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0. Introduction

Beukers proved some congruences for the numbers bn = Σ(E)2("ί*) which
were introduced by Apery. We shall give another proof of these congruences by
using Greene's result on hypergeometric series over finite fields.

1. Some facts on hypergeometric series over finite fields

Let p be a prime, > 3 and let Fp denote the finite field with p elements.
Throughout this paper, capital letters A, B, C and χ, φ9 p will denote multiplicative
characters of Fp. Given any multiplicative character A of Fp, we extend A to all
of Fp by defining ,4(0) = 0. ε and φ denote the trivial multiplicative character
and the character of order 2 respectively.

Finite analogue of binomial coefficients are defined as follows**:

BJ p-l

where J(A, B) denotes the Jacobί sum.
Then we have

where δ(x) = 0 if x Φ 0 and δ(x) = 1 if x = 0.
We may consider that these values are all in the p-adic number field Qp. We

identify Fp with Zp/pZp. Then we denote by ω the Teichmuller character of Fp9 i.e.

ω(x) mod p = x for all xεFp.

( A\ ί A\ p — I f A\*
} of binomial coefficients by I I = ( I .

Bj '\Bj p \BJ
In considering the reduction modulo p of special values of hypergeometric series over finite fields,

f A\*
our definition seems to be more convenient. It is clear that our I I also satisfy formulae (2.6),

\B/
(2.7) and (2.8) in [3], and other formulae can be easily modified.
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Then the set of all multiplicative characters of Fp is

{ωk',0<k<p-2}.

LEMMA 1. We have

ωk^* f ( . ) (mod p) for 0 < i < k,*y =

/ l θ (modp) fork<i<p-2.

PROOF. The proof is obtained by comparing expansions of both sides of
congruences: ω*(l + x) (mod p) = (1 + x)k.

The hyper geometric series over the finite field Fp is defined by

F*(A0,Aι,...,A \_γ (AoX\*(AlX\* (Aaχ\*

"-M ^.....Bj^-M JUJ UJ χ(x)

Our definition is different from Greene's n+1Fn: the relation is

In [3] , Greene evaluated certain special values of these hypergeometric series :

O if Bis not square,

-

(3) If we assume that A, B and ABC are not trivial, then we have

t(A9 _B, C Λ
3 2( AC, BC )

0 if C is not square,

= AB(- 1) \ (D\*( BD\* (φD\*( φBD\* 2

((A) (ABD) +( A) (ΦABD) lj ^~υ '

In [4], Greene and Stanton evaluated 3F2( | — 1):
\ ε, ε /

if ps 5, 1 (mod 8),
-p) (f p s 1,3 (mod 8),

where p = c2 + 2</2, for p=l,3 (mod 8).
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2. Congruences of Apery numbers

For any pair (m, /) of non negative integer m and /, we define the Apery
number of type (m, /) by

k

Put w = m + /, which is called the weight of the Apery number.

PROPOSITION 1. Let αί,m' β * be the Apery number of weight w. For any prime

p > 3, /?M/ p = 2f + 1. Γλew we

(modp).
\ o , ..., /

PROOF.

fd>Ύ\* /ώ\*
by Lemma 1. Since ί ^Λ J = χ(- l)ί ψ j , we have

\ A / \ Λ /

= .«-,(*'* ..... *!(-!)•) (modp).
\ o , ...,ε /

COROLLARY 1. If m + f = m' + /' 0«ί/ / = /' (mod 2), /Ae/i

α5p .o = fly.'.r) (mod/?).

Combining this result with (1), (2), (3) and (4) in the preceding section, we get

COROLLARY 2. The notation being as above and if p = 1 (mod 4) we put

p = 4/' + 1. Then we have

(1) 42'0) = φ(-l) (modp).

O (mod p) if p = 3 (mod 4),

( m o d p ) ι / p = l(mod4).
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f 0 (mod p) if p = 3 (mod 4),

(3) α/' Ξ ^ ^3 ̂ 2 (mod p) if p = 1 (mod 4).

(2,i) = f 0 (mod p) // p = 5, 7 (mod 8),
W ' ~ 1 φ(2)4c2 (mod p) if p=l93 (mod 8).

