (van Driel
[38]; Tumura and Sato [35],[36],[37]). A method (Sato [23]) of
overcoming them, which works well for many sets of empirical data, has been
proposed. However, the difficulty in the estimation problem has not been
solved completely. As a result, PCA is quite often used for the same purpose
as FA. Of course there are several advantages of FA as compared with
PCA. First, FA admits a formal statistical model, and hence factor loadings
are estimated, considering the effects of error variances. In contrast, PCA
does not have such a structural model. Second, the FA model has a property
of scale invariance. Consequently, if we use an estimation method with scale
invariance (for example, the maximum likelihood method, and the generalized
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least-squares method with a weight matrix S™! or {diag S} ! where S is a
sample variance-covariance matrix) and its solution is determined uniquely,
then the estimates are scale equivariant (see e.g. Chap. 14 of Anderson
[2]). This means the following: if we obtain an estimate A based
on x, then an estimate based on Cx is CA where C is any nonsingular diagonal
matrix. As a result, we can ignore measurement units of observations. On the
other hand, the loadings calculated with PCA do not have such a
property. From these viewpoints, it is important to examine whether PCA
as substitute use for FA is adequate or not.

Part I consists of Sections 1 to 3. In Section 1, the identification problem
is described in detail. In Section 2, the existence of a decomposition is
discussed. In Section 3, uniqueness of the decompositions is discussed. Part
IT consists of Sections 4 to 6. In Section 4, an approach of investigating
PCA as a substitute for FA is introduced. In Section 5, monofactor cases
(k = 1) are treated. Finally, in Section 6, multifactor cases (k > 2) are treated.

Part 1. Identification problem
1. Preliminary

The identification problems (P1) and (P2) may be stated as follows:
(P1) For any p-order positive definite symmetric matrix 2, can it be
decomposed as

2 = AkA,I‘ + Tk’

where A, is a p x k real matrix of rank k and ¥, is a diagonal matrix with
positive diagonal elements, for assumed k(< p)?
(P2) If a decomposition exists, is it unique?

The subscript k of A, indicates the number of columns of A, and the
subscript k of ¥, means that ¥, depends on A,; for the sake of simplicity, either
or both of the subscripts are sometimes omitted in the following text.

Before we discuss the problems in detail, we take two notes. First, the
decomposition may be discussed in the term of a correlation matrix
P = (diag 2)~'?x(diag 2)~'* = (p;)) instead of X = (;); because structure
(0.2) is equivalent to

P = {(diag 2)~'?4}{(diag 2)" 4}
+ (diag X)~ V2 P(diag X)" V2.

Therefore, we may deal with the decomposition of either X or P. Second, there
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exists an indeterminacy of a rotation of a factor loading matrix ; multiplication
on the right side of 4 by an orthogonal matrix, since

AA + ¥V = (AT)(ATY + ¥,

where T is an arbitrary k-order orthogonal matrix. We ignore this
indeterminacy in the following.

2. Existence of a decomposition

The following proposition treats the existence problem of a decomposition
when factor size is increased.

ProposITION 2.1. (Reirs¢l [22]) If there exists a decomposition for factor
size k, then there exist infinitely many decompositions for k + 1. [

ProoF. A loading matrix A4,,, for factor size k + 1 can be constructed as
follows; Suppose

Aysy = [4e 7],

where y=(0---0 y 0---0), y is the ith component of y and 0 <72 < y;.
Without loss of generality, we may assume that rank 4,,, =k + 1. Then,
we have

Z = M Ay + diag {y; -y}
= A1 Aiyy + diag{y, -y, vi—v? '//i+1"“//p}-

Consequently, there exist infinitely many decompositions for k + 1 since we can
take any y such that 0 <92 <y,. [

ReEMARK. In the proof of Reirs¢l [22], the form of 4, , is not apparent,
however, the above proof shows it explicitly.

PROPOSITION 2.2. When k = p — 1, there exist infinitely many decomposi-
tions for any 2. (O

PrOOF. Let 0, be the smallest eigenvalue of 2. Set
Z* =2 —diag{e, - ¢,},

where 0 <¢; < 6, (i =1,...,p), then, Z* is a positive definite symmetric matrix
since

Z*¥=2X -0, +diag{6,—¢, - 0,—¢,}.

Let L be a p x p lower triangular matrix (Cholesky decomposition) such that
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2*=LL,
and let L partition as
0
L= 4, 0
d

Then, rank 4,_, =p—1, d#0 and
Z*=A, A, + diag {0---0 d?},
hence
E=A, A, +diag {&, -+ &, &, +d*}.

The matrix 4,_, depends on & and we can choose ¢ arbitrarily under
0<eg<8,(i=1,..,p). Consequently, there exist infinitely many decomposi-
tions for k=p—1. O

REMARK. Guttman [7] has given one decomposition for k = p — 1 under
the assumption that the smallest eigenvalue of X is simple. As a special case of
Proposition 2.2 we obtain that for the case p = 2 and k = 1, there exist infinitely
many decompositions.

PROPOSITION 2.3. (Theorem 5 of Bekker and Leeuw [5]) There exists no
decomposition for k <p—1 if and only if all elements of X' are positive,
possibly after sign changes of rows and corresponding columns. []

REMARK. Guttman [7] has shown that a tridiagonal matrix with nonzero
subdiagonal elements has no decomposition for k < p — 1.

PrROPOSITION 2.4. (Theorem 1 of Bekker and Leeuw [5]) For p >4 and
k=1, a decomposition exists if and only if, after sign changes of rows and
corresponding columns, all elements of X = (o,,) are positive and

O'ihO'ﬂ - oilajh = 0 and
0',,,0'],-0',,0'];,<0(i#j,h,l;j#h,l;h#l). D

PROPOSITION 2.5.  For the case p = 3 and k = 1, the following (1)—(3) hold:
(1) If the following four inequalities

P21P31P32 > 0, p21P31/P32 <1, p21P32/p31 <1 and p31p32/p21 <1

are satisfied, there exists a unique decomposition with
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4= ((sgn Psz)\/(lepsl/Psz) (sgn P31)\/(P21P32/P31)
(sgn P21)\/(P31P32/P21) ).

(2 If two or three of pi’s (i>j) equal O, there exist infinitely many
decompositions.
(3) Otherwise, there is no decomposition. []

Proor. From the identity
P=i+Y,
we obtain
P21 = Azhy, P31 =43k and py, = A34,,

where P = (p;;) and 4 = (4, 4, ;). Therefore, using these equations, we have
the following:

(i) If one of the elements p;;’s (i > j) equals O, there is no decomposition.
(i) If two or three of p;’s (i>j) equal 0, there exist infinitely many
decompositions.

@iii) If p,,p31p32 <O, there is no decomposition.

@iv) If py1p31p32 > 0, the above equations yield

A= % ( (sgn P32)\/(P21P31/P32) (sgn P31)\/(P2x932/P31)
(sgn P21)\/(P31P32/P21) ).

If the following three conditions

(2.1) P21P31/P32 <1
(2.2) P21P32/P31 <1
(2.3) P31P32/P21 <1

are satisfied, ¥ = diag (I — A4) is positive definite; consequently, there exists a
unique decomposition. Otherwise, ¥ is not positive definite and consequently,
there is no decomposition.

Summarizing above results (i)—(iv), we obtain results (1)—(3). O

Now we investigate more precisely the case where there exists a unique
decomposition in the case p = 3 and k = 1. This case is very simple, however,
its investigation is useful in practice. Because it is fundamental for a complete
simple structure. First, we will consider the region where P is positive
definite. Since p,,; = 1 > 0, positive definiteness of P is equivalent to

—1<p,; <1 and
2.4) det P > 0.
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P31 + P32 — 2P21931P32 =1
(1 + p2y)(1 = p2y)

Fig. 2.1. Region where the decomposition exists uniquely (shaded portion)
and region where P is positive definite (inside the ellipse)

Inequality (2.4) becomes

(P31 + p32)* | (P31 — p32)?
2(1 + pyy) 2(1 = pyy)

(2.5 (P%l + P%z - 2p21P31P32)/{(1 + p2)(1 — P21)} <L

<1 or

Since there are three variables in (2.5), we fix p,, and regard the lefthand side of
(2.5) as a function of two variables p3; and p;,. Let the coordinate axes rotate
and let the current axes denote X (which is direction of the major axis) and Y
(which is direction of the minor axis). Then, the region where P is positive

definite is given by
X2[(1+py) + Y2/(1 = p) <1,

(see Fig. 2.1). From (2.1)—(2.3), the region where the decomposition exists
uniquely in the first quadrant is given by

P32 > P21P31> P32 < P31/P21 and p3; < pay/pay-
Similar inequalities hold in the third quadrant. The shaded portion of Fig. 2.1
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shows the region where the decomposition exists uniquely.
The area Sj of the ellipse in Fig. 2.1, that is, the region where P is positive
definite, is

Sg=mn/(1 = p}).

On the other hand, the area S, of the shaded portion in Fig. 2.1, that is, the
region where the decomposition exists uniquely, is

Sp= —2|pa1lIn|p,,].

Because, if p,; > 0, the area in the first quadrant is given by

P21 1
SP/2=J (P31/P21 — P21P31)dP31 +J (P21/P31 — P21P31)d P31
0 P21

= — pyiIn|pyl.
If p,; <0, we obtain similarly
Sp/2 = payIn|pyyl.

