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0. Introduction

Factor Analysis (FA) is a branch of multivariate statistical analysis which is
concerned with the internal relationships of a set of variables. Since Spearman
[28] originated FA, it was developed by psychometricians. From 1940's,
statisticians have been concerned with FA (see e.g. Lawley [15], Rao [20],
Anderson and Rubin [3], Lawley and Maxwell [16], [17]). Factor analysis
has been used in many fields of sciences in addition to psychology. Recently
program packages applying FA have been developed. However, it may be
noted that FA still involves some fundamental problems, and hence an
investigation of it is very important.

In an FA model, we assume that an observed p-dimensional vector x
follows

(0.1) x = μ + Λf+ w,

where μ is a mean vector, A is a p x k (p > k) factor loading matrix of rank /c, /
is a common factor vector and u is a unique factor vector. Further, suppose
that E{/} =0, E{u} =0, E{uu'} is a diagonal matrix with positive diagonal
elements, say Ψ, E{fu'} = 0 and E{ff} = I (a unit matrix). Then, a
variance-covariance matrix Σ of x can bq decomposed as
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(0.2) Σ = AA' + Ψ.

Since the righthand side of (0.2) is a sum of a positive semidefinite matrix and a

positive definite matrix, Σ is positive definite. Formula (0.2) is called a

fundamental equation of factor analysis.

If a column of AG contains only one nonzero element for some nonsingular

matrix G, a factor corresponding to this column is called a specific factor. If

AG contains more than one nonzero element in every column for any

nonsingular matrix G, A is called a common factor matrix.
When k = 1, it is called a monofactor case. This model is quite simple,

however, it is useful in practice. In fact, in the analysis of empirical data,
researchers often assume that the data have a complete simple structure', each
row of A has only one nonzero element. This structure can be reduced to

some sets of monofactor structure. For example, consider the case where A
is of the following form after changing the order of rows suitably;

Λ l l Λ 21 Λ-31 0 0 0 0

0 0 0 λ42 λ52 λ62 λη

If we set

Xl = (Xl X2 X3J 9 X2 = (X4 X5 X6 Xl) •> fll = (fll 1^2

Ri ° 1=
L u /2 J

, /= (Λ /2)'>
2

Hi = (M! u2 M3)' and ιι2 = (w4 w5 w6 w7)',

then,

χj = μ; + V; + w;> J = !' 2

Namely, this structure is reduced to two sets of monofactor structure.

The present paper treats an identification problem of the FA model (Part I)
and an adequacy problem of Principal Component Analysis as substitute use

for FA (Part II).

Main inferential problems in the FA model are to estimate a number k of
factors and matrices A and Ψ9 based on samples of x. However, before getting
these estimates, we need to clear the identification problem which is divided

into two parts:

(PI) the existence of a decomposition,

(P2) uniqueness of the decompositions.
In fact, if the existence of a decomposition is not guaranteed, the object of
estimation is vague. Further, even if the decompositions exist, it is not clear
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which common (or unique) factors are estimated on the condition that the

decompositions are not unique.
Problem (PI) has been recognized insufficiently. First we review the

results which have been obtained hitherto. Next we study the region where the
decompositions of Σ exist. For the case p = 3 and k = 1, its area is
calculated. As for (P2), main sufficient conditions for uniqueness which have
been obtained up to now are due to Anderson and Rubin [3] and Tumura

and Sato [34]. For a review on (P2), see Shapiro [26] and some comments
on his paper due to Sato [25]. In the present paper, we give necessary
and/or sufficient conditions for their sufficient conditions, in the forms
commonly met in practice. Using the results, it is seen that we can examine
uniqueness easily. Further we propose the loading matrix whose most elements

are unique. For such a loading matrix A, even if A is not unique, the

estimates corresponding to the unique part is meaningful.

It is well known that Principal Component Analysis (PCA) and FA
resemble each other but have rather different aims (Chap. 7 of Jolliffe [9];

Chap. 14 of Anderson [2]). However, PCA is very often used for the same

purpose as FA without careful consideration. In fact, when PCA is applied,
researchers calculate not only principal components but correlations between
principal components and original variables (see e.g. §4.3.7 of Chatfield and
Collins [6]). The correlations are called factor loadings. Using the (rotated)

factor loadings, it is quite common to try to discern a latent structure. This
is what is called substitute use of PCA for FA (see e.g. Chap. 3 of Okuno,

Kume, Haga and Yoshizawa [19]).

One of the reasons why substitute use is often applied is that there exists a
serious difficulty in estimating parameters in FA, that is, we quite often
encounter an improper solution (Jόreskog [10] Tumura, Fukutomi and Asoo

[33]). Several ideas for overcoming the difficulty have been proposed

(Joreskog [10]; Koopman [14]; Martin and McDonald [18]; Akaike

[1]). Some causes of improper solutions have been investigated (van Driel
[38]; Tumura and Sato [35], [36], [37]). A method (Sato [23]) of

overcoming them, which works well for many sets of empirical data, has been

proposed. However, the difficulty in the estimation problem has not been

solved completely. As a result, PCA is quite often used for the same purpose

as FA. Of course there are several advantages of FA as compared with
PCA. First, FA admits a formal statistical model, and hence factor loadings

are estimated, considering the effects of error variances. In contrast, PCA

does not have such a structural model. Second, the FA model has a property
of scale ίnvarίance. Consequently, if we use an estimation method with scale

invariance (for example, the maximum likelihood method, and the generalized
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least-squares method with a weight matrix S"1 or (diag S}"1 where 5 is a
sample variance-covariance matrix) and its solution is determined uniquely,

then the estimates are scale equivariant (see e.g. Chap. 14 of Anderson

[2]). This means the following: if we obtain an estimate λ based

on jt, then an estimate based on Cx is CΛ where C is any nonsingular diagonal

matrix. As a result, we can ignore measurement units of observations. On the

other hand, the loadings calculated with PCA do not have such a

property. From these viewpoints, it is important to examine whether PCA

as substitute use for FA is adequate or not.

Part I consists of Sections 1 to 3. In Section 1, the identification problem
is described in detail. In Section 2, the existence of a decomposition is

discussed. In Section 3, uniqueness of the decompositions is discussed. Part
II consists of Sections 4 to 6. In Section 4, an approach of investigating
PCA as a substitute for FA is introduced. In Section 5, monofactor cases

(k = 1) are treated. Finally, in Section 6, multifactor cases (k > 2) are treated.

Part I. Identification problem

1. Preliminary

The identification problems (PI) and (P2) may be stated as follows:

(PI) For any p-order positive definite symmetric matrix Σ9 can it be

decomposed as

where Λk is a p x k real matrix of rank fe and Ψk is a diagonal matrix with

positive diagonal elements, for assumed k(< p)Ί
(P2) If a decomposition exists, is it unique?

The subscript k of Λk indicates the number of columns of Λk and the
subscript k of Ψk means that Ψk depends on Λk for the sake of simplicity, either

or both of the subscripts are sometimes omitted in the following text.

Before we discuss the problems in detail, we take two notes. First, the

decomposition may be discussed in the term of a correlation matrix

P = (diag Σ)~1/2Σ(diag Σ)~1/2=(pij) instead of Σ = (σ^\ because structure
(0.2) is equivalent to

P = {(diag ZT1/2Λ}{(diag ΣΓί/2A}f

+ (diag Γ)-1/2!P(diag Γ)~1/2.

Therefore, we may deal with the decomposition of either Σ or P. Second, there
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exists an indeterminacy of a rotation of a factor loading matrix multiplication
on the right side of A by an orthogonal matrix, since

ΛΛ' + Ψ = (ΛT)(ΛT)f + Ψ,

where T is an arbitrary fc-order orthogonal matrix. We ignore this
indeterminacy in the following.

2. Existence of a decomposition

The following proposition treats the existence problem of a decomposition
when factor size is increased.

PROPOSITION 2.1. (Reirsψl [22]) If there exists a decomposition for factor
size fc, then there exist infinitely many decompositions for k + 1. Π

PROOF. A loading matrix Λk+l for factor size k + 1 can be constructed as
follows; Suppose

where y = (0 0 y O Oy, y is the ith component of y and 0 < y2 < ψ{.
Without loss of generality, we may assume that rank Λ k + 1 = k + 1. Then,
we have

! ••• ψi.1 ψ{ - y2 ψi+ί ••• ψp}.

Consequently, there exist infinitely many decompositions for k + 1 since we can
take any y such that 0 < y2 < ψ{. Π

REMARK. In the proof of Reirsφl [22], the form of Λk+1 is not apparent,
however, the above proof shows it explicitly.

PROPOSITION 2.2. When k = p — 1, there exist infinitely many decomposi-
tions for any Σ. Π

PROOF. Let θp be the smallest eigenvalue of Σ. Set

Γ* = Γ-diag{ε1 εp},

where 0 < ε, < θp (i = I,...,/?), then, 27* is a positive definite symmetric matrix
since

ει - θp-εp}.

Let L be a p x p lower triangular matrix (Cholesky decomposition) such that
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and let L partition as
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Γ* = LL',

0

L = A*-ι 'P 1 Q

d J

Then, rank Λp_1 = p - 1, d + 0 and

hence

The matrix Λp_1 depends on st and we can choose εt arbitrarily under

0 < βi < θp (i = l,...,p). Consequently, there exist infinitely many decomposi-

tions for k = p — 1. Π

REMARK. Guttman [7] has given one decomposition for k = p — 1 under

the assumption that the smallest eigenvalue of Σ is simple. As a special case of

Proposition 2.2 we obtain that for the case p = 2 and k = 1, there exist infinitely

many decompositions.

PROPOSITION 2.3. (Theorem 5 of Bekker and Leeuw [5]) There exists no

decomposition for k < p — 1 if and only if all elements of Σ ~ 1 are positive,

possibly after sign changes of rows and corresponding columns. Π

REMARK. Guttman [7] has shown that a tridiagonal matrix with nonzero

subdiagonal elements has no decomposition for k < p — 1.

