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§1. Statement of Results

Let X be a CW-spectrum, U a set of sub-CW-spectra of X satisfying (a)
for any two elements A, BeU, there is an element CeU such that A[]B a C,
and (b) {JAeuA = X; and let h* be a generalized cohomology functor represented
by a CW-spectrum. For these data, Araki-Yosimura [2], Yosimura [9] and
Bousfield-Kan [3] constructed a spectral sequence (Ef!'q9 d^q\r > 2) with
Eζ« = )ίm5ί€ϋh*(A)=>hp+*(X).

NOTATION 0. For neZ, Zn denotes the quotient group Z/nZ.

In this note we prove the following vanishing theorem:

MAIN THEOREM (= PROPOSITION 0). Let X,U,h* and {E^q) be as
above. Then:

( i) E£'*Z1 if p>2.
(ii) For qeZ the following exact sequence exists:

173,4-2 cΊ.fl-l fθ,q f2,q-l

where f is the naturally defined map.

(iii) This spectral sequence finitely converges.

If moreover any element AGU is finite, then the following (iv) and (v) hold:

(iv) £§•« = l i m ^ ^ Λ ) s Zx if p > 2.
(v) There exist exact sequences of Milnor type

Zx —> l i m U ^ - \A) — ^ hq(X) -U \\m«Aeυh\A) — , Zx.

We remark that (a) the surjectivity of / in (v) is due to a theorem of
Adams [1], but our proof of Main Theorem does not rely on [1]; and (b) (iv)
and (v) have already been proved under the following additional assumptions:
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'when h* is of finite type' in [2], 'when U is a countable set' (cf. [2]), 'when

/ι* is an ordinary cohomology with an arbitrary coefficient group' in

Huber-Meier [5].

In §2 we treat a general theory involving phantom maps ('K-zero' in the

terminology of the present note) and show that the composition of two

phantom maps is null homotopic (Proposition 11). In §3 the main theorem

is proved. In §4 we give some examples.

§2. F-projective spectra and F-injective spectra

NOTATION 1. tf denotes the category of CW-spectra and & denotes the

homotopy category of £f. sJS- denotes the category of abelian groups.

In this section we work in £f unless otherwise mentioned.

NOTATION 2. Let us fix symbols F", F', V which denote fixed one of

the triples satisfying the following conditions: (i) any element of V" is a finite

spectrum, (ii) for any finite spectrum A, there is a unique element BeV" such

that B is homotopy equivalent to A, (iii) V = VAeV»A, (iv) V— {Vn'( — )\neZ}.

DEFINITION 1. (i) Let X, Y be spectra. A map / : X ^ Y is a V-mono

(resp. V-epί resp. V-zero) if V(f) is a mono (resp. epi resp. zero

homomorphism). We also use the terms V-monic and V-epic. (ii) A homotopy

cofiber sequence X -> 7-> Z is V-short-exact if the corresponding sequence

(Zί)->V(X)^>V(Y)-+V(Z)->(Z1) is exact where (Z1) = (Zί\neZ). (iii) A
spectrum X is V-projective (resp. V-injectίve) if for any F-epi / : Y-+Z,

/*: [X, Π -• I*, Z] is epic (resp. if for any K-mono / : Y^ Z, / * : [Z, X~] -

[Y, X~\ is epic), (iv) A spectrum X is strongly V-projective if X is homotopy

equivalent to the wedge sum of finite spectra.

PROPOSITION 1. V" is a countable set and V is a countable spectrum, i.e.,

consists of countable (stable) cells:

PROPOSITION 2. Let (Xp\peP) be a collection of spectra. Then

( i ) VpepXp w V-projective iff Xp is V-projectίve for all peP.

(ii) Πpep-^p is V-inJectίve iff Xp is V-injective for all peP.

(iii) Any finite spectrum is V-projective.

(iv) A strongly V-projective spectrum is V-projective.

There propositions follow directly from the definition of V.

PROPOSITION 3. (i) For any spectrum X9 there is a strongly V-projective

spectrum Y and a V-epi f: Y-> X. (ii) A spectrum X is V-projective iff there

is a spectrum Y such that X v Y is strongly V-projective.
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PROOF, (i) Let Y = V F c χ > j F : f i n i t e F and / : Y-+X be the naturally defined

map. Then these are desired objects, (ii) is a corollary of (i).

