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Abstract

Given 0 <6 < o0.
problem

In this paper, we classify the solutions of the initial value

{ W) + ?u’(r} + f(u()) = 0 on (6, R(®)),
*)

u(@)=¢>0and w0 =0,
where f is locally Lipschitz on (0, c0) and there exist two positive constants a, f such
that f(4) <0 on (0, a), f(u)>0 on («, ) and F(f)>0. Here R(£):= sup {re(d, wo)|u(s)
>0 for all se[f,r)} and F(u):= j"(;f(s)ds for u>0. Moreover, we establish an

existence-uniqueness theorem of a solution for equation (x) satisfying u'(0) =0 and
lim,, , u(r) =0.

1. Introduction

Let 6€[0, o) be given and R"(n > 2) denote the usual n-dimensional
Euclidean space. Consider the following two problems:

Au+fw)=0 in Q(R()),

1) %=0 if |x| =6,

u(x) =&>0 if |x|=6;

Au+fw)=0 in (),

(L) %o it x| =0,
lim_u(x) =0,

where R(&):= sup {re(f, oo)u(x) >0 for § <|x| <r} and

* This research was supported by the National Science Council.
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Q0= {{xeR 0<IxI<i) if 0>0,
{xeR"||x| < 4} if =0

for every Ae(f, oo].
When we confine ourselves to positive radial solutions, it is well-known
. that the above two problems (I;) and (I,) can be reduced to the following
equivalent problems

{ Wi+ Lv®) + @) =0 on (6, RE),
(T5) u@)=¢>0 and () =0

u"(r)+":lu'(r)+f(u(r))=0 on (6, ),
(L) W) =0,

Iim u(r) =0,

respectively, where r is the radial variable. See, for example, Kaper and
Kwong [2, 3], Kwong [4], Kwong and Zhang [5]. Recently, Kwong and
Zhang [5] and Kwong [4] separate the set of solutions of (I;) into the
following three subsets under suitable conditions on f:

N:= {£€(0, c0)| R(&) < 0},
G:={¢e(0, )| R(¢) = oo and }Ln; u(r, &) = 0},
P:=(0, 0)—N -G,

where u(r, £) denotes the solution of (I,).
Recently, Kwong and Zhang [5], Kaper and Kwong [3] also established
some existence theorems for solutions of (I5) as follows:

THEOREM A. Assume that
(F,) f is continuous on [0, c0) and locally Lipschitz on (0, o),
(F,) there exists a uy>0 such that F(u)<O0 for 0<u<uy, F(up)=0,
fw) >0 for u>u,, where F(u):= (g f(s)ds,
(F3) with uy as in (F,), [¢2(— F)™'*(u)du < o,
(F4) liminf,,, f(u)>0,
(G, 9g(r) =0 for all r 20,
(Gz) lim,.,, g(r) =0,
(G3) g is continuous on [0, o).
Then, the boundary value problem
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. {u”(r)+g(r)u/(r)+f(u(r))=0 on (0, p),
° w0 =0;u(r)>0 on (0,p);up)=u() =0

has a solution on (0, p), where pe(0, ).

THEOREM B. Let (F,) — (F,), (G,) — (G,) hold. If
(Fs) u-— f(w)/(u — uy) is nonicreasing for u > u,
(F,) ¢ is continuous on (0, o) and g(r)=0(@r"') as r—>0",
then, (Is) has a solution on (0, p).

The purpose of this paper is to classify the solutions of (I,) under fewer
assumptions than those of Kaper and Kwong [3] and Kwong and Zhang
[5]. We also establish a uniqueness theorem of a solution for (I,).

2. Main results

Let m>0 and 0 >0 be given constants. Consider the following intial
value problem

{ W) + ? W) + fr) =0, r>0

(Ivp)
u@=¢ and u'(0) =0,

where f satisfies the following two assumptions:
(A,) f is locally Lipschitz continuous on (0, o),
(A,) there exist two constants a«, f such that f(u) <0 on (0, ®), f(v) >0 on
(o, o) and F(B) >0, where F(u):= [gf(s)ds for u>0.
Clearly, if f(u) = u? — u?, where p > q >0, then (A,) and (A,) hold.
Throughout this paper, u(r, £) denotes the solution of (IVP) and
R(&):=sup {re(d, o)|u(s,.&) >0 for se(b,r)}.
In order to discuss our main results, we need the following two well-known
theorems.

