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Abstract

Given 0 < Θ < oo. In this paper, we classify the solutions of the initial value

problem

C u"(r)+-u

\ u(θ) = ξ>

-ιι'(r) + /(ιι(r)) = 0 on (θ, R(ξ)),

1 "* - . o and u'(θ) = 0,

where / is locally Lipschitz on (0, oo) and there exist two positive constants α, β such

that f ( u ) < 0 on (0, α), f ( u ) > 0 on (α, oo) and F(β) > 0. Here R(ξ):= sup {re(θ, oo)|ιφ)

>0 for all se[0, r)} and F(u):= ^f(s)ds for u > 0. Moreover, we establish an

existence-uniqueness theorem of a solution for equation (*) satisfying w'(0) = 0 and

1. Introduction

Let #e[0, oo) be given and Rn(n > 2) denote the usual n-dimensional
Euclidean space. Consider the following two problems:

lM+/(u) = 0 in Ω(R(ξ)),

(I,) { ^ = 0 if |x| = ft

^ = 0 if

where K(£):= sup {re(0, oo)|w(x) > 0 for θ < |x| < r} and
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({xεRn\θ<\x\<λ} if 0>0,

\{xeRn\\x\<λ} if 0 = 0

for every λe(θ, oo].

When we confine ourselves to positive radial solutions, it is well-known
that the above two problems (Ij) and (I2) can be reduced to the following
equivalent problems

= 0 on (θ, R(ξ))9

u(θ) = ζ > 0 and u'(β) = 0

u» + ̂ ^ιι/(r)+/(ιι(r)) = 0 on (0, oo),

u'(θ) = 0, Γ

lim u(r) = 0,
-r-»oo

respectively, where r is the radial variable. See, for example, Kaper and
Kwong [2, 3], Kwong [4], Kwong and Zhang [5]. Recently, Kwong and
Zhang [5] and Kwong [4] separate the set of solutions of (I3) into the
following three subsets under suitable conditions on /:

N:={£e(0, ao)\R(ξ) < ao},

G := {ξe(Q, x>)\R(ξ) = oo and lim u(r, ξ) = 0},
r-»oo

P := (0, oo) - N - G,

where w(r, ζ) denotes the solution of (I3).

Recently, Kwong and Zhang [5], Kaper and Kwong [3] also established
some existence theorems for solutions of (I3) as follows :

THEOREM A. Assume that
(FI) / is continuous on [0, oo) and locally Lipschitz on (0, oo),
(F2) there exists a u0 > 0 such that F(u)<0 for 0 < u < u0, F(u0) = 0,

f ( u ) > 0 for u > MO, where F(u):= fof(s)ds,
(F3) with u0 as in (F2), fj>(- FΓ"2(u]du < ao,
(F4) l iminf M ^ 0 0 /(M)>0,

(Gi) g(r) > 0 for all r > 0,
(G2) limί^00^(r) = 0,
(G3) g is continuous on [0, oo).
Then, the boundary value problem
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u"(r) + g(r)u'(r) + f(u(r)) = 0 on (0, p),
5 (0) = 0; M (r)>0 on (0, p); u(p) = u'(p) = 0

Atfs 0 solution on (0, p), where pe(0, oo).

THEOREM B. Le/ (Fx) - (F4), (GJ - (G2) ΛoW. //

(F5) M -»/(w)/(w — M0) w nonίcreasing for u > w0,

(F4) g is continuous on (0, oo) and g(r) = 0(r-1) as r — >0 + ,

then, (1 5) λαs 0 solution on (0, p).

The purpose of this paper is to classify the solutions of (I3) under fewer

assumptions than those of Kaper and Kwong [3] and Kwong and Zhang

[5]. We also establish a uniqueness theorem of a solution for (I4).

2. Main results

Let m > 0 and θ > 0 be given constants. Consider the following intial

value problem

Γ u"(

I
1

0, r>0

(IVP)
ιι(fl) = ξ and u' (0) - 0,

where / satisfies the following two assumptions :

(AJ / i s locally Lipschitz continuous on (0, oo),

(A2) there exist two constants α, jS such that f ( u ) < 0 on (0, α), f ( u ) > 0 on

(α, oo) and F(β) > 0, where F(u):= $u

0f(s)ds for u > 0.

Clearly, if f ( u ) = up - uq, where p > q > 0, then (AJ and (A2) hold.

Throughout this paper, w(r, ξ) denotes the solution of (IVP) and

R(ξ):=sup{rε(θ, <n)\u(s,.ξ)>0 for se(θ,r)}.

In order to discuss our main results, we need the following two well-known

theorems.