PROPOSITION 4. If X is a countable spectrum, then there are spectra Y, Z

and maps f: Y-> Z, g: Z -• X such that Y and Z are both strongly V-projectiυe

and the sequence Y-> Z -> X is V-short-exact.

PROOF. Let Ft be finite subspectra of X (i = 0, 1, 2, ) such that Ft c Fi+1

{i = 0, 1, 2, ) and \JiFi = X9 and let fi:Fi-^Fi+1 be the inclusion map

(ΐ = 0, 1, 2, ••) and put Y= Z = V ^ Q F , , and let # be the naturally defined

map as in the proof of Proposition 3, p be the composition map of

Vifi' Vi>o^i-> v ; > i / i a n d c o P r o J e c t i ° n map V i S 5 lFj ;->F 0 v ( V ^ F f ) and
let / = idy — p (in y7). Then these are desired objects.

PROPOSITION 5. For any spectrum X, there is a V-injective spectrum Y

and a V-mono f\ X ->Y.

This proposition is a special case of the spectrum version of Proposition

4 in [6]. A simple proof was given by Yosimura [10]. For a proof, see

Proposition 19 below.

PROPOSITION 6. Let X be a spectrum. Then (i) X is V-projectiυe iff for

any spectrum Y and any V-zero f:X->Y, ' / = 0' holds, (ii) X is V-injectίve

iff for any spectrum Y and any V-zero f: Y-» X, ' / = 0' holds. (The proof is

easy.)

PROPOSITION 7. Let X be a spectrum and Y, Z be subspectra of X with

Z finite and f: Y-> X be the inclusion map. If f is a V-mono then there exists

a countable subspectrum G of X such that G => Z and the inclusion maps

YOG cz G and YUG <= X are both V-monos.

This proposition is a special case of the spectrum version of Proposition

1 of [6] since V is countable by Proposition 1. The following proposition

was essentially proved in [6].

PROPOSITION 8. A spectrum X is V-injective iff X satisfies the condition

(C): for any countable spectrum Y and any V-zero / : Y-> X, f is null homotopic.

PROOF. In this proof we work in the category Sf. Let X be a spectrum

satisfying the condition (C) as above, Y be a spectrum / : Y-+ X be a cellular

map which is a K-zero, and let Z be fixed one of the mapping cones of /

(note that a map between spectra is an equivalence class of functions) and

g: X ->Z be the inclusion map. Let A = {(#, h)\H is a subspectrum of Z

with / / D I , h: H ^ X is a cellular map with h\x = id x and the inclusion map

H a Z is a F-mono}. If we introduce a partial order relation • on A defined
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by the condition that (H, h) • ( # ' , h') iff H => fί' and Λl^ = /*', then, by Zorn's

lemma, we select an element (H0,h0)eA having the property that for any

element (H, h)eA, {H, h) • {Ho, h0) implies (#, h) = {Ho, Λo) Let F be a finite

subspectrum of Z. Then, by Proposition 7, there is a countable subspectrum

of G containing F such that the inclusion maps Hof)G a G and H0[}G c Z

are F-monos. From the condition (C), /z0 is extendable to H0[]G. This

implies that F a Ho hence # 0 = Z, i.e., / is null homotopic. Therefore X is

K-injective by Proposition 6. Conversely the K-injectivity of X leads us to

the condition (C) by Proposition 6.

PROPOSITION 9. /« ίΛe following diagram of spectra and maps, we assume

that two rows are homotopy cofiber sequences.

(i) If g, h, I are V-zeros, X is V-ίnjectίve, and P, R are V-projective, then

h = 0 (in <?).

(ii) If /, h, k are V-zeros, X, Z are V-ίnjective and R is V-projective, then

ft = 0.

PROOF, (i) Let X,/, etc. be as above. Since P is K-projective and hok

is a K-zero, we obtain h o k = 0, and there is a map m: R -• Y with

mol = h. Since K is K-projective and # o m is a K-zero, we obtain gom = 0,

and there is a m a p n: K->.ΛT with fon = m. Since Z is F-injective and no I

is a F-zero, we obtain nol = 0 and consequently h = mol = fonol = 0. (ϋ)

is dually proved.