PROPOSITION 2.4. (Theorem 1 of Bekker and Leeuw [5]) For p > 4 and

k = 1, a decomposition exists if and only if, after sign changes of rows and

corresponding columns, all elements of Σ = (σab) are positive and

I). D

ihVji ~ Wjh = 0 and

rih<rji ~ Wjh < 0 (ί 7*7', h, /; j

PROPOSITION 2.5. For the case p = 3 and k = 1, the following (l)-(3) hold:

(1) If the following four inequalities

P31p32/P21 < 1P2lP3lPl2 > 0> P21P31/P32 < 1, P2lP32/P31 <

are satisfied, there exists a unique decomposition with
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λ = ( (Sgn p32) V / (P2lP31/P32) (Sgn P 3 l )v / (P 2 lP32/P3l)

P 2 i )>/(p 3 iP 3 2 /P 2 i ) )'•

(2) T/' /wo or /Ar££ 0/ Pij's ( i > j ) equal 0, //^re exist infinitely many
decompositions.
(3) Otherwise, there is no decomposition. Π

PROOF. From the identity

P = λλ' + <P,

we obtain

P21 = >Ml> P31 = Ml and P32 = ̂ 2>

where P = (p0 ) and A = (/l^ Λ,2 Λ,3)' Therefore, using these equations, we have
the following:
( i ) If one of the elements py's (z > j ) equals 0, there is no decomposition.
(ii) If two or three of pίy 's (i>j) equal 0, there exist infinitely many
decompositions.
(iii) If P2ιp3ιp3 2 < Oj there is no decomposition.
(iv) If p 2ιP3iP32 > 0, the above equations yield

λ= ±( (sgn p32)v/(P2iP3i/P32) (sgn P3ι)v/(p2ιP32/P3i)

(sgnp2 1) x/(p3ιP32/P2i) )'-

If the following three conditions

(2-1) P 2 l P 3 1 / P 3 2 < l

(2.2) P21P32/P31 < 1

(2.3) P31P32/P21 < 1

are satisfied, ίP" = diag (/ — λλ') is positive definite consequently, there exists a
unique decomposition. Otherwise, Ψ is not positive definite and consequently,
there is no decomposition.

Summarizing above results (i)-(iv), we obtain results (l)-(3). Π

Now we investigate more precisely the case where there exists a unique
decomposition in the case p = 3 and fc = 1. This case is very simple, however,
its investigation is useful in practice. Because it is fundamental for a complete
simple structure. First, we will consider the region where P is positive
definite. Since p11 = 1 > 0, positive definiteness of P is equivalent to

— 1 < p21 < 1 and
(2.4) det P > 0.
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P32 = P31/P21

Fig. 2.1. Region where the decomposition exists uniquely (shaded portion)
and region where P is positive definite (inside the ellipse)

Inequality (2.4) becomes

(P31 + P32)
2 (P31

2( l+p 2 1 ) 2(1-p21)
< 1 or

(2.5) (Pii - P2i)}

Since there are three variables in (2.5), we fix p2i and regard the lefthand side of
(2.5) as a function of two variables p31 and p32. Let the coordinate axes rotate
and let the current axes denote X (which is direction of the major axis) and Y
(which is direction of the minor axis). Then, the region where P is positive
definite is given by

(see Fig. 2.1). From (2.1)-(2.3), the region where the decomposition exists
uniquely in the first quadrant is given by

P32 > P2lP31> P32 < P31/P21 and P32 < P21/P31

Similar inequalities hold in the third quadrant. The shaded portion of Fig. 2.1
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shows the region where the decomposition exists uniquely.
The area SE of the ellipse in Fig. 2.1, that is, the region where P is positive

definite, is

On the other hand, the area SP of the shaded portion in Fig. 2.1, that is, the
region where the decomposition exists uniquely, is

Sp= -2|p2 1 | ln|p2 1 | .

Because, if p21 > 0, the area in the first quadrant is given by

ΓP21 Γ1

SP/2 = (P3i/P2i - P2iP3ι)dp3i + (P2i/P3i - P2iP3i)dp 3ι
JO Jp21

= -P2iln|p 2 1 | .

If p2ι < 0, we obtain similarly

SP/2 = p2 1ln|p2 1 | .

Next we consider the area SR of the ellipse where the elements of λ are real
numbers, under p2ι being fixed. The area of the shape surrounded by the bold
line in Fig. 2.1, which is equal to SΛ/4, is

where a2 = 1 + p21, b
2 = 1 - p21 and c = ab/^/(a2 + b2). Using the formula

- X2)dX = (X^/(d2 - X2) + d2 arcsin (X/d))/2 for d > 0,

we have

SR = 7(1 - piiMπ - 2arcsin7((l - p21)/2)).

Table 2.1 presents SP, SR, SE, SP/SR and SP/SE for |p21| = .05 (.05) .95. We
note that the ratio SP/SE is not large, at most .26.

Finally, we obtain the area of the region where P is positive definite and
the region where the decomposition exists uniquely. These area are obtained
by integrating SP and SE with respect to p21 from — 1 to 1:

Γ1 Γ1

SPdp21 = 1 and
J-i J- i

π2

,dp21 = 1 and | S£dp21 = —.

Therefore, the ratio is given by
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Table 2.1. Existence of the unique decomposition

|p21| Sp SR SE SP/SR SP/SE

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

.300

.461

.569

.644

.693

.722

.735

.733

.719

.693

.658

.613

.560

.499

.432

.357

.276

.190

.097

1.619

1.663

1.702

1.736

1.766

1.789
1.806

1.817

1.820
1.814

1.798
1.771

1.731
1.676
1.600
1.499

1.363
1.173

.882

3.138

3.126

3.106

3.078

3.042

2.997

2.943

2.879

2.806

2.721
2.624

2.513
2.387
2.244

2.078

1.885

1.655
1.369

.981

.185

.277

.334

.371

.393

.404

.407

.403

.395

.382

.366

.346

.323

.298

.270

.238

.203

.162

.111

.095

.147

.183

.209

.228

.241

.250

.255

.256

.255

.251

.244

.235

.223

.208

.189

.167

.138

.099

S p : area of the region where the decomposition exists uniquely

SR: area of the region where the elements of λ are real numbers

SE: area of the region where P is positive definite

Γ1 / Γ1

SPdp21 \ SEdp2l=2/π2

J-i / J- i

= .203.

Summarizing this result, we obtain the following Proposition.

PROPOSITION 2.6. For the case p = 3 and k = 1, if pu ( i > j ) are
independently uniformly distributed, the probability that the decomposition exists

uniquely is 2/π2. Π

For a sample case, we consider the estimate λ obtained by replacing P

by R where R = (ry) is a sample correlation matrix. If r21r31r32 > 0, the

elements of λ are real numbers;

λ = ± ( (sgn r32)χ/(r21r31/r32) (sgn r31)v

/(r21r32/r31)

(Sgnr2 1)v/(r3 1r3 2/r2 1) )'.

Now we will obtain Pr(r21r31r32 > 0) based on samples for given P. Konishi

([12], [13]) has obtained an asymptotic expansion for the distribution of an

analytic function of rίj9 based on a sample of size n from a multivariate normal
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distribution. Using his result (Theorem 6.2 of [13]), we see

Pr(v/n(r21r31r32 - ρ21ρ^ρ^2)/τ < u)

= Φ(u) - -(α 1 Φ ( 1 ) (w)/(2τ) +. α3Φ
(3)(u)/(2τ)3)

V "

+ ̂ Σ'=1 b2jΦ™(u)/(2τ)2j + 0(n-3/2),

where τ2 = p2

21p
2

3i + P2

3lρl2 + p\2plι

+ 2p2ιP3iP32(piι(l - 2pii) + piΛl - 2p2

2) + p2

2(l - 2P1J)

+ P2iP3iP32(4pL + 4p^ + 4p2

2 - 9),

Φ(/I)(M) denotes the hth derivative of the standard normal distribution function

of Φ(u). The coefficients are

+ 2p§! + 2p2

2 - 3)

Plι(l - 2pli) + P23i(l - 2p2

2) + p2

2(l - 2 p 2

2 l ) } 9

(dke ~ Pkιdkk)fijke

L,q*rPir qPjk iPίq kfijfkifqr>

b2 = a2 12 + Σ^,(l - 3p5)(pίjd, - dy)/y

PijPke^ ~ Pke)

- J2pk^1~p*^+2p*pί« Mdy+ 2^ « ί~^ί^

zΣi^ jΣk^l Σβ*r(Pkβ(P|r.k - PktPkr qWij ~

+ Pkq r{PiqPkrPklPjq i ~ PirPίrPjr i

ι> - PiίPjβ - l Pi,Pjr)}fijklfqr)

~L^i* JL^k* II LtqΦr
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djj)(2pijd^i + dijdu) - ^(dijd* + ditc

9V V (S α. I ( 4- ^2Σί*jΣk* e 1 P/ί Pik-j + PjkPie j - 3pij(Pie Pik e + PikPie k)
\(

1
frfu + 2pfkdijdke

~ 2(Pij(pJk + Pίk) - IpίkPjk i} dudke Jfijfke

* ί -kX^i Ar + PijPqrdndqq)

- PqrPkt sPse kdijdqq}fijkefqrst) and

b6 = al/2,

where

Pjk i = Pjk - PijPik* dtj = Σ**βPt*(Pjβ ~ Pj*P*β)f*β>
d*j = Σ**βdι*(pjβ - pj*ρ*β)f*β>
/12 =/21

 =
 Pl3P23> /13

 =
/31

 =
 Pl2p23> /23 =/32 = Pl2Pl3>

/1212
 =
/1221

 =
/2112

 =
/2121

 =
/1313

 =
/1331

 =
/3113

 =
/3131

=
 /2323

 =
 /2332

 =
 /3223

 =
 /3232

 =
 ̂>

/1213
 =
/1231

 =
/2113

 =
/2131

 =
 P23»

/1223
 =
/1232

 =
/2312

 =
/2321

 =
 Pl3>

/1323
 =
/1332

 =
/3123

 =
/3132

 =
 Pl2»

/121323
 =
/121332

 =
/122313

 =
/122331

 =
/131223

 =
/131232

=
 /132312

 =
/132321

 =
/231213

 =
/231231

 =
/231312

 =
/231321

 =
 1»
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r = 0 for other 1 < i,;, fc, /, q, r < 3.

Here, the summation £αgtf, stands for Σ^& = 1 aφb Putting w= -χ/nP2iP3iP32/
τ, we can obtain approximations for Pr( r2i r3i r32 < 0)» and consequently,

Table 2.2. Probability that the elements of λ are real numbers

*•' P2iP3lP,2 « (1) (2) 0) (4)

(.4 .4 .4)

(.5 .5 .5)

(.4 .5 .6)

(V/.24 .5 7.24)

(.4 .9 .4)

(.6 .6 .4)

.004096 50

100

150

.015625 50

100

150

.0144 50

100

150

.0144 50

100

150

.020736 50

100

150

.020736 50

100

150

.720

.796

.845

.815

.899

.941

.802

.886

.930

.809

.893

.936

.799

.884

.928

.828

.911

.951

.653

-.067

.796

-.000

.872

.027

.835

.020

.945

.046

.986

.045

.816

.014

.929

.043

.975

.045

.825

.016

.938

.045

.982

.045

.820

.021

.921

.037

.965

.037

.858

.029

.957

.045

.991

.040

.614

-.039

.799

.003

.888

.016

.857

.022

.967

.022

.999

.013

.835

.019

.951

.022

.990

.015

.845

.020

.961

.023

.997

.015

.846

.026

.938

.018

.975

.010

.885

.027

.976

.020

1.001

.010

.762

.859

.929

.923

.989

.995

.900

.973

.992

.909

.986

.993

.884

.950

.977

.940

.993

.995

(1) the limiting term

(2) upper: up to the term of

lower: the term of \l^/n

(3) upper: up to the term of 1/n

lower: the term of l/n

(4) values obtained by simulation (1000 replications)
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Numerical examples are presented in Table 2.2. Here we assume jc is

distributed as a multivariate normal distribution with mean 0 and a

variance-co variance matrix λλ' + diag (/ - λλ'), and we use the asymptotic

expansion up to the term of 1/n. Table 2.2 shows the probability that the

elements of λ are real numbers for some cases of λ. It is seen that (i) when

P2iP3iP32 is large or n is large, Pr(r21r31r32 > 0) is large, and (ii) for the

same p 2 ιP3iP32> Pr(r2i^3ir32 > 0) is smaller when smaller loading exists.
In particular, if λ = (λ λ λ)' (λ > 0) and Ψ = diag (/ - λλ'), then

4μ2 - l)(2λ2 + I)}2 and u = jnλ2/{^3(λ2 - \)(2λ2 + 1)}.