Next we consider the area Sg of the ellipse where the elements of 4 are real
numbers, under p,; being fixed. The area of the shape surrounded by the bold
line in Fig. 2.1, which is equal to Sz/4, is

/2 + bf J(@ - x?dx,
a (4
where a> =1+ p3,,b>=1—p3,and c = ab/\/(a2 + b?). Using the formula
f\/(d2 — X?)dX = (X /(d* — X? + d* arcsin (X/d))/2  for d >0,

we have

Sr = /(1 = p3,) (m — 2arcsin /(1 — p2,)/2)).

Table 2.1 presents Sp, Sg, Sg, Sp/Sg and Sp/Sg for |p,,| =.05(.05).95. We
note that the ratio Sp/Sg is not large, at most .26.

Finally, we obtain the area of the region where P is positive definite and
the region where the decomposition exists uniquely. These area are obtained
by integrating S, and Sy with respect to p,, from —1 to 1:

1 1 nz
J‘ Spdp21 =1 and I SEdp21 =—
-1 -1 2

Therefore, the ratio is given by
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Table 2.1. Existence of the unique decomposition

1p21l Sp Sk Sg Sp/Sk Sp/Sk
.05 .300 1.619 3.138 185 095
.10 461 1.663 3.126 271 147
15 .569 1.702 3.106 334 183
.20 .644 1.736 3.078 371 209
25 693 1.766 3.042 .393 228
.30 722 1.789 2.997 404 241
.35 735 1.806 2.943 407 250
40 733 1.817 2.879 403 255
45 719 1.820 2.806 .395 256
.50 .693 1.814 2.721 382 255
.55 .658 1.798 2.624 .366 251
.60 613 1.771 2.513 .346 244
.65 .560 1.731 2.387 323 235
.70 499 1.676 2.244 298 223
75 432 1.600 2.078 270 .208
.80 357 1.499 1.885 238 189
.85 276 1.363 1.655 .203 167
.90 190 1.173 1.369 162 138
95 097 .882 981 111 099

Sp: area of the region where the decomposition exists uniquely
Sg: area of the region where the elements of 4 are real numbers
Sg: area of the region where P is positive definite

1 1
f Spdpzl/f Spdpy, =2/7°
-1 -1

=.203.
Summarizing this result, we obtain the following Proposition.

PROPOSITION 2.6. For the case p=3 and k=1, if p; (i>]) are
independently uniformly distributed, the probability that the decomposition exists
uniquely is 2/n*. [

For a sample case, we consider the estimate 4 obtained by replacing P
by R where R =(r;) is a sample correlation matrix. If r; 73,73, >0, the
elements of 4 are real numbers;

A=z ( (sgn r32)\/(r21r31/r32) (sgn "31)\/("21"32/"31)
(sen r21)\/(r31r32/r21) ).

Now we will obtain Pr(r,,7;,73, > 0) based on samples for given P. Konishi
([12], [13]) has obtained an asymptotic expansion for the distribution of an

analytic function of r;;, based on a sample of size n from a multivariate normal
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distribution. Using his result (Theorem 6.2 of [13]), we see
PT(\/"(rzlrsx"sz — P21P31P32)/T <)

= o) - ylz(al 2D (u)/(21) + a3 PP (w)/(21)°)

1 ) '
+ %0 by W)/ (207 + O,

where 12 = p3;p3; + p31032 + P32031
+ 2021031032031 (1 — 2p3,) + p3:(1 — 2p3,) + p3.(1 — 2p3)))
+ p31031032(405, + 4931 +4p3, - 9),

®"(u) denotes the hth derivative of the standard normal distribution function
of ®(u). The coefficients are

a; = 2{p21p31032(2p31 + 293, + 2p3; = 3)
+p31(1 = 2p31) + p3:(1 — 203;) + p3,(1 — 2031},
ay = Y {p;;(3dis + djy) — 4d;j}diif;;
+ Vi ke o iz = pidi) iy — o D) S

+ gZi#ijk#zZq#rpirquk-iptq-kfijfktf;p-,
by =a3/2+ Y,;(1 — 3p})(pydis — d)) f;;
+ %Zi$j2k¥epik~j{pjt(p5c + 3p%, + 12p3)
- pjkpka(piza + 6P1?a + 9Pfk)}fijfke

1
+ ZisﬁjZk#l _pijpke(l - Pfg) + 3PijPikPu-k - pje-k(zpik - pijpjk) d;;
2

1

- {Epke(l _Pfa)'*‘ZPikPie~k}dij+2(Pje-i—Piqu-k)dik>fijka
1

+ EZi:#jZk# ¢ antr(qu(Par-k — P pkr~q) (dij - pijdii)fijkeqr

+ pkq~r{piqpkrpkﬂ qu‘i - pirperpjr-i
+ Per~k(3pijpi2r — PigPja — 2PuPj) } fijko for)
1
+ ZZ#;ZH 0 Zq#rZs#tpirquq-ipkt'spsl -kfijkgfqrsn
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b,=a,a; +
Yix;{20dy; + d;j) 2pid + dijdy;) — 8(didY + dydl) — pi(5d; + 3d;)dz} fi;
+ 2Zi¢j2k¢¢ ({Pj: Pik-j + PixPis-j — 3Pij(Pig Pik-¢ + PikPig 1)
1
+ EPiqu(P,?o + 3pi2k)}diidkk + 2pi2kdijdkl
- 2{0;’,‘(/7,?1‘ + pE) — 2pupji-i} diidke)fijflu
+ Zi;ejZkae ¢ (dij - pijdii) {dkk(pkldl ¢ 30k, dig — 4dke)
+ 4(d;ckl - Pudﬁ)}ﬁjka
+ Zi:#j Zk;e ¢ aner(zpq: = pijdi){ Py P (3dyq + d,,)
- 2(qudqr + pkrdrr)}f;'jkl f;;r
1
+ 5{(dqr - 3pqrdqq) dijdkl + pijpkl (3dqr - pqrdqq)diidkk}f;jqur)
+ Zi#jZk# 0 quﬁrZs#t(zpirspjk-ip ¢q~kprs~qf|:jf;cl f;yfm
+ {pks(pn-s - pstpse -k)(dijdqr + piqurdiidqq)
- pqrpkt*spsl~kdijdqq}f;jkefqrst) and
b6 = a%/z,
where

Pjk-i = Pjk — PijPik> dij = Za#ﬂ pia(pjﬂ - Pjapaﬂ)fap,

d?; = Za#ﬂ dia(pjﬁ - Pjupaﬂ)faﬂ,

Ji2 =f21 = P13P23, f13 = f31 = P12P23, [23 = f32 = P12P13s

Jr212 = fr221 = far12 = for2n = fr3s = fi3zn = fa1is = faisn
= f2323 = f2332 = f3223 = f323. = 0,

Ji213 = f1231 = 2113 = fa131 = Pa3s

Si223 = f1232 = f2312 = f2321 = P13s

J1323 = f1332 = f3123 = fa132 = P12s

Ji21323 = f121332 = fi22313 = f122331 = f131223 = fi31232

=f132312 =f132321 =f231213 =f231231 =f231312 =f231321 =1,



Factor analysis 491

fijkegr =0 for other 1 <i,j, k £, q,r<3.

Here, the summation ) ., stands for Z .y Putting u=— \/ np1P31P32/
7, we can obtain approximations for Pr (r21r31r32 < 0), and consequently,
Pr(ry 73173, > 0).

Table 2.2. Probability that the elements of i are real numbers

¥ P21P31P32 N (0] 2 3 ()]
(4 4 4) 004096 50 720 653 614 762
—.067 —.039
100 796 796 799 859
—.000 003
150 .845 872 888 929
027 016
(5.5.5 015625 50 815 835 857 923
020 022
100 899 945 967 989
046 022
150 941 98 999 995
045 013
(4.5 .6 0144 50 .802 .816  .835  .900
014 019
100 88 929 951 973
043 022
150 930 975 990 .992
045 015
(/24 5 /29 0144 50 .809 825  .845 909
016 020
100 893 938 961 986
045 023
150 93 982  .997 993
045 015
(4 9 4) 020736 50 .799 820 846  .884
021 026
100 884 921 938  .950
037 018
150 928 965 975 977
037 010
(6 .6 4) 020736 50 828  .858  .885  .940
029 027
100 911 957 976 993
045 020
150 951 991 1001  .995
040 010

(1) the limiting term
(2) upper: up to the term of 1/\/ n
lower : the term of 1/\/ n
(3) upper: up to the term of 1/n
lower : the term of 1/n
(4) values obtained by simulation (1000 replications)
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Numerical examples are presented in Table 2.2. Here we assume x is
distributed as a multivariate normal distribution with mean 0 and a
variance-covariance matrix A4’ + diag (I — 44'), and we use the asymptotic
expansion up to the term of 1/n. Table 2.2 shows the probability that the
elements of A4 are real numbers for some cases of A. It is seen that (i) when
P21P31P3, 1s large or n is large, Pr(r,,r3,r5, > 0) is large, and (ii) for the
Same P, P31 P32, Pr(ry 73173, > 0) is smaller when smaller loading exists.

In particular, if A=(1 1 4) (A >0) and ¥ = diag (I — i4), then

2= {/324(22 — )22 + 1)}? and u = /nd?/{\/3(22 — 1)(22% + 1)}.
If n is large, we can approximate Pr(r,,7;;r3, <0) by ®(u). As A tends
to 1 from 0, u is monotone decreasing, because
du  /n-2(=22*— 14 -
di 32 —-1)2Qa2+ 1)

Therefore, Pr(r,,r;;7r3, > 0) tends to 1 from 1/2 monotonously as A tends to 1
from 0.