REMARK 1. The following result is easily proved; If the weight is odd and

£ is even, then αjp1*0 = 0 (mod p) if /? = 3 (mod 4) and if the weight is even and

< is odd, then a(f'e} = 0 (mod p) if p = 3 (mod 4).

The following congruences of binomial coefficients are well known : for any

prime p, p = 1 (mod 4), p = a2 + b2 with a = 1 (mod 4), then

= 2a (mod p).

Since ( {,,) = ( I ) Ξ ψp(- 1)( ^ ) (mod /?) with p = ωf', so we get
\ J J \pJ \ΦJ

l)/'2fl (mod/?).

Combining the above result with Corollary 2, we obtained the congruences

of Apery numbers proved in [1] and [6]: for example

THEOREM 1. The notation being as above, we have

0 (mod p) if p = 3 (mod 4),

4a2 (mod p) if p = 1 (mod 4).

Beukers proved this congruence by knowing the zeta functions of a singular

K3-surface. Our argument is different from his and may be convenient to further

generalizations.

3. Variant 1

In [6], Stienstra and Beukers gave the congruences for the following numbers

•(2k\

We shall show that these numbers also are related to special values of

hypergeometric series.

LEMMA 2. For any multiplicative character χ of Fp9 we have
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*Ύ = Wχ(4).
.ml \ x;

where δ(χ) = 0 if χ Φ ε and δ(χ) = 1 if χ = ε.

PROOF. This is proved by using the formula (2.16) in [3].

PROPOSITION 2. The notation being as above, we have

β, ε / (m°d P}

PROOF. We have

• /9LΛ _ , / Λ» \*2 /ω

2*\*

( ω* j (m°d P)

(mod p)

cf = Lk-^

\*2

τ) \ι) ~^\ι) \

- 1 (mod p).
ε, ε

In contrast to the preceding section, we get the following congruences by

using Theorem (13.1) in [6].

(mod p) if p = 2(mod 3),
3 2 - + 4e2 (mod p) if p = 1 (mod 3),

COROLLARY.

* (φ, φ9 φ Λ f - 1
2 V ε, ε / 1 - 1

p = e2 + 3^2 /or /? = 1 (mod 3).

The following problem arises from this result :

PROBLEM. Can we evaluate
ε, ε

4. Variant 2

The result in §2 shows why the Apery number bn at n = (p — l)/2 satisfy

interesting congruences modulo p. It is because such bn is connected to

/Φ, Φ, Φ i Λ Hence it js naturaι to consider whether 3F2 (*' '̂ ^ | Λ and
\ ε, ε / \ ε, ε /

3F2 ( 1 1 ) with \l/ and p characters of order 3 and 4 respectively are connected
\ ε, ε /

to the Apery numbers too.

Let p be a prime, p = 1 (mod 3). Put p = 3f + 1 = 6/' + 1 and put φ = ω2f

3^2



466 Masao KOIKE

and = ωf. Then we have

42/0) (mod p).

Since = χ(- 1) we have

4° 2) Ξ a*,2/' (mod p).

On the other hand, by (1) in § 1, we see that

and

/-> s\
= — e (mod p)

where p = e2 + 3g2, e = 1 (mod 3).

Hence we have

THEOREM 2. The notation being as above, we have

a ( f ' 2 ) = α^2/0) = — e (mod p).

To obtain the congruences for the Apery number α^/υ we have to evaluate

2fi ( I - l )> but this is not yet done.

By the same argument, we get

THEOREM 3. The notation being as above, we get

(m<x""ΞΞ 2eh (mod p),

where 4p = h2 + 3ι2 such that if 2 is a cubic non residue mod p then h = - 1

(mod 3), h is odd and i φ 0 (mod 3) and if 2 is a cubic residue mod p then h = - 1

(mod 3) and h is even.

Let p = 4f + 1 and put p = a>3f and p = ωf. We consider 3Fξ (P) A P \ 1).
\ ε, ε J

By (3) in § 1, this is equal to zero if p = 5 (mod 8). So we may assume that p = 1
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(mod 8) and p = 8/' + 1. Then we have

THEOREM 4. TTze notation being as above, we have

O (mod p) ifp = 5 (mod 8),

(mod „),/,, = , (mod 8,.
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