If n is large, we can approximate Pr(r21r31r32 < 0) by Φ(u). As λ tends
to 1 from 0, u is monotone decreasing, because

du _ ^/n 2(-2λ4-l)λ

άλ ~ 3(λ2 - \)2(2λ2 + I)2 <

Therefore, Pr(r21r31r32 > 0) tends to 1 from 1/2 monotonously as λ tends to 1
from 0.

3. Uniqueness of the decompositions

Throughout this section, we assume that Σ has a decomposition

where Λk is a p x k (p > k) real matrix of rank k and Ψk is a diagonal matrix

with positive diagonal elements. The uniqueness problem for factor size m is

as follows : Does there exist A φ Ψ such that

Σ = FF' + A

where F is a p x m (p > m) real matrix of rank m and A is a diagonal matrix

with positive diagonal elements, for given m?

First, we will discuss sufficient conditions for uniqueness. For factor size

m = k, the main result which has been obtained hitherto is as follows :

THEOREM 3.1. (Theorem 5.1 of Anderson and Rubin [3]) A sufficient

condition for uniqueness is that if any one row of A is deleted then there remain

two disjoint submatrίces of rank k. Π

PROPOSITION 3.1. (p. 211 of Takeuchi and Yanai [30]) If a decomposition

is unique for factor size /c, then k is the smallest number of all k satisfying (0.2).

We will consider the situation m > k. In general, researchers often try to
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extract more factors. In fact, factor size is usually unknown in practice, and
thus, then we try to estimate A, the hypothetical factor size is increased step by

step. Further a statistical test almost always indicates more factors than the
factors researchers postulated in advance ([31]).

Of course Ak+1 is not unique from Proposition 2.1. Note that Ak + 1 does
not always have specific factor loading. For example, when p = 3 and k = 1,
suppose that

where Λί = (λ λ A)', 0< λ2 < 1/4 and Ψί = diag{l -λ2 l-λ2 l-λ2}. If
we set

V2λ λ/2 λ/2 1'
A2 = and

L O A 3A/4J

<F2 = diag {1 -4λ2 I - 5λ2/4 I - I 3 λ 2 / l 6 } 9

then,

P = Λ2Λ'2+Ψ2.

Now we can observe that A2 does not have specific factor loading. This
follows from the following proposition:

PROPOSITION 3.2. (Theorem 2.1 of Tumura and Fukutomi [32]) A
necessary and sufficient condition that A does not have specific factor loading is
that the rank of A remains invariant after deletion of any one row of A.

The aim of FA is to extract common factors. Next theorem gives a
sufficient condition for the following property: If factor size is increased up to
k + s, s specific factor loadings are added, and, the common factor loading
matrix Λk remains invariant. This property is called the extended uniqueness.

THEOREM 3.2. (Theorem 1 of Tumura and Sato [34]) If there remain two
disjoint submatrices of rank k in Ak after deletion of any (r + 1) rows of Ak

(0 < r < /? — 2k — I). Then, for other decompositions such that

where Ak+s: p x (k 4- s), rank Ak+s = /e + s, 0 < s < r,

Ψk+s' a diagonal matrix,

Ak+s is a following form

Λk+sTk+s = [Ak ΓJ,
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where Tk+s is some orthogonal matrix of order k + 5 and off-diag ΓSΓ'S = O. Π

This theorem is an improvement of Lemma 2.1 of Tumura and Fukutomi
[32] (see Sato [25]). The juxtaposed matrix Γs contains .s specific factor
loadings, not common factor. In the case r = 0, this theorem is reduced to
Theorem 3.1.

Next, we will discuss necessary conditions for uniqueness. For k = 1 and
2, the condition of Theorem 3.1 is also necessary one ([3]). For k = 3, the
condition is necessary for the cases p > 1 ([34]), but is never satisfied for the
case p = 6, because p < 2k + 1. However, for the latter case k = 3 and p = 6,
there exist unique loading matrices ([34]).

PROPOSITION 3.3. (Theorem 5.6 of Anderson and Rubin [3]) A necessary
condition for uniqueness is that each column of AG has at least three nonzero
elements for every nonsingular G. Π

The following theorem is an extension of Proposition 3.3.

THEOREM 3.3. A necessary condition for satisfying the condition of
Theorem 3.1 is that the submatrices which consist of each q columns of AG have
at least (2q + 1) nonzero rows for every nonsingular G (q = 1, 2,...,/c). Π

Consider the cases where the condition of Theorem 3.1 is a necessary and
sufficient condition (that is, the cases k = 3 for p > 1 and k = 1 and 2). For
these cases, the condition of Theorem 3.3 is a necessary condition for
uniqueness. In particular, when q = 1, Theorem 3.3 agrees with Proposition
3.3. For other cases, that is, the cases k = 3 & p < 6 and k > 4, if the
condition of Theorem 3.3 is not satisfied, we must examine the uniqueness by
other ways not based on Theorem 3.1.

THEOREM 3.4. A necessary condition for satisfying the condition of
Theorem 3.2 is that the submatrices which consist of each q columns of AG have
at least (2q + r + 1) nonzero rows for every nonsingular G (q = 1, 2,...,/c). Π

For the cases where the rank of a submatrix of A is not full, we will
propose methods to examine whether the condition of Theorems 3.1 or 3.2 is

satisfied or not. Let the rank of a submatrix which consists of p2 rows of A be
k1(<k) and suppose the submatrix is the last p2 rows of A. Then, by a

suitable orthogonal matrix T, we can obtain

Γ ̂  ^ "I Λ l l P l X ^ l > Λ l 2 P l X ^ 2 >

AT=\ n , Λ21:p2xkl9 0 : p2 x k2,
Λ'jΛ O J „ , „ i, i i l^
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THEOREM 3.5. A necessary condition for satisfying the condition of

Theorem 3.1 is that A12 satisfies the condition of Theorem 3.1. Π

PROOF. If A12 does not satisfy the condition of Theorem 3.1, the

submatrix which consists of last p2 columns of A does not satisfy the condition

of Theorem 3.1. Then, A can not satisfy the condition of Theorem 3.1. Π

In the same manner, Theorems 3.6 to 3.8 can be proved.

THEOREM 3.6. Suppose A21 satisfies the condition of Theorem 3.1. Then, a
necessary and sufficient condition that A satisfies the condition of Theorem 3.1 is

that A12 satisfies the condition of Theorem 3.1. Π

THEOREM 3.7. A necessary condition for satisfying the condition of

Theorem 3.2 is that A12 satisfies the condition of Theorem 3.2. Π

THEOREM 3.8. Suppose A21 satisfies the condition of Theorem 3.2. Then, a
necessary and sufficient condition that A satisfies the condition of Theorem 3.2 is

that A12 satisfies the condition of Theorem 3.2. Π

Next, we consider a loading matrix whose most elements are unique.

THEOREM 3.9. Suppose that A has the following form

Γ^ii A12Ί

U21 O J*

A11:p1 x kί9 Al2:p1 x fc2

A21: p2 x kl9 0 : p2 x k2

p = Pι+ P2, k = kl + /c2,

and A2l is unique. Then, a loading matrix F for factor size k can be expressed
as

FT=

where T is some orthogonal matrix. Π

PROOF. Let us partition F as F = [FJ F2]', where F2 is last p2 rows of

F. Since A21 is unique, there exists an orthogonal matrix Tsuch that

Letting

FT =

we obtain
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Since A2ί is unique, rank A21 = k1 < p2, and hence Fli = Λίl. Π

This theorem means that submatrices Λίί9 A2l and 0 are determined
uniquely though Λ is not unique. When A is not unique, the object of
estimation is not clear. However, if there exist unique submatrices, the
estimates for the unique parts are meaningful.

We give an example showing usefulness of this theorem. The hypothetical
factor loading matrix AH(1Ί x 6) of the data treated by Bechtoldt [4] was the
following form:

,-[Λ2l 0

where

Aίl: 2 x 5, A12: 2 x 1

A2ί: 15 x 5, 0 : 15 x 1,

* * * o
* * *

o * * *
* * * J

Λ 1 2 = (**)'

and * denotes a nonzero element. From Proposition 3.3, we observe that AH is
not unique. As a matter of course, when researchers estimate A and Ψ, several
difficulties arise. Estimates largely depend on methods of estimation (e.g. the
maximum likelihood method, the least squares method), samples which are
divided randomly to two sets, and initial approximations for iterative schemes
(e.g. the value recommended by Jόreskog [10], the highest correlation, both of
which are used widely). Further improper solutions are met, and the structure
of the data cannot be recognized. Now we reexamine the estimates of A
precisely. We find that the submatrices corresponding to Λll9 A2ί and 0 are
stable and only the elements corresponding to A12 are fluctuate (see Table 3.1.
The loading matrices are rotated by the incomplete Procrustean method
[23; §4.1].); this can be interpreted from this theorem, and we can expect to
obtain information from such data.
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Table 3.1. Example which indicates usefulness of Theorem 3.9: Bechtoldt's data

(1) ML, Sample I (2) ML, Sample II

.3

.1

.8

.8

.8

.2

.1

.3

.0

.0

.1

.1

.1

.2

.3

.4
•2

(3)
.2
.1
.8
.8
.8
.2
.1
.3
.1
.0
.1
.2
.1
.2
.3
.4

. .2

(5)
' .2

.1

.8

.8

.8

.2

.1

.3

.0

.0

.1

.1

.1

.2

.3

.4

.2

.2

.3

.2

.3

.2

.7

.8

.6

.1

.1

.0

.2

.2

.2

.2

.2

.2

LS,
.2
.1
.2
.3
.2
.7
.8
.5
.1
.1

-.0
.2
.2
.2
.2
.2
.2

.0

.1
-.0
-.0

.3

.1

.1
-.0

.7

.9

.8

.1
-.0

.2

.1

.1

.2

Sample
.0
.1

-.0
-.0

.3

.1

.1
-.0

.7

.9

.8

.1
-.0

.2

.1

.1

.2

.2

.1

.1

.2

.1

.2

.2

.1

.2

.0

.0

.6

.9

.5

.3

.1

.3

I
.2
.0
.1
.2
.1
.2
.2
.1
.2
.0
.0
.6
.9
.5
.3
.1
.3

.2

.1

.3

.2

.2

.2

.1

.1

.2

.0

.1

.2

.2

.3

.7

.7

.6

.2

.1

.3

.2

.2

.2

.1

.1

.2

.0

.1

.2

.2

.3

.7

.7

.5

.0
7.3

-.0
-.0

.0
-.0

.0
-.0
-.0
-.0

.0

.0

.0
-.0

.0

.0
-.0

.4
1.0

.1

.1

.1

.1

.1

.1
-.0

.0

.1

.1

.1
-.0

.1

.1

.1 .