3. Uniqueness of the decompositions
Throughout this section, we assume that 2 has a decomposition
2 =44+ Y,

where A, is a p X k (p > k) real matrix of rank k and ¥, is a diagonal matrix
with positive diagonal elements. The uniqueness problem for factor size m is
as follows: Does there exist 4 # ¥ such that

X=FF + 4
where F is a p x m (p > m) real matrix of rank m and 4 is a diagonal matrix
with positive diagonal elements, for given m?

First, we will discuss sufficient conditions for uniqueness. For factor size
m = k, the main result which has been obtained hitherto is as follows:

THEOREM 3.1. (Theorem 5.1 of Anderson and Rubin [3]) A sufficient
condition for uniqueness is that if any one row of A is deleted then there remain
two disjoint submatrices of rank k. []

PROPOSITION 3.1. (p. 211 of Takeuchi and Yanai [30]) If a decomposition
is unique for factor size k, then k is the smallest number of all k satisfying (0.2).

We will consider the situation m > k. In general, researchers often try to
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extract more factors. In fact, factor size is usually unknown in practice, and
thus, then we try to estimate A, the hypothetical factor size is increased step by
step. Further a statistical test almost always indicates more factors than the
factors researchers postulated in advance ([31]).

Of course A, is not unique from Proposition 2.1. Note that A4, ,, does
not always have specific factor loading. For example, when p=3 and k =1,
suppose that

P=m41+ ¥,
where 4, =(AA4), 0<1*<1/4 and ¥, =diag{1—4* 1-2* 1-2?}. If
we set
2 42 A2
A4, = and
0 1 31/4
v, = diag{1—44> 1-5i2/4 1—134%/16},
then,

P=A,4)+ ¥,

Now we can observe that A, does not have specific factor loading. This
follows from the following proposition:

ProrosITION 3.2. (Theorem 2.1 of Tumura and Fukutomi [32]) 4
necessary and sufficient condition that A does not have specific factor loading is
that the rank of A remains invariant after deletion of any one row of A.

The aim of FA is to extract common factors. Next theorem gives a
sufficient condition for the following property: If factor size is increased up to
k + s, s specific factor loadings are added, and, the common factor loading
matrix A, remains invariant. This property is called the extended uniqueness.

THEOREM 3.2. (Theorem 1 of Tumura and Sato [34]) If there remain two
disjoint submatrices of rank k in A, after deletion of any (r + 1) rows of A,
O<r<p-—2k—1). Then, for other decompositions such that

I = Apsslins + Prsos
where A, ;:p x (k+s), rank 4, ., =k +5,0<s<r,
Y.+t a diagonal matrix,
Ay +s s a following form

Ak+s7;c+s = [Ak rs]’
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where T, ., is some orthogonal matrix of order k + s and off-diag I, = 0. [J

This theorem is an improvement of Lemma 2.1 of Tumura and Fukutomi
[32] (see Sato [25]). The juxtaposed matrix I, contains s specific factor
loadings, not common factor. In the case r = 0, this theorem is reduced to
Theorem 3.1.

Next, we will discuss necessary conditions for uniqueness. For k =1 and
2, the condition of Theorem 3.1 is also necessary one ([3]). For k =3, the
condition is necessary for the cases p > 7 ([34]), but is never satisfied for the
case p = 6, because p < 2k + 1. However, for the latter case k = 3 and p = 6,
there exist unique loading matrices ([34]).

ProPOSITION 3.3. (Theorem 5.6 of Anderson and Rubin [3]) A4 necessary
condition for uniqueness is that each column of AG has at least three nonzero
elements for every nonsingular G. []

The following theorem is an extension of Proposition 3.3.

THEOREM 3.3. A necessary condition for satisfying the condition of
Theorem 3.1 is that the submatrices which consist of each q columns of AG have
at least (2q + 1) nonzero rows for every nonsingular G (¢ =1, 2,...,k). [

Consider the cases where the condition of Theorem 3.1 is a necessary and
sufficient condition (that is, the cases k =3 for p>7 and k=1 and 2). For
these cases, the condition of Theorem 3.3 is a necessary condition for
uniqueness. In particular, when g = 1, Theorem 3.3 agrees with Proposition
3.3. For other cases, that is, the cases k=3 & p<6 and k>4, if the
condition of Theorem 3.3 is not satisfied, we must examine the uniqueness by
other ways not based on Theorem 3.1.

THEOREM 3.4. A necessary condition for satisfying the condition of
Theorem 3.2 is that the submatrices which consist of each q columns of AG have
at least (2q + r + 1) nonzero rows for every nonsingular G (¢ =1, 2,...,k). O

For the cases where the rank of a submatrix of 4 is not full, we will
propose methods to examine whether the condition of Theorems 3.1 or 3.2 is
satisfied or not. Let the rank of a submatrix which consists of p, rows of 4 be
k,(< k) and suppose the submatrix is the last p, rows of A. Then, by a
suitable orthogonal matrix T, we can obtain

Ay:py X ky, Ayp:py X ky,

Ay A
AT:I:A“ 012], Az1:ipy X ki, O py X ks,
2 p=p1+ P k=k +k.
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THEOREM 3.5. A necessary condition for satisfying the condition of
Theorem 3.1 is that A, satisfies the condition of Theorem 3.1. [J

Proor. If A,, does not satisfy the condition of Theorem 3.1, the
submatrix which consists of last p, columns of 4 does not satisfy the condition
of Theorem 3.1. Then, 4 can not satisfy the condition of Theorem 3.1. [

In the same manner, Theorems 3.6 to 3.8 can be proved.

THEOREM 3.6. Suppose A, satisfies the condition of Theorem 3.1. Then, a
necessary and sufficient condition that A satisfies the condition of Theorem 3.1 is
that A, satisfies the condition of Theorem 3.1. [

THEOREM 3.7. A necessary condition for satisfying the condition of
Theorem 3.2 is that A,, satisfies the condition of Theorem 3.2. [

THEOREM 3.8. Suppose A,, satisfies the condition of Theorem 3.2. Then, a
necessary and sufficient condition that A satisfies the condition of Theorem 3.2 is
that A,, satisfies the condition of Theorem 3.2. []

Next, we consider a loading matrix whose most elements are unique.

THEOREM 3.9. Suppose that A has the following form

Ay Ay, Ayyipy X kyy Ay py Xk,
=|:A 0:|, Ay1ipy X ki, 0 :1py Xk
2 P =D+ D2 k=k; +k,,

and A,, is unique. Then, a loading matrix F for factor size k can be expressed
as
Ay, F
FT= [ 11 12 ] ,
A,y O
where T is some orthogonal matrix. []

ProoOF. Let us partition F as F = [F; F,]’, where F, is last p, rows of
F. Since A4,, is unique, there exists an orthogonal matrix T such that

F2T: [A21 0].

FT=[F11 Flz:l’

Letting

we obtain
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Ay Ay = Fy Ay
Since A,, is unique, rank 4,, = k; < p,, and hence F,; = 4,;,. O

This theorem means that submatrices A4;,, 4,; and O are determined
uniquely though A is not unique. When A is not unique, the object of
estimation is not clear. However, if there exist unique submatrices, the

estimates for the unique parts are meaningful.
We give an example showing usefulness of this theorem. The hypothetical
factor loading matrix A,(17 x 6) of the data treated by Bechtoldt [4] was the

following form:

[Au Alz] Ay 2x5, Ay, 2x1
AH= 5

Ay 0 Ayt 15 x5, 0 :15x1,
where
* % % !
%k %k ¥ 0
A21= * %k k ’
0 * % *
k k %
Ay = (* *)

and * denotes a nonzero element. From Proposition 3.3, we observe that A is
not unique. As a matter of course, when researchers estimate 4 and ¥, several
difficulties arise. Estimates largely depend on methods of estimation (e.g. the
maximum likelihood method, the least squares method), samples which are
divided randomly to two sets, and initial approximations for iterative schemes
(e.g. the value recommended by Joreskog [10], the highest correlation, both of
which are used widely). Further improper solutions are met, and the structure
of the data cannot be recognized. Now we reexamine the estimates of A
precisely. We find that the submatrices corresponding to 4,,, 4,; and 0 are
stable and only the elements corresponding to A4,, are fluctuate (see Table 3.1.
The loading matrices are rotated by the incomplete Procrustean method
[23; §4.1].); this can be interpreted from this theorem, and we can expect to
obtain information from such data.
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Example which indicates usefulness of Theorem 3.9: Bechtoldt’s data

Table 3.1.
(1) ML, Sample I

(2) ML, Sample II
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Part II. Examination of adequacy of substitute use of principal component
analysis

4. Preliminary

First, we describe precisely the use of PCA as a substitute for FA. In FA,
an observed vector x is assumed to follow model (0.1), and consequently 2 or P
has a decomposition

A4 + .

Then, to discern a latent structure, we estimate not only 4 but an error variance
matrix ¥. In contrast, PCA does not require such a structural model. In
substitute use for FA, a sample correlation matrix R is decomposed as

R = (QD'?)(QD"?
= AA + E, say,

where D is a p-order diagonal matrix with the ith largest eigenvalue of R as the
ith diagonal element, Q is an orthogonal matrix such that Q'RQ = D, A is the
first k columns of QD'? and E = R — AA’ (see e.g. §4.3.7. of Chatfield and
Collins [6]); A is named “a factor loading matrix” after FA. A sample
variance-covariance matrix S instead of R may be used. If k is unknown, it is
often used to determine k as the number of eigenvalues of R which are greater
than one.

The present study attempts to answer the following question: Can
substitute use be justified? More precisely, we examine the following points:
(1) Is it justifiable to use a rule where factor size is taken as the number of
eigenvalues of R which are greater than one?