THEOREM C. For any given ξ > 0, the initial value problem (IVP) has a

unique positive solution u(r):= u(r, ξ) on the interval [#, R(ζ)).

THEOREM D. For any given ξ > 0, the positive solution u(r, ξ) of (IVP)

on [0, R(ξ)) satisfies the following two identities:

ί1 V = b Γ b m
J itt'2(r ξ) + F(ll(r, ξ))l = _ _M'2(Sj

1 2 J r = α Jα S
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*(*> o = - ϊ Γ
' Jθ

(E2) u'(r, ξ) = - - smf(u(s, ξ))ds for all re[θ, R(ξ)).
Γ Jθ

LEMMA 1. Let £e(0, oo) - {α}. If there exists ae[θ, R(ξ)} such that

U'(a, ξ) = 0, then u(r, ξ) / ιι(α, £) /or Λ// re(

PROOF. Assume, on the contrary, that there exists r0e(α, R(ξ)) such that
w(r0, ξ) = u(a, ξ). It follows from (EJ that

1 Γr° m
0<-ι/2(r0, {)= - -t/2(s,

2 Jα S

which implies w'(r, ξ) = 0 on [α, r0]. Hence, w"(r, ξ) = 0 on [α, r0]. It follows
from (IVP) that /(tι(r, ξ)) - 0 on [α, r0]. By (A2) and r0 < /*(£), we see that
u(r, ξ) = a on [α, r0]. Thus, M(Γ, ξ) = α on [̂ , #(£)) by Theorem C, which
contradicts ξ / α. Hence, the proof is complete.

For any given ξ > α, it follows from w(#, ξ) = ξ > α that there exists

r1e(θ9R(ξ)) such that w(r, {) > α on [0, rj. It follows from (A2) and (E2)
that u'(r, ξ) < 0 on (θ.r^). Hence,

(1) R1:=sup{re(θ,R(ξ))\u'(s,ξ)<0 f o τ s e ( θ , r ) }

exists and satisfies rί < R1 < R(ξ). Seeing such a fact, we have the following
lemma.

LEMMA 2. For any given ξ > α, M(Γ, ξ) wws/ satisfy one of the following

properties :
(Pi) If R1 = R(ξ) < oo, then w(r, ξ) w strictly decreasing to 0 fl^ r ->Λ(ξ),

(P2) If R! = R(ξ) = oo, ί/zen u(r, ξ) w strictly decreasing to 0 or α as

(P3) If R1 < R(ξ), then u(Rl9 ξ) < a w /A^ absolute minimum of u(r, ξ) on

Moreover, u(r, ξ) monotonίcally converges to a eventually as r -> oo or w(r, ^)

w oscillatory about a, ί/zaί w, ί/zer^ exists an increasing sequence [R]}^ i

satisfying lim Rk= co,
k~* oo

0 < n(Λ,, ξ) < «(Λ3, ξ) < ιι(Λ5, ί) < ••• < a,

ί > ιι(Λ2, ξ) > u(R4, ξ) > u(R6, ξ) > ... > a

and u'(r, ξ) > 0 on (R2k-1, R2k), u'(r, ξ) < 0 on (R2k, R2k+1) for k = 1, 2, 3, ,
where R1 is defined as in (1).

PROOF. Case (1). Since 7?! = R(ξ), it follows from the definitions of R1

and Λ(^) that u(r, ξ) is strictly decreasing and bounded below by 0 on (θ, R(ξ)).
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Hence, limr^R(ξ) u(r, ζ) = u(R(ξ)9 ξ) > 0. It is clear that u(R(ξ), ζ) = 0. In
fact, if u(R(ξ), ξ) > 0, then u(R(ξ) + ε, ξ) > 0 for any sufficiently small ε > 0.

This contradicts the definition of R(ξ). Thus, u(R(ξ), ξ) = 0.
Case (2). If follows from R^ = R(ξ) = oo and the definitions of Rί9 R(ξ)

that w(r, ξ) is strictly decreasing on (0, oo) and bounded below by 0 on
(0, oo). This implies lim^^ u(r, ξ) = u^ exists. Hence, lim^^ w'(r, ξ) =

lim^^ w"(r, ξ) = 0, which and (IVP) imply /(i^) = 0. By (A2), we see that
M! = 0 or α.