ML, Sample I
.3
.2
.2
.3
.2
.7
.8
.6
.1
.1

-.0
.2
.2
.2
.2
.2
.2

.0

.1
-.0
-.0

.3

.1

.1
-.0

.7

.9

.8

.1
-.0

.2

.1

.1

.2

.2

.1

.1

.2

.1

.2

.2

.1

.2

.0

.0

.6

.9

.5

.3

.1

.3

.2

.1

.3

.2

.2

.2

.1

.1

.2

.0

.1

.2

.1

.3

.7

.6

.6

8.1 -
.0

-.0
.0

-.0
-.0
-.0

.0

.0

.0
-.0

.0
-.0

.0
-.0

.0

.0

" .1
.2
.8
.8
.8
.2
.2
.3
.0
.0
.1
.1
.1
.2
.2
.4
.2

.2

.1

.2

.3

.3

.8

.7

.6

.1

.0

.1

.1

.2

.1

.2

.1

.3

.0

.1

.0

.0

.1

.1

.2

.0

.7

.8

.8

.1

.1

.3

.2

.0

.2

.1

.2

.1

.2

.1

.2

.1

.1

.1

.0

.1

.9

.7

.5

.3

.1

.2

.2

.1

.2

.2

.2

.2

.2

.2

.3

.7

.5

.6

1.0 "
.4
.1
.1
.1
.1
.1
.2
.1
.0
.0
.1
.1
.1
.1
.3
.1

(4) LS, Sample II
" .1

.2

.8

.8

.8

.2

.2

.3

.0

.0

.1

.1

.1

.2

.2

.4

.2

.2

.1

.2

.3

.3

.8

.7

.6

.1

.0

.1

.1

.2

.1

.2

.1

.3

.0

.1

.0

.0

.1

.1

.2

.0

.7

.8

.8

.1

.1

.3

.2

.0

.2

.1

.2

.2

.2

.1

.2

.1

.1

.1

.0

.1

.9

.7

.5

.3

.1

.2

.2

.1

.2

.2

.2

.2

.3

.1

.1

.1

.1

.1

.2

.3

.7

.6

.6

.8

.5

.1

.2

.1

.1

.1

.2

.1
-.0

.1

.1

.1

.1

.1

.3

.1

estimation methods

ML: the Maximum Likelihood method

LS : the Least Squares method

sets of sample

sample I : Size equals 212.

sample II: Size equals 213.

initial approximation for an iterative process

(l)-(4): the value recommended by Jόreskog

(5): the highest correlation

convergence/not convergence

(2)-(4): convergence

(1), (5): not convergence (after 100 iterative

counts)
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Part II. Examination of adequacy of substitute use of principal component

analysis

4. Preliminary

First, we describe precisely the use of PCA as a substitute for FA. In FA,
an observed vector x is assumed to follow model (0.1), and consequently Σ or P
has a decomposition

AA + Ψ.

Then, to discern a latent structure, we estimate not only A but an error variance
matrix Ψ. In contrast, PCA does not require such a structural model. In
substitute use for FA, a sample correlation matrix R is decomposed as

= AA + £, say,

where D is a p-order diagonal matrix with the i th largest eigenvalue of R as the
ϊth diagonal element, Q is an orthogonal matrix such that Q'RQ = D, A is the
first k columns of QD1'2 and E = R - AA (see e.g. §4.3.7. of Chatfield and
Collins [6]); A is named "a factor loading matrix" after FA. A sample
variance-covariance matrix 5 instead of R may be used. If k is unknown, it is
often used to determine k as the number of eigenvalues of R which are greater
than one.

The present study attempts to answer the following question: Can
substitute use be justified? More precisely, we examine the following points:
(1) Is it justifiable to use a rule where factor size is taken as the number of
eigenvalues of R which are greater than one ?
(2) Is it justifiable to use the first some columns of QD1/2 for factor loadings?
(3) In what situation and to what extent does the result using PCA differ from
the one using FA?

We will study the above problems (l)-(3) under the following setup. First
we assume that Σ or P has a decomposition

AA + Ψ.

This will be natural, because, when researchers want to interpret the loadings A
calculated with PCA, it is assumed implicitly that an FA model holds or at least
approximately. Next, we will restrict our discussion to the population case,
because it is difficult to express the loadings A estimated with FA explicitly. If
substitute use is not justified in the population, it cannot expect to work well in
a sample. Finally, we assume that A satisfies the condition of Theorem



Factor analysis 499

3.1. Then, Ψ can be expressed as a function of Σ explicitly (Ihara and Kano
[8]), and hence an estimated loading matrix is determined the true value A
uniquely (up to multiplication on the right by an orthogonal matrix) from Σ or
P. Consequently, our problems are reduced to compare a factor loading
matrix A calculated with PC A to the true value A.

5. Monofactor case

In this section, we consider the monofactor case, i.e., A = (λl9...9λp)'9 say
λ. We can assume λt > ••• > λp > 0 without loss of generality. Because, if the
sign of the ith variable of an observation vector is changed, the sign of λt is
inverted, and, even if the order of variables is changed, the model is
invariant. When p > 3 and λp Φ 0, the assumption of Theorem 3.1 is satisfied,
so that λ is determined uniquely.

First, we give a property of eigenvalues.

THEOREM 5.1. Suppose that a population correlation matrix P has a
structure

P = λλ' + Ψ,

where λ = (λl9...9λp)
r is a factor loading vector and Ψ = diag (ψι,...,ψp) is an

error variance matrix. Assume that I > λl> > λp>0 and p > 3. Then the
following inequalities for the eigenvalues θ^ > ••• > θp of P are established',

(5.1) λ'λ + ψp > θ, > λ'λ + ψl>l>ψp>θ2>ψp-l> ••• > θp > ψ,.

The equalities λ'λ + ψp = θ^ = λ'λ + ψ1 hold if and only if ψ1 = ••• = ψp. The
equalities ψp+2,i = θi = ψp+l-i hold if and only if ψp + 2-^ψp+t-i (i = 2,...,p).

D

PROOF. An eigenvalue of P is a zeropoint of an eigenpolynomial \P — ΘI\.
We will examine signs of the eigenpolynomial at the upper and lower bounds
of 0£ in (5.1). First, consider the sign of |P - (α + ψ^I\, where α = λ'λ.

Adding £p_ ( ΐ t h row) x λjλl to the first row in the matrix P — (α 4- ψι)I,
we have

λpλ2 λpλ3
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Let us divide the first column by λ 1 9 'multiply the first row by λί9 and subtract
(the first column) x ^ from the;th column (j' = 2,...,p). Then, the determinant
is equal to

0 (ψ2 - ψ1)λ2 (ψ2

λ2 — (α -f ψ! — ψ2)

λ3 0 - (α

(ψp -

- ψ3)

0

0

- Ψp)

The last reduction is obtained by using the formula

a b'

c D
= \D\ \a-b'D-lc\.

Thus, if all ψSs are not equal, the sign of |P - (α + ψ^I\ is (- l)p 1. Similarly,
we get

= π ί (-(α+ψP - ψj
Thus, if all ψt's are not equal, the sign of |P - (α + ψp)I\ is (- l)p. Next,
consider the sign of \P - ψtl\. In the matrix P — ψel, subtracting (the /th
column) x λ j / λ ί from the th column (/ = l,...,p, jφ /), we have

\P-Ψ,I\
... λ,λe ... o o
... λ2λe ... o o

λ3λf ... o o

Ψί -
0

0

0

0

0

5IL*.

Ψ, υ

Ψ2~

0

0

0

0

(Ψj-Ψί)

0

Ψp-l ~ Ψί

0

0

Ψp-Ψt

Thus, when all ψt's (/=!,...,/?) are distinct, the sign of | P — ψ e I \ is
(— 1)*"*. Therefore, noting that the eigenpolynomial is a continuous function,
we obtain the following inequalities
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λ'λ + ψp>θ1>λ'λ+ψ1>l>ψp>02> ψp.l > •.• >θp > ψ^

Consider the case where some ψ^s, say ψ*'s, are equal. Separate ψf's
temporarily, and then approach them the original values. This leads to the
required inequalities (5.1). The equality conditions can be obtained easily. Π

This theorem makes the following remarks
(1) The rule taking the number of 9t > 1 as the number of "factors" is justified.
(Kendall (p. 27 in [11]) stated that this rule is a very rough-and-ready procedure
for which it is difficult to advance a convincing theoretical justification.)
(2) An addition of variables or an increase of |A 2 | , |A 3 | , ..., |λp | makes the
lower bound of θ^ larger.
(3) A decrease of ψp9 or equivalently an increase of |λp|, makes the upper
bound of Θ2 smaller.

Next we will examine behavior for factor loadings λ = (λίλ2,...9λp)
f

calculated with PCA. Some relationships between λ and λ are given in the
following theorem.

THEOREM 5.2. Suppose that the same assumptions as Theorem 5.1 hold and
A! > 0. Then the following properties can be proved.
(1) 1 > IΊ > > Ip > 0. The equality λt = I/ holds if and only if λt = λj.

(2) // lim p/(λ'λ) is finite, 1 = (1 + 0(l/(λ'λ)))λ.
λ'λ-»°o

,Λ X A; A A A i T A: A: A; A A A n T A: _ . . . . ,(3) i'l'i ^ + ϊ * - τ - τ ' ϊ λ I' + A* f o r '< 7 τheeqmhtιeshoίd
Aj A A — Λ j ~τ ΛJ A; AJ A A — Ap ~τ A t

// and only if ψ± = -« = ψp.
(4) λ'λ + ψp> λ'λ> λ'λ + ψι. The equalities hold if and only if ψί = = ψp.

D

PROOF.

(1) This property has been proved by Sato [24; (1) of Theorem 1].

(2) From Theorem 5.1, we can express 0X as

θl = λ'λ + ψ0,

where 0<^ 1 <^ 0 <^ P <1. Since θ± is a simple root of the characteristic
equation,

Let us permute rows and columns of P — θ^ I in order to have a form

Γ 1 - 0ι P'
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such that |P* — 0t /* |^0 where P* is a (p — l)-order matrix and /* is a
(p — l)-order unit matrix. The same permutation is done for λ and Ψ. We
will denote the permuted results by P, λ and Ψ again. (Now, the relation
λl> ">λp does not hold.) Since an eigenvector has indefiniteness of its
length, the eigenvector corresponding to Θ1 can be put λ + δ, where
δ = (Qδ*J. Then

which leads to

and

(Ψ* - ψ0I*)λ* + (P* - #!/*)£* = 0,

r-Γ" °ΊL o ψ* \
where ψ = \ Λ _ | and λ = (̂  λ*')'.