PROPOSITION 10. Let X -> Y-^Z fte β V-short-exact sequence. Then:

(i) If Y is V-injective, then. Z is V-injective.

(ii) If Y is V-projective, then X is V-projective.

PROOF, (i) Let X, /, etc. be as above. Then by Proposition 8 it suffices

to prove that for any countable spectrum P and any K-zero k: P -* Z, '/c = 0'

holds. Let h\ Z -+ ΣX be a connecting map of the above sequence. By

Proposition 4, there are spectra Q, R and maps p, q such that the sequence

R^Q^P is K-short-exact and Q, R are K-projective. Let r: P-+ΣR be a

connecting map of this sequence. Then by considering the diagram:

, we obtain k = 0 by Proposition 9. Hence Z is K-injective. (ii)
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is dually proved by using (i).

As corollaries of this proposition, we can show the followiong three

propositions.

LEMMA 1 ( = PROPOSITION 11). Let f\X-^Y and g: Y-+Z be V-zeros.

Then gof=0.

PROOF. Let X, / etc. be as above. By Propositions 5 and 10 (i), there
h k

exists a K-short-exact sequence Z-^Z-^Z" with Z', Z": K-injective. Let

/: Σ~ιZ" ->Z be a connecting map of this sequence. Since hog = 0 from

Proposition 6, we select a map p: Y-^Σ~ιZ" with hp = g. Since p°f=0

from Proposition 6, we obtain g°f=l°p°f=0.

PROPOSITION 12. Let X be a spectrum. Then there exists a V-short-exact

sequence Y-> Z —• X such that Y and Z are strongly V-projective.

PROOF. Let I b e a spectrum. Then by Proposition 3, there exist strongly

K-projective spectrum Z and a K-epi / : Z->X. Let g: Y-*Z be a homotopy

fiber of/ Then by Proposition 10, Y is K-projective. Moreover by Proposition

3, there exists a F-projective spectrum W such that Yv W is strongly

F-projective. Therefore the sequence Yv (V£ 1 (Wv Y ) ) - * Z v (V?i, (Wv 7))

-•X obtained by adding the dummy part (i.e., cancelling pair) to the original

sequence Y-+ Z -» X is a desired object.

PROPOSITION 13. (i) If f: X ->Y is a V-mono (resp. V-epi resp. V-zero),

then for any spectrum Z,f/\\άz is also a V-mono {resp. V-epi resp

V-mono). (ii) If f: X -> Y is a V-zero, then for any map g: Z -~+ W, f A g is

a V-zero. (iii) If fi X —> Y and g: Z -> W are both V-monos (resp. V-epis resp.

V-zeros) then / Λ g is a V-mono (resp. a V-epi resp. zeromorphism). (iv) If

X -• Y-> Z is V-short-exact and W is a spectrum, then the corresponding sequence

X A W-+ YΛ W-+ Z Λ Wis also V-short-exact. (v) If X and Y are V-projective

(resp. strongry V-projective), so is X A Y.

PROOF, (i) is obtained by taking the direct limit o f / Λ idF, where F runs

over on {A \ A is a finite suspectrum of Z}. (ii) and (iii) are easily obtained

since f/\g = (idy Λ g)°(fΛ idz) by Lemma 1. (iv) is a corollary of (i). (v) is

easy.

NOTATION 3. For spectra X, Y and neZ, we set [X, Y]; = D f {/e [X, Y]M

| / i s a K-zero}, [X, Y]^ = D f [X, Y]Π/[X, Y];, [X, Y] @ = D f [X, Y]f ( @ G { ' , "}.

(Df: definition)

Then [- , - ] ' and [- , - ] " become functors from <?op x & to si6 and
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by definition there are natural short exact sequences Zγ ->\X, Y~\'ή-*E^> Y]n~~>

PROPOSITION 14. (i) If X -• Y-̂ > Z w V-short-exact, then a connecting

map h'.Z^ΣX is unique (in the category SP). (ii) Let X-*Y^>Z and

P ^Q^R be two V-short-exact sequences c: Z-+ ΣX and r: R-> ΣP be

connecting maps of them respectively, and f : X -> P, g: Y-+Q and h: Z-+ R

be maps satisfying that g o a = p of and h o b = q o g. Then Σfo c — r o h.