(2) Is it justifiable to use the first some columns of QD'/? for factor loadings?
(3) In what situation and to what extent does the result using PCA differ from
the one using FA?

We will study the above problems (1)—(3) under the following setup. First
we assume that 2 or P has a decomposition

A4+ P

This will be natural, because, when researchers want to interpret the loadings A
calculated with PCA, it is assumed implicitly that an FA model holds or at least
approximately. Next, we will restrict our discussion to the population case,
because it is difficult to express the loadings A estimated with FA explicitly. If
substitute use is not justified in the population, it cannot expect to work well in
a sample. Finally, we assume that A satisfies the condition of Theorem
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3.1. Then, ¥ can be expressed as a function of X' explicitly (Ihara and Kano
[8]), and hence an estimated loading matrix is determined the true value A
uniquely (up to multiplication on the right by an orthogonal matrix) from X or
P. Consequently, our problems are reduced to compare a factor loading
matrix A calculated with PCA to the true value A.

5. Monofactor case

In this section, we consider the monofactor case, i.e., 4 = (4,...,4,), say
4. We can assume 4, > --- > 1, > 0 without loss of generality. Because, if the
sign of the ith variable of an observation vector is changed, the sign of 4; is
inverted, and, even if the order of variables is changed, the model is

invariant. When p > 3 and 4, # 0, the assumption of Theorem 3.1 is satisfied,
so that 4 is determined uniquely.

First, we give a property of eigenvalues.

THEOREM 5.1. Suppose that a population correlation matrix P has a
structure

P=il+Y,

where A4 = (Ay,...,A,) is a factor loading vector and ¥ = diag (y,,...,y,) is an
error variance matrix. Assume that 1 > A, >--->1,>0and p>3. Then the
Sollowing inequalities for the eigenvalues 0, > --- > 8, of P are established,

(1) KAy, 20, >NA+y, >1>y,>0,>y,  =220,>y,.

The equalities XA+ y, =0, = XA+ y, hold if and only if y, ==y, The
equalities W, ,_;=0,=y,,,_; hold if and only if W, ,_;=W¥,+1-; (i=2,...,p).
O

PrROOF. An eigenvalue of P is a zeropoint of an eigenpolynomial |P — 6I.
We will examine signs of the eigenpolynomial at the upper and lower bounds
of #; in (5.1). First, consider the sign of |P — (« + y,)I|, where a = A’A.

Adding }7__ (ith row) x 4;/4, to the first row in the matrix P — (a + )1,
we have

[P —(a + yy)I
0 Wy — w1/ 4y (Ws—wiis/Ay - (‘//p - W1)'1p/'11
Aaky A —aty,—y, Aady Aad,
= | 434, A3d, MB—aty;—y, - Asd,

Aphy Aphs Aps e et v, -y
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Let us divide the first column by 4,, multiply the first row by 4,, and subtract
(the first column) x A; from the jth column (j=2,...,p). Then, the determinant
is equal to

0 (2 — i), (W3 — vi)is (R
by —@+y—yl) 0 0

A3 0 —@+y—y3) - 0

Ap 0 0 o=ty — )

= n: (~(+ vy, — Wj))zf; (v — ‘//1))&'2/(“ + ¥ — W)
j=2 i=2
The last reduction is obtained by using the formula
a b

‘ =|D|-la—b'D el
¢c D

Thus, if all w,’s are not equal, the sign of |P — (x+,)I|is (—1)?~!. Similarly,
we get

[P —(a+ wyl|

=T e+ v, =y DX i = v e+ y, — v
Thus, if all y,’s are not equal, the sign of |P — (a + w,)I| is (— 1)’. Next,
consider the sign of [P — w,I|. In the matrix P — y, I, subtracting (the /th

column) x A;/4, from the jth column (j = 1,...,p, j # £), we have

'P_ '//lll
v — v, 0 M, e 0 0
0 Ya— W, o Ay o 0 0
0 0 Ayh, o 0 0
- 0 0 22 0 0
0 0 lp—lll Yp-1— V¥V, 0
0 0 e DAy 0 v, — W,

=/13Hj¢¢(‘//j_ ¥,)-

Thus, when all y,’s (/=1,...,p) are distinct, the sign of |P— y, I| is
(= 1)*~!. Therefore, noting that the eigenpolynomial is a continuous function,
we obtain the following inequalities;
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MAi+y,>0>VA+y,;>1>y,>0,>y, 1 >>0,>y,.

Consider the case where some y,’s, say w*’s, are equal. Separate w*’s
temporarily, and then approach them the original values. This leads to the
required inequalities (5.1). The equality conditions can be obtained easily. []

This theorem makes the following remarks;
(1) The rule taking the number of 8, > 1 as the number of “factors” is justified.
(Kendall (p.27 in [11]) stated that this rule is a very rough-and-ready procedure
for which it is difficult to advance a convincing theoretical justification.)
(2) An addition of variables or an increase of |4,], |4;],...,|4,| makes the
lower bound of 8, larger.
(3) A decrease of y,, or equivalently an increase of |4,|, makes the upper
bound of 6, smaller.

Next we will examine behavior for factor loadings 4 =(IIZZ,...,II,)’
calculated with PCA. Some relationships between 4 and 4 are given in the
following theorem.

THEOREM 5.2. Suppose that the same assumptions as Theorem 5.1 hold and
Ay = 0. Then the following properties can be proved.
(1) 1>4,>-->4,>0. The equality A; = A; holds if and only if 1; = 2.

(@ If Jim p/(x'4) s finite, T=(1+0(1/& )i

"A— A2 2 7. CNA— A2 2
3) A KA Al+l’s£’s£-l}' Ay + A3
A MA—234+ A2 7 A T A NA—AL+ A7
if and only if'//Lf'”= 7
4 VA+y,=AVA=NA+y,. The equalities hold if and only if w,=---=y,.
O

for i <j. The equalities hoid

PROOF.

(1) This property has been proved by Sato [24; (1) of Theorem 1].
(2) From Theorem 5.1, we can express 8, as

0, = N4+ yo,

where 0 < y; <y, <w,<1. Since 6, is a simple root of the characteristic
equation,
rank (P — 6,I)=p — 1.

Let us permute rows and columns of P — 6, in order to have a form

1—06, 4 :l
p  P*—0,1*]
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such that |P* — 0,I*| # 0 where P* is a (p — 1)-order matrix and I* is a
(p — 1)-order unit matrix. The same permutation is done for 4 and ¥. We
will denote the permuted results by P, 4 and ¥ again. (Now, the relation
Ay 2---= 4, does not hold) Since an eigenvector has indefiniteness of its
length, the eigenvector corresponding to 6, can be put 4+ 8, where
6 =(06*). Then

(P—-6,I)(A+d)=0,
which leads to

(¥ — wol)A+ (P — 0,1)8 =0,

and
(P* — woI*)A* + (P* — 0,1%)6* =0,
y, O .
where ¥ = 0w and A = (4, A¥Y.
Hence

0% = (I* — P*/6,)"1(¥* — yol*)A*/0,.
Thus each element 6* of 6* is O(1/(4'4)), and hence
oF = h;/(AA) + o(1/(A'4)).

Letting max h; = h, we obtain
6% 6* < (p — 1)h?/(A'4)* and
(A*' 6%)* < (A*' A%)(6*' 6%)
<(p— 1h/(X4).
These inequalities imply
A+A+H<AHA + 2\/(p — Dh/(A 2 + (p — Dh? /(X' 4)%).
Therefore, if 4’4 is large enough, the loading vector calculated with PCA is
VE A+ wo)/(3+ 84 +0)- (4 +9)
=V (@A + y) /(KD + 0(1))- (4 + O(1/(X'4)))
=(1+0(1/(4))A

(3) Let ¢ =(q) be the eigenvector of P corresponding to 6§, with
qq=1. Since Pq = 0,q, we obtain
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(1 —6)q; + AiA;q; + i.-zhﬁ,jl,,q,, =0 and
ﬂ.,ilq; + (1 - gl)q] + Ath#i,jlhqh =0 for i #]’

where P = (p;), ps =1 and p;; = Aidj (i # ).
Thus

(1 = 6,)/4 = A)q; = (1 — 61)/4; — 4))q;.
Then, using (1) and 1 = \/qu, we see q; #0 (j=1,...,p) and
9/, = (4/2)- (0, — 1 + 2))/(0, — 1 + A})).

By using an inequalities for 6, such that §_ <0, <@

+, We see
Ay 0_ — 2 . . — 2
27 __1+_'115&5£.~—_0+ L+ 4 for i <j.
A O =14+ q; " 4; 0, —1+ 42
From Theorem 5.1 and g;/q; = L/Zj, we obtain
A NA—A24+22 4 A NA—A2 43
e Sl R A i b T4 for i <j.

Ay KA—J24 2T 0, T A NA— A2+ a2
The equality condition can be obtained easily.
(4) Since 0, = 71, the result can be obtained from Theorem 5.1. O

Each of the results (1)-(4) in this theorem states the following
properties ;
(1) The order and the signs of 2.’s coincide with those of 4;’s respectively.
(2) If A4 is large, 1 is good approximation of 4. Note that 4 depends on
both the largest eigenvalue and its corresponding eigenvector. In multifactor
case, this property does not always hold (see Section 6.1).

(3) Ratio I,./Ij underestimates 4;/4; (i <j).
(4) Usually Ii > J;, and rarely Ii < 4; ([24]); however, X7 satisfies the above
inequalities.