THEOREM C. For any given & >0, the initial value problem (IVP) has a
unique positive solution u(r):= u(r, &) on the interval [0, R(%)).

THEOREM D. For any given & >0, the positive solution u(r, &) of (IVP)
on [0, R()) satisfies the following two identities:
(Ey)
1 r=b b m "
SR )+ ) == | “uls Ods  for any a bel6, R(),
s

r=a a
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(E,) u(r &)= — ;1; Jr "™ f(u(s, &))ds for all re[6, R(¢)).
]

LEMMA 1. Let (€(0, o0) — {a}. If there exists ae[0, R(§)) such that
u(a, &) =0, then u(r, &) # u(a, &) for all re(a, R(¢)).

PrROOF. Assume, on the contrary, that there exists rye(a, R(¢)) such that
u(ry, &) = u(a, &). It follows from (E,) that

ro

0<lury, 6= - f M (s, &)ds <0,
2 a2 S
which implies u'(r, £) = 0 on [a, ro]. Hence, u"(r, £) = 0 on [a, r,]. It follows
from (IVP) that f(u(r, £)) =0 on [a, ro]. By (4,) and r, < R(§), we see that
u(r, {) =a on [a, ry]. Thus, u(r, &) =a on [6, R(£)) by Theorem C, which
contradicts £ # a. Hence, the proof is complete.

For any given &> a, it follows from u(f, &) = £ > a that there exists
r,€(0, R(¢)) such that u(r, ) >a on [0, r;). It follows from (A,) and (E,)
that u'(r, ) < 0 on (0, r;). Hence,

1) R,:=sup {re(@, R())|u'(s, &) <0 for se(b,r)}
exists and satisfies r; < R; < R(£). Seeing such a fact, we have the following

lemma.

LEMMA 2. For any given & > a, u(r, &) must satisfy one of the following
properties :
(P,) If R, =R(¢) < o, then u(r, &) is strictly decreasing to 0 as r — R(&),
(P,) If R, =R() = o, then u(r, &) is strictly decreasing to 0 or o as

r—R(¢) = w,
(P3) If R, <R(&), then u(Ry, &) <o is the absolute minimum of u(r, &) on
[6, R(£)).

Moreover, u(r, &) monotonically converges to o eventually as r — oo or u(r, &)
is oscillatory about o, that is, there exists an increasing sequence {R,}-,

satisfying kllngo R, = o0,
O<uR;, Y <u(R;, ) <uRs,H) < <a,
&> u(Ry, &) > u(Ry, &) > u(Rg, &) > >«

and v'(r, &) >0 on (Ry_{, Ry, v'(r, &) <0 on (Ry, Rypyy) for k=1,2,3,.-,
where R, is defined as in (1).

ProoF. Case (1). Since R, = R(&), it follows from the definitions of R,
and R(¢) that u(r, &) is strictly decreasing and bounded below by 0 on (6, R({)).
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Hence, lim,_ g u(r, &) =u(R(¢), $) > 0. It is clear that u(R(£),¢)=0. In
fact, if u(R(&), &) > 0, then u(R(&) + ¢, &) > 0 for any sufficiently small ¢ > 0.
This contradicts the definition of R(£). Thus, u(R(¢), & = 0.

Case (2). 1If follows from R, = R(¢) = oo and the definitions of R,, R(¢)
that u(r, &) is strictly decreasing on (6, o) and bounded below by 0 on
(6, c0). This implies lim,_  u(r, &) =u, exists. Hence, lim,. u'(r, &)=
lim,_, , u"(r, £) = 0, which and (IVP) imply f(u,) =0. By (A,), we see that
u, =0 or a.