Hence

δ* = (/* - P*/θl

Thus each element <5f of 5* is 0(1 /(λ' λ)), and hence

λ) + o(l/(λ'λ)).

Letting max ht = h, we obtain

δ*'δ* <(p- I)h2/(λ'λ)2 and

(λ*'δ*)2<(λ*'λ*)(δ*'δ*)

These inequalities imply

(λ + δ)'(λ + δ)< (λ'λ)(l +2^(p- l)h/(λ'λ)3'2 + (p- I)h2/(λ'λ)3).

Therefore, if λ'λ is large enough, the loading vector calculated with PCA is

JL'λ + Ψo)/((λ'λ)(ί + 0(1)))) - (A +

= (1 + 0(l/(AΆ)))λ

(3) Let 9 = (q() be the eigenvector of P corresponding to #j with
q'q — 1. Since P0 = 0 ,̂ we obtain
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(1 - ΘJq, + Wjqj + λ^hφ..λhqh = 0 and

Mjto + (1 ~ ΘJqj + A j Σ n ί * = ° for ' *J

where P = (py), pί( = 1 and pl} = A;A,. (i
Thus

((1 - ΘJ/λ, - λjqt = ((1 - θj/λj ~ A,)9j.

Then, using (1) and λ = ^/θ1q, we see q3 / 0 (/' = !,...,/>) and

<?</<?,- = (W ((0! - 1 + A2)/(0, - 1 + A,2)).

By using an inequalities for Θ1 such that θ_<θϊ<θJf, we see

A, 0_ - 1 + A,2 ήf, A, 0+ - 1 + A?

A V ^ - l + A f ^ A V ^ T T A 2 f° r / < /

From Theorem 5.1 and qi/qj = λi/λj9 we obtain

A f A ^ A - Af + Λ? < If < ̂  λ'λ -λ2

p + A,2

λ/ λ'λ - λ\ 4- λ? ~ Tj ~ ~λj ' λ'λ -λ2

p + λf °Γ l < J'

The equality condition can be obtained easily.

(4) Since Θ1 = λ'λ, the result can be obtained from Theorem 5.1. Π

Each of the results (l)-(4) in this theorem states the following
properties
(1) The order and the signs of It's coincide with those of λ^s respectively.
(2) If λ'λ is large, λ is good approximation of λ. Note that λ depends on
both the largest eigenvalue and its corresponding eigenvector. In multifactor
case, this property does not always hold (see Section 6.1).

(3) Ratio λjλj underestimates λijλί ( i < j ) .

(4) Usually λt > λh and rarely λt < λt ([24]); however, λ'λ satisfies the above
inequalities.

Some properties of I in a case that λ has a special form have been
described in Sato [24; Theorem 2, Corollaries 2.1-2.4 and §3]. For a ratio
between two loadings, inequalities (3) of Theorem 5.2 assert that λjλj
underestimates λjλj. These inequalities are generalization and improvement
on (2) of Theorem 1 in Sato [24]; formerly only λl/λp was treated and the
upper bound was

Now we examine the efficiency of the bounds by numerical examples.
Eight cases of loading vectors are treated they contain frequently encountered
magnitude of loadings (.7 -.85), especially large one (.9) and very small one
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(.4) in practice. Table 5.1 shows the cases and results. For loading vectors
commonly met, the intervals between the upper bounds and the lower bounds
are very short. Further, even if very small loading exists, the interval does
not quite widen. Thus the inequalities are effective.

Careful attention should be paid to the ratio of a large loading to a small

Table 5.1. Upper and lower bounds of proposed inequalities for λjλj

lower 7 / 7

treated factor loadings λ

case 1 (.90 .80 .70)'; case 5 (.90 .85 .80 .75)'

case 2 (.80 .75 .70)'; case 6 (.85 .80 .75 .70)'

case 3 (.80 .70 .60)'; case 7 (.80 .75 .40)'

case 4 (.70 .60 .50)'; case 8 (.80 .75 .70 .40)'

inte™1

1

2

3

4

5

6

7

8

.90

.90

.80

.80

.80

.75

.80

.80

.70

.70

.70

.60

.90

.90

.90

.85

.85

.80

.85

.85

.85

.80

.80

.75

.80

.80

.75

.80

.80

.80

.75

.75

.70

.80

.70

.70

.75

.70

.70

.70

.60

.60

.60

.50

.50

.85

.80

.75

.80

.75

.75

.80

.75

.70

.75

.70

.70

.75

.40

.40

.75

.70

.40

.70

.40

.40

.905

.905

.875

.859

.859

.843

.847

.847

.817

.794

.794

.763

.910

.910

.910

.886

.886

.860

.875

.875

.875

.852

.852

.825

.851

.851

.842

.842

.842

.842

.821

.821

.797

.875

.831

.831

.843

.822

.822

.817

.768

.768

.763

.708

.708

.886

.860

.830

.860

.830

.830

.852

.825

.794

.825

.794

.794

.842

.631

.631

.821

.797

.557

.797

.557

.557

1.125
1.286
1.143

1.067
1.143
1.071

1.143
1.333
1.167

1.167
1.400
1.200

1.059
1.125
1.200
1.062
1.133
1.067

1.062
1.133
1.214
1.067
1.143
1.071

1.067
2.000
1.875

1.067
1.143
2.000
1.071
1.875
1.750

1.026
1.074
1.046

1.018
1.042
1.023

1.028
1.083
1.053

1.029
1.095
1.064

1.025
1.055
1.091
1.029
.065
.034

.026

.058

.097
1.031
1.069
1.037

1.006
1.295
1.288

1.022
1.050
1.482
1.028
1.450
1.411

1.033
1.088
1.053

1.020
1.046
1.025

1.037
1.102
1.063

1.041
1.121
1.077

1.026
1.058
1.096
1.031
1.068
1.036

1.028
1.062
1.102
1.033
1.073
1.039

1.010
1.347
1.334

1.025
1.056
1.512
1.030
1.476
1.432

1.040
1.104
1.061

1.022
1.050
1.027

1.046
1.122
1.073

1.053
1.149
1.091

1.028
1.061
1.100
1.032
1.071
1.037

1.029
1.065
1.108
1.034
1.076
1.040

1.022
1.479
1.447

1.031
1.069
1.588
1.037
1.540
1.485

.014

.030

.015

.004

.008

.004

.018

.040

.020

.025

.055

.027

.003

.006

.009

.003

.006

.003

.003

.007

.010

.003

.007

.003

.016

.184

.160

.009

.019

.107

.009

.091

.075
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one. For instance, in case 7 in Table 5.1,

(.δ/.?)/(.8/.4) = 1.347/2.000 = .67.

Here, a figure with a symbol ~ denotes a value calculated with PCA. In
case 8,

(.oY.4)/(.8/.4) = 1.512/2.000 = .76 (> .67 in case 7).

The length λ'λ of case 8 is larger than that of case 7, so that (.S/.4)/(.8/.4)
of case 8 is nearer to one.

Table 5.2. Ratio (Ϊ1/λ2)/(λ1/λ2)

when λ = ( A 1 , . . . , A 1 , A

p'
2
3
4
5

10
15
20

1.5

.820

.877

.907

.925

.962

.975

.981

*ιy

2

.722

.809

.855

.883

.941

.960

.970

3

.623

.742

.805

.843

.920

.947

.960

4

.577

.713

.783

.826

.912

.941

.956

Let us consider the simple case;

where λ1 > λ2 > 0 and p1 + p2 > 3. In this structure, λ1 and λ2 do not effect

ί/τ individually, where t = λ^/λ2 and τ = λ ί / λ 2 (Theorem 2 in [24]). In
particular, when p1 = p2, say p',

+ {(1 + τ*)(p' - l)2/p'2 + 2τ2(/7'2 + 2p' -

Table 5.2 provides the values of ί/τ for various values of p' and τ.

Now we will study sample behavior of If/I,-. Let A = (A l5...,!p)' be
factor loadings estimated with FA based on a sample variance-covariance
matrix S of sample size n + 1 from a p-variate normal distribution
(n > p). Then
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where θ^ is the largest eigenvalue of S, /= (/ι,...,/p)' is the eigenvector
corresponding to Θί9fl>0 and /'/= 1.

THEOREM 5.3. Expectation and variance of λjλj are given as follows:,

(5.2)

(5.3)
w \ "/ l \α =

+ 2 Σ

Σ
α^ t/jβί/

ot,/3 — 2

Σ

orthogonal matrix such that

θί> Θ2>Θ3>'">ΘP are the eigenvalues of Σ and θΛβ = ΘΛ — θβ. Π

PROOF. Let

H'SH = Γ+

where 7" = diagj^ ••• θp}, and let c = (CI,...,CP)' be the eigenvector corre-
sponding to the largest eigenvalue g of H'SH where c^ > 0 and c'c = 1.

Since all the elements of Σ are positive, owing to Perron's theorem (see e.g.
§lc(xi) of Rao [21]), θl is a simple root. Therefore, an asymptotic expansion
of the eigenvector is given as follows (see e.g. (6.1) of Sugiura [29]):

where K=
Multiplying H on the lefthand side to H'SHc = gc, we obtain SHc =

This means that He is an eigenvector of 5;
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(5.6) f=Hc.

Substituting (5.4) and (5.5) to (5.6), we obtain

= ^ii H—T-V\I} + -{homogeneous polynomial of degree 2 in K/'s}>

P

where t;j1) = £ hiΛVΛί/θίΛ.

Since λi/λj =fi/fj and λjλj = hn/hjl9 we have

/c *7\ Iv\(\ I 2 2 / T ^

y(D ^. I

= — --- τL^/1 ) H — τ~ {homogeneous polynomial of degree 2 in K. 's}

Noting that E{J^b} = 0, we obtain

which proves (5.2).

Next, we calculate the variance. Noting that E{VabVcάVef} = O(l/^/n) (see
Siotani, Hayakawa and Fujikoshi [27; Problem 4.3.4]), from (5.7) we have

^^ VI 2fcίι

Q I f T3~
C/iα / J Λ / l

Result (5.3) is obtained by using the well-known formula E{VabVcd} = σacσbd

+ Gad<*bc- D
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6. Multifactor case

6.1. Examination of the method of deciding the number of factors

We examine the rule where factor size is taken as the number of

eigenvalues of a correlation matrix which are greater than one.

THEOREM 6.1. Suppose that a population correlation matrix P has a

structure

P = ΛΛ' + Ψ,

where A is a p x k (p > k) matrix of rank k and Ψ is a diagonal matrix with

positive diagonal elements. Then, the number of eigenvalues θi of P greater

than one is at most k. Π

Before a proof is described, a lemma is introduced.