Some properties of 2 in a case that A has a special form have been
described in Sato [24; Theorem 2, Corollaries 2.1-2.4 and §3]. For a ratio
between two loadings, inequalities (3) of Theorem 5.2 assert that L/Ij
underestimates A;/4;. These inequalities are generalization and improvement
on (2) of Theorem 1 in Sato [24]; formerly only Il /I,, was treated and the
upper bound was 4,/4,.

Now we examine the efficiency of the bounds by numerical examples.
Eight cases of loading vectors are treated ; they contain frequently encountered
magnitude of loadings (.7—.85), especially large one (9) and very small one
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Table 5.1 shows the cases and results.
commonly met, the intervals between the upper bounds and the lower bounds
Further, even if very small loading exists, the interval does

not quite widen. Thus the inequalities are effective.

Careful attention should be paid to the ratio of a large loading to a small

For loading vectors

Table 5.1. Upper and lower bounds of proposed inequalities for Zi/}fj

case A 7 L A/A L%‘Zird A% ggg;‘a interval
90 .80 905 875 1.125 1.026 1.033 1.040 014
1 90 .70 905 831 1.286 1.074 1.088 1.104 .030
80 .70 875 831 1.143 1.046 1.053 1.061 015
80 .75 859 .843 1.067 1.018 1.020 1.022 .004
2 .80 .70 859 822 1.143 1.042 1.046 1.050 .008
5 .70 843 822 1.071 1.023 1.025 1.027 .004
80 .70 847 817 1.143 1.028 1.037 1.046 018
3 80 .60 847 768 1.333 1.083 1.102 1.122 .040
70 .60 817 768 1.167 1.053 1.063 1.073 .020
70 .60 194 .763 1.167 1.029 1.041 1.053 025
4 70 .50 794 708 1.400 1.095 1.121 1.149 .055
60 .50 763 708 1.200 1.064 1.077 1.091 027
90 .85 910 886  1.059 1.025 1.026 1028 003
90 .80 910 860 1.125 1.055 1.058 1.061 006
5 90 .75 910 830 1.200 1.091 1.096 1.100 .009
85 .80 886 .860 1.062 1.029 1.031 1.032 .003
85 .75 .886 .830 1.133 1.065 1.068 1.071 .006
80 .75 860 .830 1.067 1.034 1.036 1.037 .003
85 .80 875 852 1.062 1.026 1.028 1.029 .003
85 .75 875 825 1.133 1.058 1.062 1.065 .007
6 85 .70 875 .794 1.214 1.097 1.102 1.108 .010
80 .75 852 .825 1.067 1.031 1.033 1.034 .003
80 .70 852 194 1.143 1.069 1.073 1.076 007
g5 70 825 794 1.071 1.037 1.039 1.040 .003
80 75 851 842 1067 1006 1010 102 016
7 80 .40 851 631 2.000 1.295 1.347 1.479 184
75 40 842 .631 1.875 1.288 1.334 1.447 .160
80 .75 842 .821 1.067 1.022  1.025 1.031 .009
80 .70 842 197 1.143 1.050 1.056 1.069 019
8 80 .40 842 557 2.000 1482 1.512 1.588 107
75 .70 821 797 1.071 1.028 1.030 1.037 .009
75 40 821 557 1.875 1450 1476 1.540 091
70 .40 797 557 1.750 1411 1432 1.485 075

case 1 (.90 .80 .70)';
case 2 (.80 .75 .70)';
case 3 (.80 .70 .60)';
case 4 (.70 .60 .50)';

treated factor loadings 4
case 5 (.90 .85 .80 .75y
case 6 (.85 .80.75.70)
case 7 (.80 .75 .40y

case 8 (.80 .75 .70 .40y
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one. For instance, in case 7 in Table 5.1,

(8/.3)/(8/.4) = 1.347/2.000 = .67.

Here, a figure with a symbol ~ denotes a value calculated with PCA.

case 8§,

(8/.4)/(8/.4) = 1.512/2.000 = .76 (> .67 in case 7).

505

In

The length A'A of case 8 is larger than that of case 7, so that (8/.4)/(.8/.4)

of case 8 is nearer to one.

Table 5.2. Ratio (1,/1,)/(1,/4;)
when 4 =(4,,...,41,45,...,45)
— p — —p —

A1/ 2y

P15 2 3 4

2 80 722 623 577

3 877 809 742 713

4 907 855 805 .783

5 925 883 843 8%
10 962 941 920 912
15 975 960 947 941
20 981 970 960 956

Let us consider the simple case;

e (’}2',;;’11’ @',;;’iz)"

where 4; > 1, >0 and p, + p, > 3.

In this structure, A, and 4, do not effect

t/t individually, where t=L/L and 7= 4,/4, (Theorem 2 in [24]). In

particular, when p, = p,, say p/,

t/t=2/((1 = 1/p)(1 — 1%

+ {1+ — D/ + 222 + 2p' — 1)/p'?}).

Table 5.2 provides the values of t/t for various values of p’ and .

Now we will study sample behavior of I,./Ij. Let j.:(il,...,ip)’ be
factor loadings estimated with FA based on a sample variance-covariance
matrix S of sample size n+1 from a p-variate normal distribution

(n>p). Then
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i=6.f,
where 6, is the largest eigenvalue of S, f=(fy,....f,) is the eigenvector
corresponding to 6,, f; >0 and f'f=1.
THEOREM 5.3. Expectation and variance of ii/ ;'Lj are given as follows;
(52)  E{A/i} =1/ +0@m™Y).
1 hZ

(5.3) V{ii/i,-}%(—(z & 2 (0ug01y + 02)
a=2

+2 Z Piahip (0,4011 + 0, 10,,1)>
2=a<p 1a01p

hi L hiah'a 2 hmht
- 2'_l'< Z 2J (oaaall + O-azzl) + Z i (O'aﬁo'll + 0',10'ﬂ1)>

h?1 a=2 01.: aﬂ*ﬂ 01101[3

ht21 h2 JahJﬁ
+ Z = —22(64g011 + 024) + 2 Z ‘—5—(0' $011 + 0410p1)
18

i \e=2 01, 2=a<p 014
+0(n?),
where H = (h;;) is the orthogonal matrix such that
H'XH = diag {6, ---6,},
0,>0,>05,>-->0, are the eigenvalues of X and 0,5=10,—0;. [

PrOOF. Let
H'SH=T+V//n,

where I' = diag{f,---6,}, and let ¢ =(c,,...,c,) be the eigenvector corre-
sponding to the largest eigenvalue g of H'SH where ¢; >0 and ¢'c= 1.

Since all the elements of X" are positive, owing to Perron’s theorem (see e.g.
§1c(xi) of Rao [21]), 6, is a simple root. Therefore, an asymptotic expansion
of the eigenvector is given as follows (see e.g. (6.1) of Sugiura [29]):

L& Vi

1
(54) ¢ =1 +;(— y

+0,(n™*?
;50 0,00,

L (Ve 1f2 ViV VaVa

(.5) c~=—< f‘+—{ Jala1 i1t
/ 611 7; n a=2 01,1 011'

where V = (V).
Multiplying H on the lefthand side to H'SHe = ge, we obtain SHe = gHe.

This means that Hc is an eigenvector of S;

}) +0,(n"%?), forj+#1,
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(5.6) f=He.

Substituting (5.4) and (5.5) to (5.6), we obtain

p
fi=hyci+ Y hye,

a=2

1 1
=h; + i + ~ {homogeneous polynomial of degree 2 in Vs},
Jn n

P
where v{V = ) h,V,,/0,,.

a=2
Since 4;/4; = f,/f; and Z,/%; = h;y/h;,, we have
(5.7 \/n(ii/j'j - I;/I,)
= /n(fi/f; - h.-l/hﬂ)

W
% 1t 4 7— {homogeneous polynom1a1 of degree 2 in ¥};’s}

+ Op(l/n)-
Noting that E{¥,,} = 0, we obtain
E{\/n(j‘i/zj - I,-/Ij)} =0(n '?),

which proves (5.2).
Next, we calculate the variance. Noting that E{V,,V,,V,,} = O(1/ \/ n) (see

Siotani, Hayakawa and Fujikoshi [27; Problem 4.3.4]), from (5.7) we have
V{/n(i/2; = T/ 7))
1 p
=V{h thVal hll h;al/azl}+0( -1)

2
jla=2 014 h,1a 2 0y,

1 2 h; Vn)Z} 2h;, {( 2 hi.,,m)( > M@)}
E i - Z1E J
{< Z h?l a;Z 0 la agz 0 la

Ty
hj, a=2 Oy,

e8]
+-1g LAkl
h;l ‘1;2 01a

+0(n™Y).
Result (5.3) is obtained by using the well-known formula E{V,V,;} = 0,04,

+ 0,40, O



508 Manabu SATO

6. Multifactor case
6.1. Examination of the method of deciding the number of factors

We examine the rule where factor size is taken as the number of
eigenvalues of a correlation matrix which are greater than one.

THEOREM 6.1. Suppose that a population correlation matrix P has a
Structure

P=4A4+ Y,

where A is a p x k (p > k) matrix of rank k and ¥ is a diagonal matrix with
positive diagonal elements. Then, the number of eigenvalues 0; of P greater
than one is at most k. []

Before a proof is described, a lemma is introduced.