PROOF, (i) Let X, f, etc. be as above and let P -^ β -+ R^+ ΣP be a

(geometric) Puppe sequence and let k: X -> P, I: Y-* Q, m: Z -+ R be

isomorphisms with / o / = p o f c , mog = qol. Then it suffices to prove that

rom = Σkoh. We can assume that X = P, Y= Q, Z = R, f = p, g = q, h = r,

k = i d x and I = id y since there exists an isomorphism n.R^Z such that

noq = gol'1 and (Σk)~x or = hon. Then n — i d z is a K-zero since g is K-epic,

hence by Lemma 1, hom = ho(idz + (m — id z)) = hoidz since h is a K-zero,

thus hom = Σ'\dxoh as desired, (ii) is similarly proved.

THEOREM 1 ( = PROPOSITION 15). Let T, X, Y, Z be spectra and X -4 Y Λ Z

be a V-short-exact sequence and ΠGZ. Then we have following two natural

exact sequences:

(lij z1 <— LA, 1 \n <— ii, I \n < — Lz, l \n <— .

. Γ ΛJ- τ->~| / J r y T'Ί ' ^ Γ7 T~\r 7
' L ^ 5 -* Jn + 1 L •*• J -* An + 1 L^5 -* An + 1 ^ 1

where D* and D^ are maps induced from the connecting maps, which are well

defined by Lemma 1, and are unique by Proposition 14.

PROOF, (i) Let c: Z -> ΣX be a connecting map. Since c induces maps

<9@: [7; Z]® -* [ ΐ X]®_! (@e{(blank), ', "}), and we can consider the following

short exact sequence of chain complexes:
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Then it suffices to prove that (a) d' is a zeromorphism, (b) 3/r is a

zeromorphism, (c) /^ is monic and (d) gl is epic since D^ coincides with the

connecting homomorphism in the homology long exact sequence associated

to the above sequence, (a) and (c) are easy, (b) follows from Lemma 1. Let

us prove (d). Let P^Q^T be a F-short-exact sequence with P, Q:

K-projective (such a sequence indeed exists by Proposition 3 and 10). Let

h:T->Z be a K-zero. Then by Lemma 1, we can select a map p:T->Y

with gop = h. Since gopon is a K-zero and Q is K-projective, gopon = 0

and we can select a map g: β-*AT with foq — pon. Since ^ m is a K-zero

because foqom = ponom = 0 and / is K-monic, and since P is K-projective,

qom = 0 and we can select a map r: T^X with ron = q. Then p — f°r is

a K-zero since (p — /or)on = 0 and H is K-epic. Hence g°(p—f°r) = h i.e.,

gf" is epic, (ii) is dually proved.
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Using Lemma 1 and Theorem 1, Main Theorem is proved in the next

section. In the remaining part of this section, we describe an example of

[X, 7 ] @ given by [8, 9] in our context.

NOTATION 4. JfW*( —, —) and Ad[—, —, — ] denote fixed one of the

pairs of function-spectrum-functors and the natural isomorphisms (taking

adjoints) Ad [X, X Z ] : [X A Y, Z] -• [X, Jtf^m(Y, Z)] (Ad_, _,_ or simply

Ad for brevity), M(G) denotes fixed one of Moore spectra corresponding to

a given abelian group G. For an injective (= divisible) abelian group G, V(G)

denotes fixed one of the spectra representing the generalized cohomology theory

defined by h*(X) = Horn(π_*(*), G). For spectra X and Y, Όd(X, Y)

denotes the map Ad [X, tfom (X, 7), 7 ] (/): X -+ Jf om (jT*m (X, 7), Y)

where / : X A J^^m(X, Y) -• Y is the evaluation map.

PROPOSITION 16. (i) Let f: X -* Y be a map. Then f is a V-mono (resp.

V-epi resp. V-zero) iff for any finite spectrum F, JfWz(idF,/) is a V-mono {resp.