LEMMA 6.1. (Wilkinson ([39, pp. 97-98]) Suppose that A is a p-order

symmetric matrix and let

Let τ1 > -•- > τp and tl> •••> tp be the eigenvalues of A and B, respectively.

Then

ti = τ£ + dWi,

p
where 0 < vvf < 1 and £ wt = 1. Π

i = l

PROOF of Theorem 6. 1. Let u1 > ••• > up be the eigenvalues of P + / - Ψ.

Noting that

^1 O - -O} + diag {0 \-ψ2 O- O}

+ + diag{0 0 l-ψp}9

and using Lemma 6.1 successively, we obtain

ut > θi for i = l,...,p.

Since

p + / -ψ=AA' + /

and ΛΛ' is a positive semidefinite matrix of rank fe, the number of ut > 1 is

k. Therefore, the number of θt > 1 is at most k. Π
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Table 6.1. Substitute use of PCA: an inappropriate example

Λ =

.3

.3

.9

.9

.9

. .9

.0

.0

.4

.4

-.4

-.4

m.

A =

' .40

.40

.89

.89

.89

. -89

θι = 3.15

.67
-.67

.0

.0

.0

.0

.91

.62

.62
-.14

-.14

-.14

-.14

.85

.0 '

.0

.41

.41

-.41

-.41 .

.67

P = A A' + diag (/ — A A'). The other eigenvalues are .03 (multiple).

This theorem states that the number of θ{ > 1 is at most k. Table 6.1

provides an example where this number is less than k. Further, we note that

even if we know the true value k and take as largest fe eigenvalues, the
corresponding loadings may not be an appropriate approximate of A. Table

6.1 demonstrates an example; The loadings corresponding to the fourth

eigenvalue are the appropriate values for the second column of A.
Further, if we make a sample correlation matrix, the (k + l)-th eigenvalue

will be sometimes more than one by sampling fluctuation.

6.2. Properties of the loadings calculated with PCA

First we treat a complete simple structure. This structure is reduced to a
combination of monofactor cases by changing order of variables. Therefore,

the remarks on a monofactor, which are given in Sato [24], are also

valid. Further, it may be noted that even if some loadings of the FA model

equal, the loadings corresponding to the same one calculated with PCA differ,
because the latter ones depend on other loadings and the number of

variables. Therefore, when we compare loadings among some factors, we must

pay attention to this property. We provide some examples, relating to such

a property.

EXAMPLE 6.1. In the following examples, P = AA + diag (/ - ΛΛ').

Γ.7 .35 .05 .0 .0 .0 .0 .0 .0 .0 .0 .0 .OT

L O .0 .0 .7 .35 .9 .9 .9 .9 .9 .9 .9 .9_Γ

~ [.785 .779 .164 .0 .0 .0 ••• .0 T
then, A =

L.O .0 .0 .741 .391 .909 ••• .909 J
value .35 in the FA model, the value calculated with PCA in the first column is
about twice as that in the second column; .779 = 782 = .391 x 2.

_, . Γ.5 .5 .5 .0 .0 .0 .0 .01'
If Λ — \ h

L.O .0 .0 .6 .6 .6 .6 .6_Γ

For the same
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then, .5 = .707 > .699 = .6. Here, a figure with a symbol ~ denotes a value
calculated with PCA.

Γ.4 .4 .4 .0 .0 .0 .0 .0 .0 .0 .01'
11 A = \ ,

L.O .0 .0 .6 .6 .6 .6 .6 .6 .6 .6_|

then, A = .663 = .6.

Hereafter we investigate structures which are not complete simple.

6.2.1. A treated form and problems of rotation

Consider a structure which we encounter very often in the analysis of
empirical data; many variables are affected by only one factor and few are

by more than one. As a simple case, we investigate precisely the following

structure :

1, ... ί . 0 0

0 .
r, . 0 0 ... 0 7

0 β v, v2 ... vpj

where Pι>2 and p2 > 2.
We are interested to know whether A is near to A or not. Since A has so

many parameters, we treat more simple case; suppose λ{ = ••• = λPl, say λ, and

V l = ... = Vp2, say v. To judge whether A is near to A or not in the sense of

configuration, we pay attention to the following indices, which researchers are
interested in:

(II) β/Λ (12) α/λ or β/v and (13) λ/v.

We compare β/Z with β/α, α/I with α/λ and so on.

Before starting an argument, it is necessary to determine which rotation
should be adopted, since there exists indeterminacy of a rotation for a loading
matrix in multifactor cases. A varimax or a quartimax rotation, which is

widely used, is not suitable for structure (6.1); more precisely, the criteria of
these rotations are not optimum for (6.1). Further, for a Procrustes rotation,
whose criterion is minimizing the sum of squares of differences between the

corresponding elements of a matrix AT and a predetermined target matrix
where TT' = /, it is very difficult to specify a target matrix.

An appropriate rotation for the present study is proposed as follows :

ALGORITHM (varimax rotation for simple structure variables)

(1) Omit the row in which α and β exist from the loading matrix.
(2) Calculate the varimax rotation matrix for the current (p - l)-rowed

loading matrix.
(3) Multiply this rotation matrix to the original p-rowed loading matrix.
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In a practical situation, researchers have the following information on

treated data : which variables are affected by only one factor. Hence, program-
ming for this algorithm is easy. We applied this rotation, say, varimax rotation

for simple structure variables, to numerical examples in the present paper.

EXAMPLE 6.2. We try to clarify validity of some rotations. Let

Γλ λ A Q 07
Λ = \ , where λ = .l(.2).9.

LO 0 .8 .7 .7_Γ

In order to discuss not substitute use but a rotation problem, we treat not

A but Λ. Four kinds of rotations are performed;
V : varimax rotation,
Q: quartimax rotation,
Px : Procrustes rotation with a target matrix

λ λ .8 0 07

O 0 .4 .7 .7_Γ

P2: Procrustes rotation with a target matrix

Γ.7 .7 .8 0 OΊ'

L 0 0 .4 λ λ]'

P3: Procrustes rotation with a target matrix

λ λ .6 0 OΊ'

O 0 .6 .7 .7j '

Proposed: the proposed rotation.

In order to examine adequacy of these rotations, we calculate the following
indices

(II) (^2/^)/(λ32/λ^ (12) (^MίiWsiMii), (^2/^2)/(λ32/λ52) and

(13) (AJ 1/A? 2)/(A 1 1/A 5 2),
where λ J is the ( i , j ) element of the rotated loading matrix. Desirable values
are 1.000. Table 6.2 presents the results; None of the rotations except the
proposed method (the varimax rotation for simple structure variables) are
appropriate for (II) and (12).

6.2.2. Numerical Experiments

The aim of the following experiments is to compare A with Λ from the
viewpoint of the above indices.

EXPERIMENT 6.1. Suppose
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Table 6.2. Validity of various rotations

rotations

P3 Proposed

.1

.3

.5

.7

.9

.1

.3

.5

.7

.9

.1

.3

.5

.7

.9

.1

.3

.5

.7

.9

1.140
1.140
1.140
1.140
1.140

.900

.900

.900

.900

.900

1.025
1.025
1.025
1.025
1.025

1.000
1.000
1.000
1.000
1.000

(>

1.181
1.181
1.181
1.181
1.181

(
.874
.874
.874
.874
.874

(Λ
1.032
1.032
1.032
1.032
1.032

W
1.000
1.000
1.000
1.000
1.000

Iξz/λξJ

.538

.565

.610

.663

.714

l*ι Mίi)
1.585
1.533
1.453
1.369
1.296

&M52)
.854
.867
.887
.908
.926

*lM*2)

1.000
1.000
1.000
1.000
1.000

ι/μ32M
.362
.508
.600
.663
.709

/μ31M
2.093
1.649
1.471
1.369
1.304

/(λ32/λ,

.739

.838

.882

.908

.924

1.000
1.000
1.000
1.000
1.000

.727

.746

.776

.810

.842

1.279
1.255
1.218
1.179
1.145

.930

.936

.945

.955

.964

$2)
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

NOTE λ*: an element of the rotated matrix

_ Γ λ λ ••• λ α 0 0 ••• 01'

~|_0 0 ••• 0 β v v ••• v j '
- P2

P = AΛ + diag (/ - ΛΛ') and let

- Γλλ λ ΰ e e eΊ'
Λ = \

\_ e e e β v v v J

(1) Set Pl = p2 = 2, 3 and 5 ; α = .5, β = .5, (jj/α = 1), α = .4, β = .8
(j9/α = 2), α = .3, β = .9 (β/n = 3) and a = .24, β = .96 (β/« = 4); λ = v =
.1(.2).9.

(2) Set P! = p2 = 2, 3 and 5; combinations of α and β are the same as (1);
λ = .7 (fixed), v = .l(.2).9.

(3) Set P! = 2 (fixed), p2 = 3, 4 and 6; combinations of α and β are the
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Table 6.3. Validity of loadings calculated with PC A from the viewpoint of some indices

(1) Pi = P2 = 2 Pi = P2 = 3 Pi = P2 = 5

β/OL β/OL β/OL

λ 1 2 3 4 1 2 3 4 1 2 3 4

<β/S)/(β/*) Φ/Λ)/(β/*) (β/Λ)/(β/*)

.1

.3

.5

.7

.9

.1

.3

.5

.7

.9

.1

.3

.5

.7

.9

.1

.3

.5

.7

.9

1.000

1.000

1.000
1.000

1.000

.164

.473

.741

.963

1.143

.164

.473

.741

.963

1.143

1.000

1.000

1.000

1.000
1.000

.979

.993

.998

.999
1.000

.124

.373

.608

.815

.990

.142

.407

.638

.835

1.000

(A/v)/

1.173
1.098

1.052

1.025
1.011

.972

.991

.998

.999
1.000

.115

.352

.578

.781

.954

.139

.393

.614

.803

.964

(A/v)
1.237
1.128

1.064

1.029
1.010

.970

.991

.998
1.000
1.000

.110

.338

.559

.759

.931

.135

.381

.595

.780

.937

1.263

1.139

1.067

1.028
1.007

1.000

1.000

1.000
1.000

1.000

.197

.539

.796

.979
1.106

.197

.539

.796

.979

1.106

1.000

1.000

1.000
1.000

1.000

.982

.996

.999
1.000

1.000

.150

.437

.676

.859

.996

.171

.467

.607

.871

1.001

(A/v)/(/

1.159
1.074

1.032
1.014

1.006

.976

.995

.999
1.000

1.000

.140

.414

.648

.831

.968

.167

.451

.673

.843

.973

l/v)