LemMa 6.1. (Wilkinson ([39, pp. 97-98]) Suppose that A is a p-order
symmetric matrix and let

B= A+ diag {d 0---0}.
Let 1, >-->1, and t; >--- > t, be the eigenvalues of A and B, respectively.
Then
t;=1; + dw,,
p
where 0 <w; <1 and Y w,=1 [
i=1

ProOF of Theorem 6.1. Let u; > --- > u, be the eigenvalues of P + 1 — ¥.
Noting that

P+I1—%Y=P+diag{l—y, 0.0} +diag{0 1—y, 0---0}
+--+diag {0---0 1—y,},
and using Lemma 6.1 successively, we obtain
u; > 6; fori=1,...,p.
Since
P+I—-¥Y=4A4+1

and AA’ is a positive semidefinite matrix of rank k, the number of u; > 1 is
k. Therefore, the number of 6, > 1 is at most k. []
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Table 6.1. Substitute use of PCA: an inappropriate example

3 0 40 67 62 0
3 0 4 —67 62 0

9 4 - 89 0 —14 41

4=1 4 4 4= g 0 —.14 41
9 —4 89 0 —14  —a

9 —4 89 0 —14 -4

6= 3.15 91 85 67

P = AA" + diag (I — AA"). The other eigenvalues are .03 (multiple).

This theorem states that the number of 6, > 1 is at most k. Table 6.1
provides an example where this number is less than k. Further, we note that
even if we know the true value k and take as largest k eigenvalues, the
corresponding loadings may not be an appropriate approximate of 4. Table
6.1 demonstrates an example; The loadings corresponding to the fourth
eigenvalue are the appropriate values for the second column of A.

Further, if we make a sample correlation matrix, the (k + 1)-th eigenvalue
will be sometimes more than one by sampling fluctuation.

6.2. Properties of the loadings calculated with PCA

First we treat a complete simple structure. This structure is reduced to a
combination of monofactor cases by changing order of variables. Therefore,
the remarks on a monofactor, which are given in Sato [24], are also
valid. Further, it may be noted that even if some loadings of the FA model
equal, the loadings corresponding to the same one calculated with PCA differ,
because the latter ones depend on other loadings and the number of
variables. Therefore, when we compare loadings among some factors, we must
pay attention to this property. We provide some examples, relating to such
a property.

ExaMPLE 6.1. In the following examples, P = AA' + diag (I — AA’).

HA_[] 3 05 0 0 0.0 000 0.0 07
00 0 735 999 99 9 9 9]

785 779 164 0 .0 0 -0

.0 .0 .0 741 391 909 --- .909
value .35 in the FA model, the value calculated with PCA in the first column is
about twice as that in the second column; .779 = 782 = .391 x 2.

IfA=['5 S5 5 0 0 0 00 ,
O 0 0 6 6 6 6 .6

then, A =[ ] For the same
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then, .5 =.707 > 699 = 6. Here, a figure with a symbol ~ denotes a value
calculated with PCA.

IfA_[A 4 4 0 0.0 000007
1o 0 0 6 6 6 6 6 6 6 6]

then, .4 = 663 = 6.
Hereafter we investigate structures which are not complete simple.

6.2.1. A treated form and problems of rotation

Consider a structure which we encounter very often in the analysis of
empirical data; many variables are affected by only one factor and few are
by more than one. As a simple case, we investigate precisely the following
structure:

M Ay o Ay @ 00 o O
6.1) A= ,
0O 0 --- 0 B Vi Va ot Vp,

where p, > 2 and p, > 2.

We are interested to know whether A is near to A or not. Since A has so
many parameters, we treat more simple case; suppose A, =--- = 4,,, say 4, and
vy ===y, say v. To judge whether A is near to 4 or not in the sense of
configuration, we pay attention to the following indices, which researchers are
interested in:

(11) B/oc (12) /A or B/v and (I3) A/v.

We compare E/& with B/a, &/% with a/A and so on.

Before starting an argument, it is necessary to determine which rotation
should be adopted, since there exists indeterminacy of a rotation for a loading
matrix in multifactor cases. A varimax or a quartimax rotation, which is
widely used, is not suitable for structure (6.1); more precisely, the criteria of
these rotations are not optimum for (6.1). Further, for a Procrustes rotation,
whose criterion is minimizing the sum of squares of differences between the
corresponding elements of a matrix AT and a predetermined target matrix
where TT' =1, it is very difficult to specify a target matrix.

An appropriate rotation for the present study is proposed as follows:

ALGORITHM (varimax rotation for simple structure variables)
(1) Omit the row in which a and f exist from the loading matrix.
(2) Calculate the varimax rotation matrix for the current (p — 1)-rowed

loading matrix.
(3) Multiply this rotation matrix to the original p-rowed loading matrix.
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In a practical situation, researchers have the following information on
treated data: which variables are affected by only one factor. Hence, program-
ming for this algorithm is easy. We applied this rotation, say, varimax rotation
for simple structure variables, to numerical examples in the present paper.

ExaMPLE 6.2. We try to clarify validity of some rotations. Let

Al 4 0 07
A= , where 4 =.1(.2).9.
00 .8.7.

In order to discuss not substitute use but a rotation problem, we treat not
A but A. Four kinds of rotations are performed;

V : varimax rotation,

Q: quartimax rotation,

P, : Procrustes rotation with a target matrix

AL A .8 0 07
L00.4.7.7’

P,: Procrustes rotation with a target matrix

(7 7 8007
| 0 0 4 4 2]

P,: Procrustes rotation with a target matrix

[/1 A6 0 07
00 .6 .7.7]
Proposed: the proposed rotation.

In order to examine adequacy of these rotations, we calculate the following
indices ;
(I1) (A%2/43)/(A32/231),  (12) (A%1/411)/(A31/A11), (A32/4%2)/(%32/4s;) and
(I3) (AF1/A%2)/(A11/As2),
where A% is the (i, j) element of the rotated loading matrix. Desirable values
are 1.000. Table 6.2 presents the results; None of the rotations except the

proposed method (the varimax rotation for simple structure variables) are
appropriate for (I1) and (12).

6.2.2. Numerical Experiments

The aim of the following experiments is to compare A4 with A from the
viewpoint of the above indices.

EXPERIMENT 6.1. Suppose
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Table 6.2. Validity of various rotations

rotations
A \% Q P, P, P, Proposed
(A%2/2%1)/(A32/ 43y)
1 1.140 1.181 538 .362 .727 1.000
3 1.140 1.181 565 .508 .746  1.000
5 1.140 1.181 610 .600 .776 1.000
N 1.140 1.181 663 .663 .810 1.000
9 1.140 1.181 714 .709 842 1.000
(A31/4%1)/(A31/41,)
.1 900 .874 1.585 2.093 1279 1.000
3 900 .874 1.533 1.649 1255 1.000
5 900 874 1453 1471 1218 1.000
7 900 .874 1369 1369 1.179 1.000
9 900 .874 1296 1304 1.145 1.000
(A%2/2%2)/(A32/ As2)
1 1.025 1.032 .85 .739 930 1.000
3 1.025 1032 867 .838 936 1.000
5 1.025 1.032 887 .882 945 1.000
N 1.025 1.032 908 908 955 1.000
9 1.025 1032 926 .924 964 1.000
(A%1/232)/(A11/4s2)
1 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1000 1000 1.000
N 1.000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1000 1000 1000 1.000
NOTE Af: an element of the rotated matrix
y A A A a 00 (VI
00 0 vv - v]
b, p2
P = AA" + diag (I — AA’) and let
~ 17 iaéeeé e
A=| _ _ Lo~ . -
é é e B vy v

(1) Set p, =

1(2)9.

p,=2,3 and 5;a=.5 p=.5 B/la=1), a=4,
B/a=2), a=.3 =9 (f/a=3) and a=.24, =96 (B/a=4); A

p

=28

V=

(2) Setp, =p,=2,3and 5; combinations of « and f are the same as (1);

A=.7 (fixed), v=.1(2).9.

(3) Set p, =2 (fixed), p, = 3, 4 and 6; combinations of « and B are the
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Table 6.3. Validity of loadings calculated with PCA from the viewpoint of some indices

1) pr=p,=2 pr=p=3 p1=p2=5
B/ Bl B/
A1 2 3 4 1 2 3 4 1 2 3 4
B/@)/(B/2) B/8)/(B/a) B/®)/(B/2)

1 1.000 979 972 970 1000 982 976 974 1.000 986 982 .980
3 1000 993 991 991 1000 996 995 995 1.000 .998 998 .998
5 1.000 998 998 998 1.000 999 999 999 1.000 1.000 1.000 1.000
7 1.000 999 999 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9 1000 1.000 1.000 1000 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(@&/4)/(o/ 2) &/ A)/(@/ %) (@/4)/(2/2)
164 124 115 110 197 150 140 134 248 191 179 .72
473 373 352 338 539 437 414 399 626 525 501 486
741 608 578 559 796 676 648 630 856 .756 .731 .51
963 815 781 759 979 859 831 811 989 904 882 866
1143 990 954 931 1106 996 968 949 1.069 999 980 .966

(B/9)/(B/v) (BI9)/(B/v) (BI9)/(B/v)
d64 142 139 135 197 171 167 162 248 215 209 203
473 407 393 381 539 467 451 438 626 549 531 516
741 638 614 595 796 607 673 655 856 .768 746 .728
963 835 803 780 979 871 843 822 989 909 .887 .87l
1.143 1000 964 937 1106 1001 973 952 1069 1001 982 967