Ckse (3). We claim that there exists r 2 e(R l 5 R(ξ)) such that ι/(r, ξ) > 0

on (Rί9r2). Assume, on the contrary, that there exists r3e(K 1, R(ξ)) such
that w'(r, ξ) = 0 on (R l 9 r3) or ι/(r, ξ) < 0 on (Rί9 r3). Thus, w"(# l5 ξ) = 0 by

the C2-continuity of u at Λ l β This and w'(r, ξ) = 0 imply f(u(Rί9 ξ)) = 0. It
follows from (A2) that u(Rl9 ξ) = α. By Theorem C, we see that u(r9 ξ) = α
is a constant solution of (IVP) on [0, R(ξ)), which contradicts w(0, ξ) = ξ > α.
Hence, there exists r2^(Ri9 R(ξ)) such that u'(r, ξ) > 0 on (R l 5 r2). Thus,

M"(Rι, r) >0 and

Λ 2 :=sup{re(Λ 1 ,Λ(ξ)) | ι ι ' ( s ,ξ)>0 on (K l 5 r)}

exists. It follows from w'(# l5 ξ) = 0, M"(K l 9 ξ) > 0 and (IVP) that u"(Rί9 ξ) =

-f(u(Rl9 ξ)) > 0, which and (A2) imply u(Rί9 ξ) < α. By Lemma 1, u"(Rί9 ξ)
> 0 and u'(Rl9 ξ) = 0, we see that u(Rί9 ξ) is the absolute minimum of M(Γ, <J)
on [0, jR(ξ)). Furthermore, if R2 = oo, then R(ξ) = R2 = oo. Hence, M(Γ, <^)
is strictly increasing on (Rί9 oo). It follows form Lemma 1 that w(r, ξ) is

bounded above by ξ on [R l5 oo). Thus, lim^^ u(r9 ξ):= u2 exists and
lim^^ M'(r, ξ) = lim^ w"(r, ξ) - 0. By (IVP), we see that f(u2) = 0. This
and (A2) imply u2 = 0 or α. Since

u2 = lim n(r, ξ) > w(^ι, ξ) > 0,
r->oo

we see that u2 = α. On the other hand, if R2 < oo, then it follows from

u(R29 ξ) > 0 and the definition of R(ξ) that R2 < R(ξ). As discussed at the
beginning of this case, we see that there exists r4e(R2, R(ζ)) such that

u'(r, {) < 0 on (R2, r4). Thus, M"(Λ2, ξ) < 0 and

Λ 3 :=sup{re(R 2 , J RK)) | ι ι / (s , ί )<0 on (Λ2, r)}

exists. It follows from t/(#2, ξ) = 0, u"(R29 ξ) < 0 and (IVP) that w"(R2, ξ) =
— f(u(R29 ξ)) < 0. This and (A2) imply u(R2, ξ) > α. By Lemma 1, we see
also that u(R2, ξ) < ξ. Furthermore, if #3 = oo, then R(ξ) = R3 = oo. Hence,
u(r9 ξ) is strictly decreasing on (R2, oo). It follows from Lemma 1 that u(r9 ξ)
is bounded below by u(Rl9 ξ) on (Rί9 oo). Thus, lim^^ w(r, ξ):= w3 exists

and lim r^0 0fi'(r,{) = lim r^0 0ιι
l'(r,ξ) = 0. By (IVP), we see that /(n3) = 0,
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which and (A2) imply u3 = 0 or α. Since

we see that u3 = α. Continuing in this way, we can obtain the desired result.
By Cases (1), (2) and (3), the proof is complete.

Clearly, if ξe(0, α), then

r5:= sup {re(0, R(ξ))\u(s, ξ) < α on (0, r)}

exists. It follows form (A2) and (E2) that w'(r, ξ) > 0 on (0, r5). Hence,

r6 := sup {r e(0, R(ξ)) \ u'(s, ξ) < α on (0, r)}

exists and satisfies r5 < r6 < R(ξ). Seeing such a fact, we have the following

lemma.

LEMMA 3. For any given £e(0, α), u(r, ξ) must satisfy one of the following
properties :
(P4) If r5 = oo, then u(r, ξ) converges increasingly to α as r -» oo,
(P5) If r5 < oo, then r5 <r6 < R(ξ), u(r6, ξ) > α and w'(r6, ξ) = 0. Moreover,

u(r, ξ) satisfies (P3).