1.216

1.096

1.040
1.015
1.005

.974

.995

.999

1.000

1.000

.134

.399

.630

.811

.949

.162

.438

.655

.822

.952

1.240
1.103

1.040
1.014

1.003

1.000

1.000

1.000
1.000

1.000

.248

.626

.856

.989
1.069

.248

.626

.856

.989

1.069

1.000

1.000

1.000
1.000
1.000

.986 .982

.998 .998

1.000 1.000

1.000 1.000

1.000 1.000

.191 .179

.525 .501

.756 .731

.904 .882

.999 .980

.215 .209

.549 .531

.768 .746

.909 .887

1.001 .982

(A/v)/(A/v)

1.139 1.188

1.048 1.062

1.016 1.019
1.006 1.006
1.002 1.002

.980

.998

1.000

1.000

1.000

.172

.486

.751

.866

.966

.203

.516

.728

.871

.967

1.208
1.065

1.019

1.005
1.001

(2)

V

.1

.3

.5

.7

.9

1

.280

.660

.868
1.000

1.091

Pi =1

β/

2

(βlΛ)l

.351

.638

.839

.999
1.136

?2 = 2

Λ

3

'(β/Λ)

.361

.640

.833

.999

1.148

4

.385

.637

.828

1.000
1.155

1

.387

.771

.922

1.000
1.045

Pi =P

β/

2

(j5/ά)/(

.429

.726

.834

1.000
1.089

2 = 3

Λ

3

'β/Λ)

.481

.723

.877

1.000
1.100

4

.501

.716

.871

1.000

1.108

1

.531

.871

.963
1.000

1.018

Pi = P2 = 5

β/*

2 3

(β/Λ)/(β/Λ)

.556 .595

.805 .795

.924 .915

1.000 1.000

1.052 1.061

4

.604

.786

.908
1.000

1.068

.1 1.202 1.267 1.320 1.330 1.130 1.146 1.159 1.157 1.070 1.064 1.065 1.063

.3 1.094 1.029 1.022 1.012 1.049 .991 .982 .973 1.020 .974 .966 .959

.5 1.015 .898 .873 .855 1.004 .910 .889 .874 .979 .930 .914 .902

.7 .963 .815 .781 .759 .979 .859 .831 .811 .989 .904 .882 .866

.9 .929 .758 .718 .693 .963 .825 .791 .768 .984 .888 .861 .843
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Table 6.3. (Continued)

(β/v)/(β/v)
.1 .055
.3 .359
.5 .690
.7 .963
.9 1.176

.069

.349

.614

.835
1.017

.088

.361

.601

.803

.972

.100

.361

.588

.780

.942

.086

.457

.767

.979
1.119

.103

.425

.682

.871
1.010

.124

.428

.665

.843

.977

.135

.424

.649

.822

.955

.139

.576

.843

.989
1.073

.154

.521

.760

.909
1.005

.174

.515

.741

.887

.984

.181

.507

.725

.871

.969

(λ/v)/(λ/v) Wv)/(λ/v) (λ/v)/(λ/v)

.1 .165

.3 .498

.5 .783

.7 1.000

.9 1.160

.173

.532

.815
1.025
1.181

.186

.551

.826
1.029
1.180

.196

.561

.829
1.028
1.176

.197

.565

.829
1.000
1.111

.209

.591

.847
1.014
1.124

.223

.603

.852
1.015
1.123

.232

.609

.853
1.014
1.121

.245

.648

.876
1.000
1.070

.261

.664

.884
1.006
1.076

.275

.671

.886
1.006
1.076

.283

.673

.886
1.005
1.075

(3) Pί = 2, p2 = 3 Pi =2, p2=4 Pi =2, P2 = 6

β 1 ~ β 1 ~ ft 1 ~p/ct p/K p/oί

λ 1

.1 1.131

.3 1.035

.5 .985

.7 .956

.9 .938

.1 .150

.3 .458

.5 .738

.7 .972

.9 1.160

.1 .213

.3 .553

.5 .799

.7 .972

.9 1.095

.1 1.255

.3 1.167

.5 1.099

.7 1.046

.9 1.006

2

1.133
1.074
1.035
1.007
.985

.109

.349

.590

.807

.994

.178

.475

.702

.873
1.000

(λ/v)/

1.443
1.267
1.151
1.073
1.021

3

W«)
1.133
1.083
1.047
1.020
.998

.100

.325

.556

.769

.954

.170

.455

.676

.844

.973

1.501
1.293
1.161
1.077
1.022

4

1.134
1.090
1.056
1.029
1.007

.095

.311

.535

.743

.926

.164

.441

.656

.823

.952

1.523
1.300
1.163
1.077
1.021

1

1.226
1.054
.974
.932
.906

.141

.449

.736

.976
1.168

.253

.610

.835

.977
1.070

1.465
1.289
1.163
1.074
1.011

2

1.256
1.133
1.061
1.012
.977

.099

.333

.578

.803

.996

.206

.525

.745

.896
1.000

1.660
1.390
1.216
1.102
1.028

3

(/?/«)
1.263
1.154
1.084
1.035
.997

.090

.308

.541

.760

.953

.195

.502

.719

.871

.978

1.712
1.413
1.225
1.107
1.029

4

1.268
1.167
1.100
1.051
1.013

.086

.293

.518

.733

.923

.188

.485

.699

.852

.961

1.731
1.418
1.227
1.106
1.029

1

1.461
1.079
.950
.892
.859

.120

.432

.734

.984
1.180

.364

.736

.903

.987
1.035

2.072
1.579
1.294
1.125
1.021

2

(β/S)/(β

1.600
1.280
1.119
1.025
.963

.079

.300

.554

.794
1.001

(/?/v)/(y

.287

.647

.836

.940
1.000

2.272
1.683
1.348
1.155
1.038

3

/«)
1.634
1.338
1.173
1.069
.997

.071

.272

.510

.744

.952

.267

.618

.813

.923

.988

2.309
1.699
1.357
1.160
1.041

4

.653

.374

.211

.101

.024

.067

.256

.484

.711

.917

.256

.599

.795

.909

.978

2.319
1.702
1.359
1.161
1.042
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same as (1); λ = v = .1(2).9.

Table 6.3 shows the results:
(11) β/oί: If monofactor parts of a complete simple structure are identical,

β/Sί approximates /?/α for all β/a. Further, as Pι(=p2) increases, an
approximation is closer. If monofactor parts of a complete simple structure
are not identical, that is, λ = v but pl φ p2, or p± = p2 but λ φ v, then β/oί

is far from β/α.
(12) Λ/λ or β/v: If λ or v is small, I -λ and v — v tend to

positive. Values α/I and β/v are far from α/v and β/v, respectively.

Table 6.4. Calculated loadings with PCA for some typical cases

(1-1)

y

.1

.3

.5

.7

t .7 .7

.0 .0

ι 7 Γ 812 812

If v = .1, Λ =
L-.002 -.002

comm. -660 .660
model's comm. 490 .490

r Γ .817 .817
If v = .3, Λ =\

L-.016 -.016

comm. -667 .667
model's comm. 499 .490

~ Γ .832 .832
If v = .5, Λ = \

L-.021 -.021

comm. .692 .692
model's comm. 490 .490

~ Γ .850 .850
If v = .7, Λ = \

L-.013 -.013

comm. 7^3 .723
model's comm. 499 .490

^32/^31 *31/ίll

^32/^31 ^31/^11

.224 1.000

.599 .976

.832 .891
1.000 .769

.7

v

.812 -

.026

.660

.500

.0

v

.002

.711

.505

.010

.798 -.015

.205 .733

.678

.580

.741 -

.440

.743

.740

.653 -

.653

.854

.980

^•32/^52

^32/^52

.037

.279

.568

.769

Compare the above with monofactor cases;

.538

.090

.021

.776

.602

.250

.013

.850

.723

.490

Let

]'

'

-.0021'

.711 J '

.505

.010

-.0151'

.733j *

.538

.090

-.0211'

.776 J '

.602

.250

-.013T

.850 J '

.723

.490

ϊl 1/^52

*llM52

.163

.477

.766

1.000

Λ = (v v v)'

and Λ = (v v v)'.
v v

.1 .583

.3 .627

.5 .707

.7 .812
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Table 6.4. (Continued)

(1-2)

Γ 7

.1

.3

.5

.7

.9

L -0

if v -.U-f 816

L-.016

comm. 666

model's comm. 490

I f v = .3, Λ = \
L-.026

comm. -691
model's comm. 499

Γ -842
If v = 5 Λ = \

L-.020

comm. -710
model's comm. 499

Γ 850
If v = 7 Λ = \

L--013

comm. -723
model's comm. 499

If v = .9, Λ =
L-.008

comm. -731
model's comm. 499

^32/^31 ^31/I

^•32/^31 *3lM

.221 .985

.573 .899

.817 .824
1.000 .769
1.146 .729

.7

.0

.816

-.016

.666

.490

.831

-.026

.691

.490

.842

-.020

.710

.490

.850

-.013

.723

.490

.855

-.008

.731

.490

11

11

.7

.7

.801

.177

.674

.980

.746

.428

.740

.980

.694

.567

.802

.980

.653

.653

.854

.980

.623

.714

.898

.980

^32/^5

*32/*5

.036

.254

.524

.769

.973

Compare the above with monofactor cases

.0

v

-.013

.706

.499

.010

-.022

.720

.519

.090

-.019

.772

.597

.250

-.013

.850

.723

.490

-.008

.943

.890

.810

i2

12

Let

v J '

-.0131'

.706 J '

.499

.010

-.0221'

.720 J '

.519

.090

-.0191'
.

.772J

.597

.250

-.0131'
.

.850 J

.723

.490

-.0081'

.943 J '

.890

.810

ίl 1/^52

>lllMs2

.165

.494

.779
1.000
1.165

Λ=(.Ί v v)'

and A = (.7 v v)'.

v .7

.1 .724

.3 .756

.5 .786

.7 .812

.9 .836

v

.538

.622

.713

.812

.918

(.7/v

.192

.521

.787
1.000
1.171
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Table 6.4. (Continued)

(2-1)

J
Λ

.1

.3

.5

.7

Γ λΛi .0
If Λ-.1.J-Γ 638

L-.073

comm. -412
model's comm. 010

[ 678

-.060

comm. -464
model's comm. 090

[ .752

-.038

comm. 567

model's comm. 250

I f A = .7,J=Γ 85°
L-.013

comm. -723
model's comm. 490

^32/^31 Λ 3lM

^32/^31 A 3 1 /λ

1.000 .691
1.000 .712
1.000 .741
1.000 .769

λ

.0

.638

-.073

.412

.010

678

-.060

.464

.090

.752

-.038

.567

.250

.850

-.013

.723

.490

u

n

/I

A

.441 -

.441

.388

.020

.483 -

.483

.466

.180

.557 -

.557

.621

.500

.0

λ

.073

.638

.412

.010

.060

.678

.464

.090

.038

.752

.567

.250

.653 -.013

.653 .850

.854

.980

^32/^52

^32/^52

.691

.712

.741

.769

.723

.490

° ΐλ ]
-.0731'

.638 J '

.412

.010

-.0601'
.