/9)/(4/v) G/9)/(A/v) (A/9)/(A/v)

o Qi r~

o Qn i~

1 1.000 1173 1237 1263 1000 1.159 1216 1240 1000 1.139 1.188 1.208
3 1.000 1.098 1.128 1.139 1.000 1.074 1.096 1.103 1.000 1.048 1.062 1.065
.5 1.000 1.052 1.064 1067 1000 1.032 1.040 1.040 1.000 1016 1.019 1.019
.7 1000 1025 1.029 1.028 1.000 1.014 1015 1014 1000 1.006 1.006 1.005
9 1.000 1011 1.010 1.007 1.000 1.006 1.005 1.003 1.000 1.002 1.002 1.001
@ p1=p,=2 pi=p>=3 py=py=35
Bl Bl B/
v 1 2 3 4 1 2 3 4 1 2 3 4
B/8/(B/%) B/8/(B/%) B13)/(B/2)

1 280  .351 361 385 387 429 481 501 531 556 .595 .604
3 660 .638 .640 .637 71 726 723 716 871 805 .795 .786
5 868 .839 .833 .828 922 834 877 871 963 924 915 908
7 1000 999 999 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000
9 1091 1.136 1.148 1.155 1.045 1.089 1.100 1.108 1.018 1.052 1.061 1.068

@&/ 7)/(@/2) @/ 7)/(@/2) @/ )/ (/)
1.202 1267 1320 1330 1.130 1.146 1.159 1.157 1070 1.064 1.065 1.063
1.094 1029 1.022 1.012 1.049 991 982 973 1.020 974 966 .959
1015 898 873 855 1.004 910 889 874 979 930 914 902
963 815 .781 759 979 859 831 811 989 904 882 .866
929 758 718 .693 963 825 .791 768 984 888  .861 843

[0 9 i~
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Table 6.3. (Continued)
B/9)/B/v) B/)/(B/v) B/9/B/v)
1 055 .069 .088 .100 .08 .103 .124 .135 139 154 174 181
3359 349 361 361 457 425 428 424 576 521 515 .507
S5 .690 .614 .601 .588 767 682 665 .649 843 760 .741 7125
7 963 .835 .803 .780 979 871 843 822 989 909 887 .871
.2 1.176 1017 972 942 1.119 1.010 977 955 1073 1.005 984 969
A/9)/(4/v) A/9)/(4/v) G/9)/(4/v)
.1 165 173 186  .196 197 209 223 232 245 261 275 283
3 498 532 551 561 565  .591  .603  .609 648 664 671 .673
S5 783 815 .826 .829 829 847 852 .853 876 .884 886 .886
7 1000 1.025 1.029 1.028 1.000 1.014 1015 1014 1.000 1.006 1.006 1.005
9 1160 1.181 1.180 1.176 1.111 1.124 1.123 1.121 1.070 1.076 1.076 1.075
(3) pPr=2p,=3 pr=2p,=4 pr=2p,=6
Bl B/a B/
A 1 2 3 4 1 2 3 4 1 2 3 4
B/8)/(B/%) B/8)/(B/2) B/3/(B/2)
d 1131 1.133 1133 1.134 1226 1256 1263 1268 1461 1.600 1.634 1.653
3 1.035 1.074 1.083 1.090 1.054 1.133 1.154 1.167 1.079 1280 1.338 1.374
S5 985 1.035 1.047 1.056 974 1.061 1.084 1.100 950 1.119 1.173 1.211
7956 1.007 1.020 1.029 932 1.012 1.035 1.051 892 1.025 1.069 1.101
9 938 985 998 1.007 906 977 997 1.013 859 963 997 1.024
@/ D)/ (/) @/ /(@) 2) @/ 7)/(/2)
1 150 .109 .100 .095 141 099 090 .086 120 079 071 .067
3 458 349 325 311 449 333 308 .293 432 300 272 256
S5 738 590 556  .535 736 578 541 518 734 554 510 484
7972 807 .769 .743 976 .803 .760 .733 984 794 744 711
2 1.160 994 954 926 1.168 996 953 923 1.180 1.001 952 917
B/9/(B/v) BI19)/B/v) B/9)/(B/v)
1 213 178 170  .164 253 206 .195 .188 364 287 267 256
3 553 475 455 441 610 525 502 485 736 .647 618 .599
S5 799 702 676  .656 835 745 719  .699 903 .836 813 .795
7 972 873 844 823 977 896 871 852 987 .940 923 .909
9 1.095 1000 973 952 1.070 1.000 .978 .961 1.035 1.000 988 978
A/9)/(A/v) (/9)/(A/v) A/9)/(4/v)
1 1.255 1443 1.501 1.523 1.465 1.660 1.712 1.731 2,072 2272 2309 2319
3 1167 1.267 1293 1300 1.289 1.390 1413 1418 1.579 1.683 1.699 1.702
5 1.099 1.151 1.161 1.163 1.163 1216 1.225 1227 1294 1348 1.357 1.359
7 1.046 1.073 1.077 1.077 1.074 1.102 1.107 1.106 1.125 1.155 1.160 1.161
9 1.006 1.021 1.022 1.021 1.011 1.028 1.029 1.029 1.021 1.038 1.041 1.042
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same as (1); A=v=.1(2).9.

Table 6.3 shows the results:

(I1) B/a: If monofactor parts of a complete simple structure are identical,
/?/& approximates B/« for all B/a. Further, as p,(=p,) increases, an
approximation is closer. If monofactor parts of a complete simple structure
are not identical, that is, A=v but p; # p,, or p, =p, but 1 # v, then f/a
is far from f/o.

(I12) «/A or B/v: If 4 or v is smal, i—4 and v—v tend to
positive. Values &/I and E/f} are far from o/v and B/v, respectively.

Table 6.4. Calculated loadings with PCA for some typical cases
(1-1)

N N N 0 o0 |
A= .
. 0 0 v v v
-~ [ 81 . . - —.0027
fvet A= 812 812 812 002 002

| —002 —.002 026 711 711
comm. 660 660  .660  .505  .505
model’scomm. 490 490 500 010  .010
817 817 798 —.015 —.0157

| —016 —016 205 733 733 ]
comm. 667 667 678 538  .538
model’s comm. 490 490 580 .090  .090
832 832 741 —021 —‘021]/

| —.021 —.021 440 776 776 |
comm. 692 692 743 602  .602
model’s comm. 490 490 740 250 250
850 850 653 —.013 —.0137

| —-013 —013 653 850  .850 |
comm. 723 723 854 723 723
model’scomm. 490 490 980 490 490

IBZ/ISI j"31/111 I32/;5"52 III/ISZ
}'32/131 '131/'111 )‘32/152 )'11/252
1 224 1.000 .037 163
3 .599 976 279 477
5 .832 .891 .568 .766
7 1.000 .769 .769 1.000
Compare the above with monofactor cases; Let A= (v v v)
and A = (37 9.
v v
1 .583
3 627
5 707
7 812
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Table 6.4. (Continued)

(1-2)
7 7 7 0 o
A= .
| 0 0 N v v
~ [ 816 816 801 —.013 —.0137]
Ifv=.14= .
| —016 —.016 .177 .706  .706 |
comm. 666 666 674 499  .499
model’scomm. 490 490 980 .010  .010
~ [ 81 831 746 —.022 —.0227
Ifv=.3 4= .
| 026 —.026 428 720 720
comm. 691 691 740 519 519
model’scomm. 490 490 980  .090  .090
~ [ 842 842 694 —019 —0197
fv=.54= )
| —020 —.020 567 772 772
comm. 710 710 802 597  .597
model’s comm. 490 490 980 250  .250
~ [ 80 850 653 —.013 —.0137
Kv=.7A4= .
| —.013 —013 653 850  .850 |
comm. 723 723 854 7123 123
model’scomm. 490 490 980 490  .490
~ [ 855 855 623 —.008 —.0087
Ifv=.9 4= .
| —.008 —.008 714 943 943 |
comm. 731 731 898 890  .890
model’scomm. 490 490 980 .810  .810
I32/;{31 I31/2"11 132/152 111/152
A32/431 A31/A14 A32/As2 A11/As2
1 221 985 036 165
3 573 899 254 494
5 817 824 524 79
7 1.000 769 769 1.000
9 1.146 729 973 1.165
Compare the above with monofactor cases; Let 4 =(7 v vy
and 4 =(77¥7.
v i 7 /977
1 724 538 192
3 756 622 521
5 786 713 787
N 812 812 1.000
9 836 918 1.171



Factor analysis 517

Table 6.4. (Continued)

2-1)
[ 2 | i 0 o
A= )
0 0 A 2 2 ]
~ [ . 638 441 —073 —.0737
fi=1A4d= 638 6 )
| —073 —.073 441 638 638
comm. 412 412 388 412 412
model’scomm. 010 010 020 .010 .010
- [ . 678 483 —060 —.0607
Wiz Ae 678 .6 0] '
| —.060 —.060 483 678  .678 |
comm. 464 464 466 464 464
model’scomm. 090 090 .180 .090  .090
~ T . 752 557 —. — 0387
I Ams dm 752 75 7 038 -0387"
| —038 —.038 557 .752 752 ]
comm. 567 567 621 567 567
model’scomm. 250 250 .500 .250  .250
- T . . 653 —. —0137
£i=7 A= 850  .850 3013 o013
| —013 —013 653 850  .850
comm. 723 723 84 723 723
model’s comm. 490 490 980 490  .490
A32/ 431 A31/A1n 432/ 252 A1/ sz
j'32/)'31 ;"31/111 )'32/)'52 111/;"52
1 1.000 691 691 1.000
3 1.000 712 712 1.000
5 1.000 741 741 1.000
N 1.000 769 769 1.000
Compare the above with monofactor cases; Let 4 =(144)
and A=117.
i 7
1 583
3 627
5 707
N 812
(2-2)

Ao [ A A Y20 0 ]