Case (3). We claim that there exists r,e(R;, R(£)) such that u'(r, £) > 0
on (R, r,). Assume, on the contrary, that there exists rye(R;, R(£)) such
that u'(r, £) =0 on (R,, r3) or u'(r, £) <0 on (R, r3). Thus, u"(R;, ) =0 by
the C2-continuity of u at R,. This and «'(r, &) = 0 imply f(u(R,, &))=0. It
follows from (A,) that u(R,, &) =a. By Theorem C, we see that u(r, £) = a
is a constant solution of (IVP) on [, R(&)), which contradicts u(f, &) = & > a.
Hence, there exists r,e(R;, R({)) such that u'(r, £) >0 on (R,,r,). Thus,
u’(R,,r)>0 and

R,:=sup {re(R,, R()|u(s5,§)>0 on (R, 1)}

exists. It follows from u'(R,, &) =0, u"(R,, &) > 0 and (IVP) that u"(R,, &) =
— f(u(R,, &) >0, which and (A,) imply u(R,, §) <a. By Lemma 1, u"(R,, &)
>0 and u'(R,, &) =0, we see that u(R,, &) is the absolute minimum of u(r, &)
on [0, R(¢)). Furthermore, if R, = oo, then R(¢) = R, = cv. Hence, u(r, &)
is strictly increasing on (R,, o0). It follows form Lemma 1 that u(r, &) is
bounded above by ¢ on [R,, o). Thus, lim,_  u(r, £):=u, exists and
lim,_ , u'(r, &) =lim,, , u"(r, £) = 0. By (IVP), we see that f(u,) =0. This
and (A,) imply u, =0 or a. Since

U, = llm u(r, é) > u(RI’ é) >0,

we see that u, =a. On the other hand, if R, < oo, then it follows from
u(R,, £) > 0 and the definition of R(£) that R, < R(£). As discussed at the
beginning of this case, we see that there exists r,e(R,, R(£)) such that
u'(r, &) <0 on (R,, r,). Thus, u"(R,, ) <0 and

Ry:=sup {re(R,, R(&)|u'(s, &) <0 on (R,,r)}

exists. It follows from u'(R,, &) =0, u"(R,, &) <0 and (IVP) that u"(R,, &) =
— fw(R,, &))< 0. This and (A,) imply u(R,, £) > a. By Lemma 1, we see
also that u(R,, &) < & Furthermore, if R; = oo, then R(¢) = R; = co. Hence,
u(r, &) is strictly decreasing on (R,, o0). It follows from Lemma 1 that u(r, &)
is bounded below by u(R,, &) on (R;, o©0). Thus, lim,_ . u(r, £):= u, exists
and lim,,, u'(r, &) =lim,,,  u"(r, £)=0. By (IVP), we see that f(u;)=0,
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which and (A,) imply u3; =0 or «. Since

Uz = llm u(r’ é) > u(Rl’ é) > O,

we see that u; = «. Continuing in this way, we can obtain the desired result.
By Cases (1), (2) and (3), the proof is complete.

Clearly, if £€(0, a), then
rs:=sup {re(d, R(&)|u(s, &) <« on (6, )}
exists. It follows form (A,) and (E,) that u'(r, £) > 0 on (6, rs). Hence,
re:=sup {re(@, R())|u'(s, &) <o on (6, 1)}

exists and satisfies rs <rg < R(£). Seeing such a fact, we have the following
lemma.

LemMMA 3. For any given £€(0, o), u(r, &) must satisfy one of the following
properties :
(P,) If rs = o0, then u(r, &) converges increasingly to o as r — oo,
(Ps) If rs < oo, then rs <rg < R(§), u(re, &) > a and v'(rg, £) = 0. Moreover,
u(r, &) satisfies (Pj).

Proor. Case (1). Since rs = oo, we see that rg = R(&) = 0. It follows
from the definitions of r5 and rg that u(r, &) is strictly increasing and bounded
above by a on (6, o). Hence, lim,,, u(r, ) = u, exists, which implies
lim, , ¥'(r, &) =lim,, , u"(r, £)=0. By (IVP), we see that f(u,) =0. This
and (A,) implies u, =0 or «. Since

Uy = lim u(r, &) > u(d, ¢) = ¢ >0,

we see that u, = o.