V-epi resp. V-zero). (ii) Let X -> 7-> Z be a homotopy cofiber sequence. Then

it is V-short-exact iff the corresponding sequence Zλ -* [F, X~\ -• [F, 7 ] -• [F, Z]

for any finite spectrum F. (The proof is easy.)

PROPOSITION 17. Let X, 7, Z be spectra and f: X AY-> Z. Then: (i) //

AdXγZ(f) is a V-zero, then also is f. (ii) If f is a V-zero and 7 is V-projective

then Ad(/) is a V-zero.

PROOF. Let X, f etc. be as above, (i) Let F be a finite spectrum and

h: F -+ X A Y be a map with foh = 0. Then there exist a finite subspectrum

G of X and a map k: F -• G Λ 7 with h = (g A idy) o /c where #: G -• X is the

inclusion map. Then from the assumption Ad(f)og = 0, this implies

/o (g A idy) = 0 hence foh=fo(gA idy) ° /c = 0 therefore / is a K-zero. (ii) Let

F be a finite spectrum and h: F -+X. Then since / is a K-zero and F A Y

is K-projective, /°(/z Λ idy) = 0 i.e. Ad(/)°/z = 0, hence Ad(/) is a K-zero.

PROPOSITION 18. Let X, 7be spectra. If 7 is V-injectiυe then 3tfΌm(X, 7)

also is.

PROOF. Let X, 7 be as above, T be a spectrum, / : T^Jf#m(X, 7) a

K-zero. Then since A d r x y " 1 ( / ) is a F-zero by Proposition 17 and 7 is

K-injective, Ad - 1 (/) = 0 i.e. / = 0, hence Jt#m(X, 7) is K-injective.

DEFINITION 2. Let R be a subring of Q (with unit). A spectrum X is

of R-type (resp. dimensionwise-R-finitely-generated-type or R-finite-type for

brevity) if π π P 0 becomes an Λ-module (resp. finitely generated Λ-module) for

all neZ (d. [9]).

PROPOSITION 19. (i) V(G) w V-injective for any divisible abelian gruop
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G. (ii) For any spectrum X and any divisible abelian group G, 3tfowι(X^ V(G))

is V-injecΐive. (iii) Let R be a subring of Q and X be a spectrum of

R-type. Then Όd(X, V(Q/R)): X -• Jf#*n(jF#™(X, V(β/Λ)), V(Q/R)) is V-

monic if R φ Q. (iv) A spectrum X is V-ίnjective iff there exist spectra Y

and Z such that I v 7 ~ , ^ W ( Z , V(β/Z)). (v) A spectrum of Q-type is

V-injective. ((v) is just Proposition 5 of [9].)

PROOF, (i) (resp. (v)) follows from the fact that a K-mono induces a mono

on π^ (resp. //*(—, β)) (ii) is derived from (i) and Proposition 18. (iii) Let

F be a finite spectrum, / : F -• X, and p: X A 3f#m{X, V{Q/R)) -• V(β/K) and

q: F Λ 3tf#*n{F, V(β/K))->V(β/K) are evaluation maps. Then Όά(X, V(β/Λ))°

/ = 0 implies 0 = p ° (/ Λ \d^oMXyiQIR)))(= q ° (idf Λ JtTo<m(/, idV ( β / Λ )))), hence

#eom{fτ idV{Q/R)) = 0. Then for any spectrum Y9 π#(f Λ idy) = 0 since X A Y

is of K-type and R g β, and by taking 7 = J f ^ ^ ( F , M(Z)), we obtain / = 0

since F is finite, (iv) is a corollary of (ii) and (iii).

PROPOSITION 20. Let R be a proper subring of β, X be a spectrum of

R-finite-type, f = Όd(X,V(Q/R)): X -> Y and let g\Y-+Z be a homotopy

cofiber off Then (i) Z is of Q-type and (ii) [M(β), Y]π ̂  [Z, 7 ] ^ Z x if n e Z.