.678 J

.464

.090

-.038T
.

.752J

.567

.250

-.0131'

.850 J '

.723

.490

In/I52

A n / A s a

1.000
1.000
1.000
1.000

Compare the above with monofactor cases Let A = (λ λ λ)'

and Λ=(λλλf.
λ l

(2-2)

.1

.3

.5

.7

Γ
Λ=ι
A Γ

L
comm.

model's comm.

~ Γ
L

comm.
model's comm.

.583

.627

.707

.812

λ

.0

.647

-.064

.422

.010

.683

-.056

.469

.090

λ

.0

.647

-.064

.422

.010

.683

-.056

.469

.090

W2
λ/l/2

.412

.412

.340

.010

.443

.443

.393

.090

.0

λ

-.064

.647

.422

.010

-.056

.683

.469

.090

.0

λ

-.064

.647

.422

.010

-.056

.683

.469

.090
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Table 6.4. (Continued)

If λ = 5 μ/v/2 = 3<
'

model

54) Λ = ΓL
comm.

's comm.

If λ = .7, (Λ/v/2 = .495), Λ=\

model
comm.

's comm.

If λ = .9, (λ/^/2 = .636), Λ =

j
Λ

.1

.3

.5

.7

.9

model

I32/I31

^32/^31

1.000
1.000
1.000
1.000
1.000

comm.
's comm.

.749

-.042

.563

.250

.838

-.025

.703

.490

.943

-.008

.889

.810

ίaiMu

^3lMll

.901

.919

.944

.970

.991

.749

-.042

.563

.250

.838

-.025

.703

.490

.943

-.008

.889

.810

i

L

.500

.500

.500

.250

.574

.574

.660

.490

.661

.661

.873

.810

^•32/^-52

^32/^52

.901

.919

.944

.970

.991

-.042

.749

.563

.250

-.025

.838

.703

.490

-.008

.943

.889

.810

-.0421'

.749j '

.563

.250

-.0251'

.838 J '

.703

.490

-.0081'

.943 J '

.889

.810

ίll/Ϊ52

Λ l 1/^52

1.000
1.000
1.000
1.000
1.000

Compare the above with monofactor cases Let Λ — (λ λ λ/^/2)' and

λ λ y (y/λ)/((λ/^2)/λ)

.1 .606 .530 1.236

.3 .644 .563 1.236

.5 .713 .623 1.236

.7 .805 .704 1.236

.9 .914 .799 1.236

(2-3)

If β

Γ

^"L
_ Γι ' ' ι = [__

comm.
model's comm.

lίβ =

model

Uβ-

model

_

comm.
's comm.

*M-
comm.

's comm.

.7

.0

.814

.007

.662

.490

.824

Ό17

.679

.490

.838

.018

.702

.490

.7

.0

.814

-.007

.662

.490

.824

-.017

.679

.490

.838

-.018

.702

.490

.7

β
.807

.116

.665

.500

.771

.331

.704

.580

.714

.510

.771

.740

.0

.7

-.007

.862

.743

.490

-.017

.856

.733

.490

-.018

.850

.723

.490

.0

.7

-.007

.862

.743

.490

-.017

.856

.733

.490

-.018

.850

.723

.490
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Table 6.4. (Continued)

0

P

.1

.3

.5

.7

and

If ,-.7. ,,'-[_

comm.
model's comm.

I32/I31

^32/^31

1.002
1.001
1.000
1.000

Compare the above
Λ = (β .7 .7)'.

/?
.1
.3
.5
.7

.850 .850

.013 -.013

.723 .723

.490 .490

In/In

Λ a i M l l

.992

.936

.853

.769

with monofactor

β .?
.234 .853
.544 .817
.707 .805
.812 .812

.653 -.013

.653 .850

.854

.980

ί32/I5

^32/^5

.938

.902

.841

.769

cases

(β/

.723

.490

2

2

Let Λ

1.924
1.556
1.229
1.000

-.013T

.850 J '

.723

.490

Λ i iMsz

Λ l lMs2

.944

.963

.985
1.000

= (β 7 -.7)'

(13) λ / v : If monofactor parts of a complete simple structure resemble each
other, λ/v approximates λ/v.

EXPERIMENT 6.2. The aim of this experiment is to investigate the case of a

typical loading form more precisely. Let a general form of loading matrices be

_ Γ λ λ α 0 07

~~|_0 0 β v v j
and P = AΛ' + diag (/ - AΛ').

Then, from Table 6.4 we can see the following properties:

(1) The cases where monofactor parts of a complete simple structure are
not identical;

(1-1) Let λ = α = .7 and β = v = .1(.2).7. In this form, the differences
between two columns of A are larger with decreasing v. The values of β — β
are negative, on the other hand, the ones of v — v are positive consequently,

β/v is far from β/v. When v is small, |v — v| is large and λ/v is far from λ/v.

(1-2) Let λ = a = β = .Ί and v = .l(.2).9. In this form, the differences

between two columns of A are smaller than the ones of (1-1). The values

of β — β are negative; δί/β is far from α//? as v is away from α. Note that

β « v even if β > v.

(2) The cases where monofactor parts of a complete simple structure are
identical

(2-1) Let λ = a = β = v = .l(.2).7. In this case, both the values α — α and

β — β are negative.
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(2-2) Let α = j? = /l/N/2 and v = λ = .1 (.2) .7. In this form, all the communali-
ties are equal. The values of α - α and β — β are smaller than those of (2-1).
(2-3) Let Λ = α = v = .7 and j8 = .l(.2).7. This form is often assumed in
practical situations, and researchers wish to know β. We note that β is near to
β for all β.

Experiments 6.1 and 6.2 deal with only the cases that λ, v, α, β > 0.
However we can assume A, v > 0 without loss of generality. Further if α < 0
and/or β < 0, the absolute values of the elements of Λ are invariant. In

fact, if α < 0 and/or β < 0, then

Γ λ λ - λ uoί uve uve - uve T
Λ = \ o ~ ~ - >[_ uve uve ••• uve vβ v v ••• v J

« Pi > * P2 "

where u = sgn α and v = sgn β. Here I, v, α, β and e are the elements of Λ

for the case λ, v, α, β > 0.

6.2.3. Analytical Results
For some special cases, we can obtain Λ explicitly, and, as a result, some

properties are obtained.

THEOREM 6.2. Let

'λ λ ... λ α 0 0

0 ... 0 α λ λ

.-. OΊ'

... λ_Γ

where 0 < λ < I, 0 < α < 1/^/2, p = 2q + I and q>2, and
P = ΛΛ' + diag (/ - ΛΛ 7)-

Then, after being rotated by the method proposed in Section 6.2.1, Λ can be
expressed as a following form:

Λ =

where

Vt ( ... f a e e •- e T

\_e e ... e a { ( - ΐ \

(p - 3)λ2 + λj{(p - 3)2λ2 + 16(p - l)

12 + 16(p - l)α2 - (p - 3)A7{(p - 3)2A2 + 16(p -

(P - 3)A2/2)/(2(p - 1))},

e = 7{{α2(4 + (p - 3μ2 + λj{(p - 3)2A2 + 16(p - l)α2})}/

{(p - 3)2A2 + 16(p - l)α2 - (p - 3)λJ{(p - 3)2A2 + 16(p -
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+ (P - 3)A2/2)/(2(p - 1))} and

(p - 3)λ2 + ^^{(p - 3)2Λ2 + 16(p - l)

{(p - 3)2A2 + 16(p - l)α2 + (p - 3)λV{(p - 3)2A2 + 16(p - l)α2}}}.

The largest and the second eigenvalues θ ̂ > Θ2 of P are given by

θ, = 1 + ((p - 3)2λ2 + λj{(p - 3)2^2 + 16(P - l)«2})/4 > 1,

Θ2 = 1 + (p - 3μ2/2 > 1. Π

COROLLARY 6.1. Under the same assumptions as Theorem 6.2, // follows

that

(1) e < 0.
(2) The inequality a > ( < ) α /z0/ώ? according to

4(p - I)2 + 2(p - ̂ {(p - 2)2λ2

l)). D

Table 6.5 presents the boundary shown in (2) of Corollary 6.1 for

λ = . 1 (.2) .9 and p = 5(2)21. The numerical experiment for the cases of p = 5,

A = .01 (.01) .99 and α = .!(.!) .9 shows the following: λ<λ when λ = .97 for
α = .3-.4; λ = .98 for α = .2-.5; and λ = .99 for α = .2-.6; otherwise, I > λ

Γλ~ λ α o-o T
Table 6.5. Boundary between ά > α and ά < α, when A =

LO O α λ λ J

P

λ
.1
.3
.5
.7
.9

5

.513

.545

.583

.628

.679

7

.511

.540

.577

.624

.678

9

.510

.537

.574

.621

.677

11

.509

.535

.572

.619

.676

13

.508

.533

.570

.618

.675

15

.508

.532

.569

.617

.675

17

.507

.531

.568

.616

.675

19

.507

.530

.567

.616

.675

21

.507

.530

.566

.615

.674

COROLLARY 6.2. Let

λ λ 0 0 ••• 0_Γλ λ •••= LO o . . . 0 λ λ λ ... λ

where 0 < λ < 1/^/2, p = 2q + I and q > 2, and P = ΛΛ' + diag (/ - ΛΛ').
Then, after being rotated by the method proposed in Section 6.2.1, A can be

expressed as a following form:
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A
Vf < ••• t a e e ••• e T

|_ e e - - - e a £ £ (J

Further it holds that
(1) a > ( < )λ according to

- l)(7p - 5 + {/72 + lOp - 7})/{2(3p2 - 5?

(2) Λ > A . Π

Table 6.6 presents the boundary shown in (1) of Corollary 6.2 for

p = 5(2)21.

Γ i i λ o o T
Table 6. 6. Boundary between λ > λ and λ < λ, when Λ =

LO O λ λ~ λ J
9 11 13 15 17 19 21

boundary .606 .599 .595 .592 .590 .589 .587 .586 .586

6.2.4. Concluding Remarks
Consider the situation where researchers explore a latent structure in

practice. They do not always examine loadings precisely they are interested in
signs of the loadings and see roughly whether absolute values of the loadings
are large or small. Nevertheless, the loadings calculated with PCA or their
ratios may be far from the ones in the FA model. Further, we note that the
following difficulties (Dl), (D2) and (D3) arise:
(Dl) A varimax and a quartimax rotation, which are widely used without
careful consideration, are not always appropriate for other cases except a
complete simple structure.
(D2) Differences between the values of loadings calculated with PCA and the
corresponding values of an FA model in multifactor cases tend to be larger than
those in monofactor cases. Further, an order of calculated values may not
coincide with an order of model's values; see (1-2) of Experiment 6.2 (On the
other hand, in monofactor cases, the order of calculated values is guaranteed
(Sato [24])).
(D3) When discrepancy between monofactor parts of a complete simple
structure is large, substitute use is inappropriate.
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