PROOF. Cflse (1). Since r5 = oo, we see that r6 = R(ξ) = oo. It follows

from the definitions of r5 and r6 that w(r, ξ) is strictly increasing and bounded
above by α on (0, oo). Hence, lim^^ w(r, £) = w4 exists, which implies
lim^^ u'(r, ξ) = lirn^,, wr/(r, ί) = 0. By (IVP), we see that f(u4) = 0. This

and (A2) implies u4 = 0 or α. Since

u4 = lim ιι(r, ξ) > ι/(0, ί) = ί > 0,
r-*oo

we see that u4 = α.
Cα^ (2). It follows from r5 < oo that w(r5, ξ) = α and w'(r5, ξ) > 0. Thus,

by the continuity of w(r, ξ), we see that r5 < r6. We claim that r6 < oo.
Assume, on the contrary, that r6 = oo. Take ^e(α, oo) satisfying F(η) > 0. It

is clear that w(r, ξ) < η on (0, oo). In fact, if there exists r7e(0, oo) such that
u(rη, ξ) = 77. It follows from (A2) and (EJ that

Γ Γ 7 m ^2,-w/2(5,
Jβ s

0 < - w'2(r7, ξ) + F(η) - F(ξ) = - _ t/2(s, ξ)ds < 0,
2

which is a contradiction. Hence w(r, ξ) < η on (0, oo). Since r6 = oo, we see
that w(r, £) is strictly increasing and bounded above by η on (0, oo). Thus,
lim^^ w(r, ξ) = u5 exists and lim^^ u'(r, ξ) = lim^^ u"(r, ξ) = 0. By (IVP),
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we see that f(u5) = 0, which and (A2) imply u5 = 0 or α. Since w(r, ξ) is

strictly increasing on (#, oo), we see that

w5 = lim w(r, ξ) > u(r5, ξ) = α,
r-"oo

which gives a contradiction. Thus, r6 < oo, and hence w'(r6, ξ) = 0. It follows
from w(r6, ξ) > w(r5, ξ) = α > 0 that r6 < R(ξ) < oo. Using Lemma 1, we see
that w(r, ξ) is bounded below by ξ > 0 on [r6, R(ξ)). This and Lemma 2
imply w(r, ξ) satisfies (P3).

LEMMA 4. Lef τ:= inf {we[α, oo)|F(tι) > 0}. ΓAett, for any ξe(0, τ],
jRo*) M(Γ, ξ) > 0 α/irf #(£) = oo.

PROOF. Assume, on the contrary, that there exists ξ e (0, τ] such that
^R(ξ) u(r, ξ) = OL It follows from (Et) that

= - Λ £7 ̂0 *
which implies w'(r, ξ) = 0 on [(9, R(ξ)). Hence, M(Γ, ξ) = ξ on [0, R(ξ)). It
follows from limr^Λ(ξ) w(r, {) = 0 and w(r, ξ) = ξ on [0, #(£)) that ξ = 0, which
contradicts ξ > 0.
Thus, the proof is complete.

It follows from Lemmas 2, 3 and 4 that we can decomposite the set of
solutions of (IVP) into the following three disjoint subsets :

N*:= {£e(0, co)\R(ξ) < oo and tι(r, ξ) is decreasing to 0 as r-*R(ζ)}9

G* := {£e(0, oo)|K(ξ) = oo and M(Γ, ξ) is decreasing to 0 as r-> oo},

P* := (0, oo) - N* - G*

e(0, co)\R(ξ) = oo and w(r, ξ) strictly monotonically 1

= \ converges to α eventually as r -̂  oo or w(r, ξ) is oscillator)

about α and has an absolute minimum on (0, oo) •
In particular, by Lemma 4 and the property of continuous dependence

on initial value, we see that (0, τ] c P* and N* is an open subset of (0, oo),

where τ is defined as in Lemma 4.

THEOREM 5 (Existence). If /'(α) > 0, then for every ξeP*, lim^^ w(r, ξ)
= α. /« particular, the boundary value problem

ιι"(r) + - w'(r) + f(u(r)) = Q on (θ, oo),
r

(BVP1) { u'(θ) = 0

lim u(r) = α > 0
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possesses infinitely many solutions.

PROOF. It suffices to show that limr^00 u(r, ξ) = α if u(r, ξ) is oscillatory
about α. It follows from Lemma 2 that

and

w'(Kfc, £) = 0 for J k = 1,2,3,-

we can obtain β1 = β2 = α. In fact, it follows from (EJ that

ΓΛ2k m
(2) F(ιι(Λ2Jk-1))-ί t(ιι(Λ2k))= -w'2(s, £)ds>0 for fc=l,2,3,

J K 2 / C - 1 5

Hence,

F(κ(Λ2k)) < ίW/^-!)) < Fίiiί/?!)) < 0 for k = 1, 2, 3,-,

which implies w(#2) < τ. Using the same technique of Ni [7], we can prove
that βi = β2 = «• Hence, lim^^ w(r, ξ) = α. Since (0, τ] c P*9 we see that
(BVP1) possesses infinitely many solutions.