PROOF, (i) Since the canonical (= double dual) map

Horn (Horn (π^(I) , Q/R), Q/R) = π+(Y) is the profinite completion map, its

cokernel becomes a β-module i.e., Z is of β-type. (ii) It suffices only to

prove that [M(β), Y\ ^ Z x . Since n*(3>i?#*n(X, V(Q/R))) = Horn(π_*(X),

Q/R) are torsion groups, M(β) Λ J?#m{X, V(β/Λ)) ^ M(ZX), hence [M(β),

= [M(β)

Above implies that / is a K-injective enveloping map in the sense of

[6]. The following is due to [8, 9].

EXAMPLE 1 (= PROPOSITION 21). Let R be a proper subring of Q and X

be a spectrum and Y be a spectrum of R-finite-type. Then (i) \_X, YJ' is the

largest divisible subgroup of [X, 7 ] and Hom(β, [X, Y]') ̂  Z,. (ii) [ I , 7 ] "

is uniquely divisible i.e., becomes a Q-module.

PROOF. Let X, Y,Z9f,g be as in Proposition 20. Note that the sequence

X^Y-^Z is K-short-exact, and 7 and Z are K-injective. Let T be a

spectrum. Then (a) [M(β), jf*m(T9 7 ) ] * ~ [Γ, JiT*m{M{Q)9 7 ) ] * ^ Zl9

hence Hom(β, [7; 7 ] J s Z x . (b) [T, Z] is uniquely divisible since Z is of

β-type. These two facts show the proposition.
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§3. Araki-Yosimura-Bousfield-Kan Spectral Sequences and Proof of Main

Theorem

We slightly modify the construction of [2] (cf. [7]).

CONSTRUCTION 1 (= NOTATION 5). X denotes a fixed spectrum and U

denotes a fixed set of subspectra of X satisfying that (i) for any A, BeU,

there is an element CeU with AUB c C and (ii) [JAeUA = X. For these data

we construct Xn9 An (neZ, n > 0, AGU) (and check the conditions I c l n ,

A a Ana Xn, (n > 0) and An_1 a An, Xn_1 a Xn (n > 1)) inductively on

n. Cone (Z, p) denotes the (abstract) cone of Z with the vertex p. Let

(p(A9 n)\AeU, n>0) be a system of abstract distinct points. Firstly put

X0 = X and Ao = A and define as Xn + ί = X „[)([) AeUCone{An9 p(A9n)))9

An + i = [JBeu,B^ACont{An(]Bn9 p(B9ή)) inductively on n. We consider that

Conc(An9 p)f]Cone(Bn9 q) = Anf]Bncz Xniϊ p φ q and Cone(K, p) a Cone(L, p)

if KczL. (We remark that the tower {Σ~1(XH + ί/X)\n>0) is essentially

equivalent to the tower (W€n\n > 0) of [2]. If B^n{X, S) denotes the B(€n of
[2] for X and 5 = <Ar

β |α6/>, then An indeed corresponds to the cofiber of

the natural map n\W€n(A, (Aa = A\oceU, QLZD A})->.A.) Let fn: Xn -• Xn + 1

be the inclusion map and consider the following commutative diagram:

4

\

where fn, gn9 hn, kn are maps of degrees 0, - n - 1, n, 0 respectively and

X Π ^ X Π + 1 ^ 7 π ^ J ί π is a Puppe sequence for n > 0, kn = gnohn + ί (n > 1),

r_! = M ( Z J and fc_x = 0.

Then the following two propositions was essentially proved in [2].

PROPOSITION 22. Let F: & -> sfS- be a contravariant functor such that

the corresponding (covarianή functor ¥'.&-* s/όop preserves direct sums {of

arbitrary cardinality). Then (i) the homology groups of the cochain complex

(F(ί ), F(kJ) are naturally ίsomorphic to Um^6UF{A). (ii) Let F,G:&-> s/ό

be such functors and p: F -• G be a natural transformation. Then the maps

between homologies induced by p of the cochain complexes of above type coincide

with lim5

PROPOSITION 23. (i) An - II(Σ n A\A = Eo g Eλ g ••• g En, E^U for all

i>, (ii) Xπ + 1 / X π - U < Γ " + 1 £ o | £ o s £ 1 s . . . ^ £ M , £*el7 > r ^ / / i> wfer^

U ( ~ I * ) means one of the direct sums of — 's in the category £f with suffixes
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*\s and ~ means Ίsomorphic in &\ (iii) The map ft is a V-zero for all i > 0.