Case (2). It follows from rg5 < oo that u(rs, &) = « and u'(rs, £) > 0. Thus,
by the continuity of u(r, ), we see that r; <rs. We claim that rg < oo.
Assume, on the contrary, that r¢ = co. Take ne(a, oo) satisfying F(y) > 0. It
is clear that u(r, £) < n on (6, o). In fact, if there exists r,€(f, co) such that
u(ry, &) =n. It follows from (A,) and (E,) that

r7

0< %u’z(h, Q)+ Fim)—F()=— '[ s, as <o,

9 S

which is a contradiction. Hence u(r, £) <n on (6, c0). Since rg = c0, we see
that u(r, £) is strictly increasing and bounded above by 5 on (6, ). Thus,
lim,_, , u(r, £) = us exists and lim,_ , v/(r, &) = lim,, , u"(r, £y =0. By (IVP),
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we see that f(us) =0, which and (A,) imply us =0 or a Since u(r, £) is
strictly increasing on (6, c0), we see that

us = lim u(r, &) > u(rs, ¢) = o,

which gives a contradiction. Thus, r¢ < oo, and hence u'(rq, £) = 0. It follows
from u(rg, &) > u(rs, &) = a > 0 that r¢ < R(£) < c0. Using Lemma 1, we see
that u(r, £) is bounded below by & >0 on [rg, R(£)). This and Lemma 2
imply u(r, £) satisfies (P;).

LemMMA 4. Let t:=inf{uela, o0)|F(u) >0}. Then, for any &e€(0, 1],
lim,_ g u(r, &) > 0 and R(&) = 0.

PrOOF. Assume, on the contrary, that there exists £€(0, t] such that
lim, g u(r, &) = Q. It follows from (E,) that

: 1 12 _ : i m 12
0< ry}(r(l{)iu (r¢) = F() =~ lim Jo U (s, &)ds <0,
which implies u'(r, £) =0 on [0, R(¢)). Hence, u(r, &) =& on [0, R(&)). It
follows from lim,_ g u(r, &) = 0 and u(r, &) = £ on [0, R(£)) that ¢ =0, which
contradicts & > 0.

Thus, the proof is complete.

It follows from Lemmas 2, 3 and 4 that we can decomposite the set of
solutions of (IVP) into the following three disjoint subsets:

N*:={£€(0, )| R(¢) < oo and u(r, &) is decreasing to 0 as r — R(¢)},
G* := {£€(0, 00)| R(§) = o0 and u(r, &) is decreasing to 0 as r —» oo},
P* :=(0, 0) — N* — G*

£e(0, )| R(¢) = o and u(r, &) strictly monotonically
converges to a eventually as r — oo or u(r, &) is oscillatory

about o and has an absolute minimum on (6, ©)

In particular, by Lemma 4 and the property of continuous dependence
on initial value, we see that (0, 1] = P* and N* is an open subset of (0, ),
where 7 is defined as in Lemma 4.

THEOREM 5 (Existence). If f'(«) > 0, then for every &eP*, lim,_, , u(r, &)
=a. In particular, the boundary value problem

W) + ? W () + fu(r) =0 on (8, ),
(BVP1) W) =0

lim ur)=a>0
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possesses infinitely many solutions.

Proor. It suffices to show that lim,_ , u(r, &) = a if u(r, &) is oscillatory
about a. It follows from Lemma 2 that

,,ILI?O Ry -1, &) = P,1€(0, o],
kll_rg U(Ryy, &) = Brela, &)

and
u(Ry, &) =0 for k=1,23,---

we can obtain f; = f, = a. In fact, it follows from (E,) that

Rk
(2) Fu(R,_1)) — Fu(Ry)) = f m w?(s, &)ds > 0 for k=1,2,3,---.

R2k-1
Hence,
F(u(Ry)) < Fu(Ry - 1) < Fu(Ry)) <0  for k=1,2,3,,

which implies u(R,) < t. Using the same technique of Ni [7], we can prove
that 8, = f, =a. Hence, lim,_ , u(r, &) = a. Since (0, 7] = P*, we see that
(BVP1) possesses infinitely many solutions.

LEMMA 6. If f'(x) > 0, then

P* = {£€(0, 0)|u(r, &)
is oscillatory about o and has an absolute minimum on (6, ©)},

P* is a nonempty open subset of (0, o), and hence, G* is a closed subset of
(0, 00).