) 0 A2 2 Al
[ 647 647 412 —.064 —.0647

| —.064 —064 412 647 .647]'
comm. 422 422 340 422 422
model’s comm. 010 010 010 .010 .010
683 683 443 —056 —.056]

| —.056 —.056 .443 683 .683]'
comm. 469 469 393 469 469
model’s comm. 090 090 090 .090  .090

If 2=.1,(//2=0T1), 4=

If A=3,(1//2=212), 4=
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- 749 749 500 —042 —027
If A=.5,(1//2=.354), 4= [ 04 .
—.042 —042 500 749 749
comm. 563  .563 500 563 .563
model’s comm. 250 250 250 250 250
- 838 838 574 —.025 —.0257
If A=.7,(1/2=495), 4 =[ 025 )
—025 —.025 574 838  .838
comm. 703 703 660 703 .703
model’s comm. 490 490 490 490  .490
- 943 943 661 —. —.0087
If A=.9,(1/\/2=.636), A= [ 008 .
—008 —.008  .661 943 943
comm. -889 889 873 889  .889
model’s comm. 810 810 810 810  .810
}. 132/131 I31/111 132/152 111/152
)'32/'{31 131/)'11 '132/152 111/152
1 1.000 901 901 1.000
3 1.000 919 919 1.000
5 1.000 944 944 1.000
N 1.000 970 970 1.000
9 1.000 991 991 1.000
_ Compare the above with monofactor cases; Let 4=(1 4 i/\/ 2) and
A=A 75.
A 7 § G1D/ (A//2)/ %)
1 .606 530 1.236
3 644 .563 1.236
5 713 623 1.236
7 .805 704 1.236
9 914 799 1.236
(2-3)
4 7 7 7 0 o
Lo 0 B 7 7
- [ 814 814 807 —.007 —.0077)
p=14= | _007 —.007 116 862  .862 |
comm. 662 662 665 743 743
model’s comm. 490 490 .500 490 490
- [ 84 84 111 —017 —0177)
Ifp=23A4=
| —017 —017 331 856  .856 |
comm. 679 679 704 733 733
model’s comm. 490 490 .580 490 490
~ [ 838 838 .714 —-018 —.018]’
Wh=354=1 o1 —o1s 510 850 ss50]°
comm. 702 702 771 723 723
model’s comm. 490 490 .740 490 490
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Table 6.4. (Continued)
- [ 850 850 65 —013 —0137
Ifﬁ='7’/1=[—.013 —013 653 850 .850]
723 23 84 T3 123

comm.
model’s comm. 490 490 .980 490 490
P Z3a/ %31 Z31/ D T3/ sz Zir/Zsa
ASZ/}‘SI 131/}'11 132/152 )'11/152 -
1 1.002 992 938 944
3 1.001 .936 902 963
S5 1.000 .853 .841 .985
7 1.000 .769 .769 1.000
Compare the above with monofactor cases; Let A =(f .7 .7y
and A=(8 7 7.
B B 7 (/1 /6/.7)
1 234 .853 1.924
3 544 817 1.556
5 .707 .805 1.229
N 812 812 1.000

(I3) A/v: If monofactor parts of a complete simple structure resemble each
other, A/V approximates A/v.

EXPERIMENT 6.2. The aim of this experiment is to investigate the case of a
typical loading form more precisely. Let a general form of loading matrices be

A A a 007 .
A= and P = AA' + diag (I — 44').
008 vy

Then, from Table 6.4 we can see the following properties:

(1) The cases where monofactor parts of a complete simple structure are
not identical;
(1-1) Let A=a=.7 and f=v=.1(2).7. In this form, the differences
between two columns of A are larger with decreasing v. The values of B B
are negative, on the other hand, the ones of v — v are positive; consequently,
ﬂ/v is far from f/v. When v is small, |V — v| is large and l/v is far from A/v.
(1-2) Let A=a=f=.7 and v=.1(2).9. In this form, the differences
between two columns of A are smaller than the ones of (1-1). The values
of /3 p are negative; a/ﬁ is far from o/f as v is away from a. Note that
ﬂ«v even if > v.

(2) The cases where monofactor parts of a complete simple structure are
identical ;
(2-1) Let A=a=pf=v=.1(2).7. In this case, both the values & — « and
E— B are negative.
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(2-2) Leta=f=2/\/2and v=1=.1(2).7. In this form, all the communali-
ties are equal. The values of @ — « and  — B are smaller than those of (2-1).
(2-3) Let A=a=v=.7 and B=.1(2).7. This form is often assumed in
practical situations, and researchers wish to know . We note that ﬁ is near to
B for all B.

Experiments 6.1 and 6.2 deal with only the cases that 4,v,a, §>0.
However we can assume 4, v > 0 without loss of generality. Further if « <0
and/or B <0, the absolute values of the elements of A are invariant. In
fact, if « <0 and/or f <0, then
~ [ i Ao X ud ué wwé - ué :|’

u b

v€ wuvé - wuvé vf V 0V - ¥
py P>

where u = sgn « and v =sgn . Here 7,9, 4, E and & are the elements of A
for the case 4, v, a, § > 0.

6.2.3. Analytical Results
For some special cases, we can obtain A explicitly, and, as a result, some
properties are obtained.

THEOREM 6.2. Let

A_[llu-laOO--- 0]'
oo -0« A a1 - Al
q q

where 0 <A <1,0<a<1//2, p=29+1 and q>2, and
P = AA" + diag (I — AAX").

Then, after being rotated by the method proposed in Section 6.2.1, A can be
expressed as a following form:

b [/ £ - a e e - e:l’
“lee - east t ]
where

¢ = {{2@ +(p — 342 + A/ {(p — 3 2% + 16(p — 1)a?})}/
{(p = 3)*A% + 16(p — 1)a® — (p — 34/ {(p — 3)*4% + 16(p — 1)a?} }}
+ {1+ (= 3)22/2)/Q(p — 1)},
e =/ {{2(@+(p— 322+ A/ {(p - 3222 + 16(p — 1)a?})}/
{(p— 37222 + 16(p — D)o* — (p — 3)A/{(p — 3)*4 + 16(p — 1)o?} }}
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— {0+ (@ —3)42/2)/Q2(p — 1))} and
a=/{(- D@+ (P — A2+ A/ {(p — 3212 + 16(p — 1)a2})}/
{0 — 3?22 + 16(p — 1)o + (p — 3)A/{(p — 3*4* + 16(p — 1)a?}}}.
The largest and the second eigenvalues 0, > 0, of P are given by
0, =1+ ((p—3*4% + A/ {(p — 324 + 16(p — 1)a2})/4 > 1,
0,=1+@—23222>1. 0O

COROLLARY 6.1. Under the same assumptions as Theorem 6.2, it follows
that
(1) e<0O.
(2) The inequality a > (<)o holds according to

0> (<)@ - 1P -2 +4(p — 1> +2(p — DA/ {(p — 2?22
+4( - 1D}}/@E@-1). O

Table 6.5 presents the boundary shown in (2) of Corollary 6.1 for
A =.1(2).9 and p = 5(2)21. The numerical experiment for the cases of p =5,
A=.01(01).99 and o =.1(.1).9 shows the following: 7 <A when A=.97 for
a=3-4;i=98fora=.2-.5;and 1 =99 for « = .2-.6; otherwise, 1 > .

. Ad a 0.0
Table 6.5. Boundary between & > o and & < a, when 4 =
0---0 o A---4

p
5 7 9 11 13 15 17 19 21

513 511 .510 .509 .508 .508 .507 .507 .507
.545 .540 537 .535 533 532 531 .530 .530
.583 577 574 572 .570 .569 .568 .567 .566
.628 624 .621 .619 .618 617 .616 .616 615
679 .678 677 .676 675 675 675 675 674

SRRV R W

COROLLARY 6.2. Let

A_[zzmzzoomo'
o0 - 004 A4 Al
q

where 0 < A < 1/\/2, p=29+1and q>2, and P = AA' + diag (I — AA).
Then, after being rotated by the method proposed in Section 6.2.1, A can be
expressed as a following form:
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..[//m{aee---e:"
A= .
e e - e a ¢ ¢ - f
Further it holds that
(1) a>(<)A according to
1> (<) {p— D —5+/{p*+ 10p — 7})/{23p* = 5p + 2)}}/2.
2 ¢>4i O
Table 6.6 presents the boundary shown in (1) of Corollary 6.2 for
p=5(2)21

Al A 007

0.0 A Ll
p 5 7 9 11 13 15 17 19 21

boundary .606 .599 .595 .592 .590 .589 .587 .586 .586

Table 6.6. Boundary between 4> A and 1 < 4, when A =[

6.2.4. Concluding Remarks

Consider the situation where researchers explore a latent structure in
practice. They do not always examine loadings precisely; they are interested in
signs of the loadings and see roughly whether absolute values of the loadings
are large or small. Nevertheless, the loadings calculated with PCA or their
ratios may be far from the ones in the FA model. Further, we note that the
following difficulties (D1), (D2) and (D3) arise:
(D1) A varimax and a quartimax rotation, which are widely used without
careful consideration, are not always appropriate for other cases except a
complete simple structure.
(D2) Differences between the values of loadings calculated with PCA and the
corresponding values of an FA model in multifactor cases tend to be larger than
those in monofactor cases. Further, an order of calculated values may not
coincide with an order of model’s values; see (1-2) of Experiment 6.2 (On the
other hand, in monofactor cases, the order of calculated values is guaranteed
(Sato [24])).
(D3) When discrepancy between monofactor parts of a complete simple
structure is large, substitute use is inappropriate.
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