PROOF, (i) is inductively obtained from the fact Λn+1 ~ UB^AΣ(Anr\Bn).

(ii) is a corollary of (i). (iii) is obtained from the properties (i) and (ii) in the

Construction 1.

NOTATION 6. T denotes a fixed spectrum and Efp'q = D f [_Yp, Γ ] ? β ,

£ ? ' • * = , * if ,(EfM,fc*®) (@c {(blank),'/'} and α p : £?'•• -> £?'*, j»p :£? '*->

£i p ' * denote the naturally defined maps and induced maps H(<xp), H(βp) are also

denoted by αp, βp for brevity. d£q(d£*, dp or d* for brevity): E£q^Eξ+2-q-ί

denotes the second differential of the spectral sequence as usual. We shall

define a map Ap,q: E'2
p'q->E'2'

p~2>q+1 for p > 3 as follows: Let aeE'2
p>* and

fre[7p, Γ ] ^ be a representative of α. Then there is an element ce[X p , T ] ^

with hp'(c) = b by Theorem 1 since b is a cycle. Then there is an element

de[Y p _ 2 , T ] " such that g*'L2(d) = DJ-Jc) by Theorem 1, where (and from

now on) D*:[Xp+ί9 TJ^lXp9 TJ' denotes the boundary map of Theorem

1, and try to define as Δp ^(a) = D f (the class of d}. Well-definedness is proved

in the proposition below. Moreover let us define I^\ E^1'* ~> [X> ^ ] * a n ( l

*: [X, T ] ^ ^ E%>* as follows. For αeE^1 '* let fee[yl5 T ] ; be a representative

of α. Then there is an element cs{Xu Γ ] ^ with hf(c) = bby Theorem 1 since

b is a cycle, and try to define as I^(a) =DfD$(c). Next for ae\_X, Γ]^ , try to

define as;*(α) = h*(α). Finally set ί M = D f α p . 2 o Δ M o ] 5 p : E^^EΓ1^1 and

PROPOSITION 24. (i) Δp ^ βfeoi;̂  w we// defined, (ii) Δp ^ w αw isomorphism.

In fact βp°d%~2'*o(χp_2 is the inverse of Δ p j j ί . (iii) /^ andj* are well defined

and j * coincides with the naturally defined map. (iv) <5p-2,*°<5p,* = 0 if p > 5.

(v) δp+^odξ'* + d Γ 2 ' * 0 ^ , * = <^β identity map of £f *> if p > 3.

(vi) Z x • £i ' p '* - ^ £ξ'* - ^ E / * > Zx

is exact for p > 0 ««̂ / w split-exact for p > 1. (vii) 77z£ following sequence is

exact \

2 2 2 L ' J * 2 — —

PROOF, (i) Let a, b etc. be as in Notation 6. (a) The correspondence

b™>c is unique since h*' is monic by Theorem 1. (b) d is a cycle since

k*-2(d) = ^ i φ p - i f c ) ) = 0 by Theorem 1. (c) If d' is the another element

of [Yp-2, T ] ; with g*l2(df) = g*!2(d)9 then there is an element e e [ * p _ 2 , Γ ] ;

with h*!2(e) = d-d' by Theorem 1, and then there is an element e'e[Yp_3, T ] *

with g*!3(e') = e by Theorem 1. This implies that d - d' is a boundary, (d) If

b is a boundary i.e., if there is an element b ' e [ y p _ l 5 Γ] with k^^b') = b, then
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gj-i(ft') = c by (a) and D*_i(c) = 0 by Theorem 1, hence we can take d = 0.

Thus Ap^ is well defined, (ii)-(vii) are also proved by easy diagram chasings.

(Note that in proving (v), we have only to prove the injectivity of ocp (p > 0).)