LEMMA 6. If /'(α) > 0,

P* = {£e(0, cx))|ιι(r, f)

w oscillatory about α #«d /zα^ an absolute minimum on (#, oo)},

P* w α nonempty open subset of (0, oo), and hence, G* w α closed subset of

(0, αo).

PROOF. Assume, on the contrary, that there exists £eP* such that u(r, ξ)
is not oscillatory about α, that is, w(r, ξ) strictly monotonically converges to
α eventually. Since /'(α) > 0, there exists r8e(#, oo) such that

^ /'(«) >0 on [r.,,00).
u(r9ξ)-a 2

Clearly, the differential equation

(I6) l?-(Γ)+|l,'(Γ) + l/'(α) = o

is oscillatory and w(r):= M(Γ, ^) — α is a negative or positive solution of
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(I7) w"(r) + - w'(r) + /("(r; ξ}) w(r) = 0, r 6 [rβ, oo).
r w(r, ξ)-Λ

By Sturm's comparison theorem, we see that w(r) is oscillatory, which

contradicts w(r) being negative or positive on [r8, oo). Hence, we see that

P* = {ξe(0, oo)|n(r, ξ)

is oscillatory about α and has an absolute minimum on (0, oo)}.

Moreover, it follows from the property of continuous dependence on initial
value, u(r, ξ) has an absolute minimum on (0, oo) and Lemma 4 that P* is a
nonempty open subset of (0, oo).

REMARK 7. The condition "/'(α) > 0" is better than (F5) (see, Theorem

B in Section 1). For example let / (u):= u2 — w 1 / 2 . We see easily that
UQ = 22/3 > 0 and u -+f(u)/(u — u0) is increasing for u > 25/3 > u0. Thus,
f(u) = u2 — ui/2 does not satisfy consition (F5). But, for any given p, q with
p > q > 0, the function up — uq satisfies the condition "/'(α) > 0".

It follows from Lemma 6 and AT* is an open subset of (0, oo) that the
boundary value problem

ιι"(r) + - u'(r) + /(ιι(r)) = 0 on (0, oo)
r

(BVP2) { ι*'(0) = 0

lim u(r) = 0
r-^oo

has one solution on [0, oo) if iV* is a nonempty set or P* is a bounded set.

THEOREM 8 (Existence-Uniqueness). Assume that θ = 0, ε>0, 0 < q < p

< (m + I)/ (m - 1) and m > 1. // f(u):= up - uq or up - ε, then (BVP2) has a

unique positive solution on [0, oo).

PROOF. It follows from Wong [8], Wong and Yeh [9] and Wong, Yeh
and Yu [10] that (BVP2) has at most one solution on [0, oo). Next, we
prove that (BVP2) has a positive solution by the following two cases.

Case (1). Suppose that f(u):=up~uq. Let A e (0, oo) be given and define

Then,

u"(r) + -f
r
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can be transformed into

(18) v"(t) + - υ'(t) + vp(t) - A~qvq(t) = 0.

Now, consider a simpler equation

(19) vv"(ί)+-w'(f) + wp(ί) = 0.

The solution w(ί) of (I9) which satisfies the initial condition

(3) w(0) = 1 and w'(0) = 0

has a zero in (0, oo) (cf. Kaper and Kwong [3], Ni [6]). It is clear that for
each solution u(r, ξj of (IVP), there exists a solution v(t) of (78) satisfying
υ(0) = 1 and t/(0) = 0, where ξ1:= Aq/p~q. Because v(t) is bounded by 1, we
see that the last term in (I8) can be small arbitrarily by choosing A large
enough. Hence, υ(t) has a zero in (0, oo) which implies w(r, ξj has a zero
in (0, oo). Hence, N* is nonempty and (BVP2) has a positive solution on

[0, αo).
Case (2). Suppose that f(u):=up — ε. It follows from the existence

theorem of Castro and Shivaji [1], and Kaper and Kwong [3] that N* is
nonempty. Hence, (BVP2) has a positive solution on [0, oo).

By Cases (1) and (2), we complete the proof.

REMARK 9. It follows from Uniqueness Theorems in Wong [8], Wong
and Yeh [9], Wong, and Yu [10] that

(a) P* = (0, oo) and N* = 0 if G* = 0,

(b) P* = (0, ξ0) and N* = (ξθ9 oo) if G* is a singleton, say G* = {ξ0}.

Thus, if f ( u ) satisfies (At), (A2) and the hypotheses of Lemma 6 and / is
strictly decreasing near 0 (or, increasing near 0 and m > 1/2) and if we can
prove that P* is bounded or N* = (ξθ9 oo) is nonempty, then we can show
that (BVP2) has exactly one solution.
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