ProOOF. Assume, on the contrary, that there exists &e P* such that u(r, &)
is not oscillatory about «, that is, u(r, &) strictly monotonically converges to
o eventually. Since f'(«) > 0, there exists rge(f, c0) such that

f(u(r, )

—2%f’(a)>0 on [rg, c0).

u(r, §) —
Clearly, the differential equation

(I 0+ 00 + %f’(a) ~0

is oscillatory and w(r):= u(r, £) — o is a negative or positive solution of
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n S(u(r, )
u(ra é) —a

By Sturm’s comparison theorem, we see that w(r) is oscillatory, which
contradicts w(r) being negative or positive on [rg, c0). Hence, we see that

P* = {£€(0, oo)|u(r, &)
is oscillatory about o and has an absolute minimum on (6, o0)}.

I1,) w'(r) + m w'(r) w(r) =0, relrg, o).
r

Moreover, it follows from the property of continuous dependence on initial
value, u(r, ) has an absolute minimum on (, co) and Lemma 4 that P* is a
nonempty open subset of (0, o0).

ReMARK 7. The condition “f’(x) > 0” is better than (Fs) (see, Theorem
B in Section 1). For example let f (u):=u? —u'/2. We see easily that
uo=2*3>0 and u— f(u)/(u — uy) is increasing for u > 253> u,. Thus,
f() = u* — u''? does not satisfy consition (Fs5). But, for any given p, g with
p > q >0, the function u? — u? satisfies the condition “f’(x) > 0”.

It follows from Lemma 6 and N* is an open subset of (0, c0) that the
boundary value problem

u%n+$wn+ﬂwm=0muaw)

(BVP2) W@ =0
rlLrg u(r)=0

has one solution on [6, o) if N* is a nonempty set or P* is a bounded set.

THEOREM 8 (Existence-Uniqueness). Assume that =0, ¢ >0, 0<g<p
<m+2)/m—1)and m>1. If f(u):=uP —u® or uP — ¢, then (BVP2) has a
unique positive solution on [0, ).

Proor. It follows from Wong [8], Wong and Yeh [9] and Wong, Yeh
and Yu [10] that (BVP2) has at most one solution on [, o). Next, we
prove that (BVP2) has a positive solution by the following two cases.

Case (1). Suppose that f(u):=u? —u?. Let A€(0, o) be given and define

ri=A4"9P-D2-9; and v(t):=A"”("_‘”u(r).

Then,

wm+?wm+fmm=o
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can be transformed into
m _
(Tg) v"(t) + " v'(t) + vP(t) — A" 9(t) = 0.
Now, consider a simpler equation
m
(L) w'(t) + 7 w(t) + wP(t) = 0.

The solution w(t) of (Iy) which satisfies the initial condition

3) w0 =1 and w(0)=0

has a zero in (0, o0) (cf. Kaper and Kwong [3], Ni [6]). It is clear that for
each solution u(r, &;) of (IVP), there exists a solution v(t) of (Ig) satisfying
v(0) =1 and v'(0) = 0, where &,:= 49?79, Because v(t) is bounded by 1, we
see that the last term in (Ig) can be small arbitrarily by choosing A4 large
enough. Hence, v(t) has a zero in (0, co) which implies u(r, £;) has a zero
in (0, cv). Hence, N* is nonempty and (BVP2) has a positive solution on
[0, o0).

Case (2). Suppose that f(u):=u? —e. It follows from the existence
theorem of Castro and Shivaji [1], and Kaper and Kwong [3] that N* is
nonempty. Hence, (BVP2) has a positive solution on [0, c0).

By Cases (1) and (2), we complete the proof.

REMARK 9. It follows from Uniqueness Theorems in Wong [8], Wong
and Yeh [9], Wong, and Yu [10] that

(a) P* = (0, c0) and N* =0 if G* =0,
(b) P* =(0, {,) and N* = (&, o) if G* is a singleton, say G* = {&,}.

Thus, if f(u) satisfies (A,), (A,) and the hypotheses of Lemma 6 and f is
strictly decreasing near O (or, increasing near 0 and m > 1/2) and if we can
prove that P* is bounded or N* = ({,, o0) is nonempty, then we can show
that (BVP2) has exactly one solution.
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