(i), (ii) and (iii) of Main Theorem follow from this proposition. Moreover

if any element of U is finite, we obtain (iv) and (v) since Yn (n > 0) is strongly

F-projective by Proposition 23. Concludingly, we obtain the following

theorem:

THEOREM 2 (= PROPOSITION 25). Denote that h@p(~) = D f [ - , Γ ] ? p

(@e {(blank), ', "}, peZ). Then we have (i) There exist the following commuta-

tive diagrams in which all columns and rows are exact:

(a)

Zγ Z,

i i
-1 id -1

z , _ t a ^ M - t a ^ M,_ Z,

Z t — > h""(X) -ϊ-> Λ"(X) - ^ Λ'"(X) — • Zj

- 1 id 2 - 1

I 1
/<?/• weZ, wAe/ β α, β, y, γ', y" are naturally defined maps, α0, β0 (and also αp, βp

below) coincide with the limit of naturally defined maps.

(b) Z,

for p , neZ, p > 0, moreover this sequence is split-exact if p>\,

(c) ^ 2 ' W ^

/or p > 1.

(d)
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(ii) If any element of U is finite, or U is countable then hm^eUhq(A) = Zx

for p>2. (iii) if T is V-injective then \\mp

AsUhq(A) ^Zλ for p>\.

The essential part of the proof has already been done. The rest is not

difficult.

§4. Examples

NOTATION 6. EM: $46 -• & denotes fixed one of the Eilenberg-MacLane-

spectrum-functors.

NOTATION 7. The definitions of terms or notions 'pure exact', 'pure

injective (= algebraically compact)' and 'Pext' are the same as in Fuchs [4]

(see [4]).

PROPOSITION 26. (i) Let Z1^>A^B-?*C-+Zί be a short exact sequence

of abelίan groups. Then this is pure exact iff EM(A) > EM(B) β—+

EM(C) is V-short-exact. (ii) Let A, B and C be abelian groups and
f 9

M(A) -> M(B) -+ M(C) be a homotopy cofiber sequence. Then this is V-short-

exact iff Zx -• πo(M(A)) ^ i πo(M(B)) ^ H πo(M(C)) -• Z1 is pure exact, (iii)

For any abelian group G, G is pure injective o EM(G) is V-injective <=> M(G)

is V-injective. (iv) Let X be a spectrum and G be an abelian group. Then

IX, EM{G)J ^ Pext(//^(X, Z), G). (The proof is easy)

This proposition (together with Theorem 1) geometrically shows Harrison's

exact sequences (see [4], Theorem 53.7).

PROPOSITION 27. Let Y be a spectrum. If Y is V-injective, then [X, Y]

is pure injective for any spectrum X.

PROOF. We may assume that X = M(Z) by Proposition 18. Let

/ : M(πo(7))-> Y be a map with πo(f): iso and g: M(πo(Y))-+M(G) be a map

such that g is K-monic and G is pure injective abelian group. Then

the existence of the map h : M(G)-+ Y with hog = / implies the pure injectivity

of πo(Y).

This proposition gives a geometric proof of the following Fuchs' theorem.

PROPOSITION 28 ([4], Theorem 47.7 and the fact (0) in 225 page). Let

A and B be abelian groups and ie{0, 1}. Then Extι(,4, B) is pure injective if

B is pure injective.
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Final ly we give t w o examples .

E X A M P L E 2 ( = P r o p o s i t i o n 29). Let X = M[Z\-\/Z) and Y =

ΣEM(@i>0Z2i). Then the canonical exact sequense Zx -* \X, YJ -• [X, 7 ] -•

[X, YJ -+ Z1 does not split.

PROOF. [X, Y]" is a nontrivial reduced group (cf. [5], Example in 248

page). If the above sequence splits, [X, Y]" is divisible since it is the 1-st

Ulm subgroup of [X, Y]. It is a contradiction (see [4]).

EXAMPLE 3 (= PROPOSITION 30). Let p be an odd prime and X =

Vi^oΣ'WiZp). Then we have (i) the additive order of id x in \_X, X ] is p,

therefore [^ X~\ is a Zp-vector space for any spectrum Y, and (ii) X is not

V-injective. This gives a counter example for the converse of Proposition 27.

(i) is easy, (ii) Let Y be the mapping telescope of M(ZP)^ Σ2~2pM(Zp)

Σ2~2p{f\ Σ*-*pM{Zp)^> - where / is the X-equivalence of Adams. Then

indeed we can construct a nonzero K-zero map from Y to X. We leave the

details of the proof to the reader.
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