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Introduction

In the previous paper [3], we gave an estimate on the codimension of
the Euclidean space into which a Riemannian manifold (M, g) can be locally
isometrically or conformally immersed, by using some quantity which is
naturally associated with (M, g). In the present paper, we introduce another
new quantities of (M, g), and improve the estimate on the codimension based
on these newly introduced quantities. The principle of our new method is
explained as follows.

Let (M, g) be an π-dimensional Riemannian manifold. We assume that
(M, g) is isometrically (or conformally) immersed into the (n + r)-dimensional
Euclidean space Rn+r. Let x be a point of M and AT be a tangent vector
in TXM. We denote by Λ^(X) the family of linear subspaces W of TXM
satisfying

R(Y,Z)X = Q for all Y, Z e W ζ

where R denotes the curvature tensor field of type (1, 3) at x. We denote
by d(X) the maximum dimension of We^(X) and set pM(x) = min d(X)
( X e T x M ) . Then, by the Gauss equation, or its modified equation for
conformal immersions, we have the following inequalities on the codimension r

r > n — pM(x) (the isometric case),
(*)

r > n — pM(x) — 2 (the conformal case)

(Proposition 1.1). And using these inequalities, we obtain an estimate on the
codimention of isometric or conformal immersions. In fact, we may assert
that any open neighborhood of x in M cannot be isometrically (resp.
conformally) immersed into the Euclidean space Rn+r with r < n — pM(x) (resp.
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r < n — pM(x) — 2). The isometric case of the above inequalities is essentially
equivalent to the condition stated in [2; Theorem 3.1], which the first named
author obtained by introducing the notion of "generalized Gauss equation".
(For details, see Theorem 3.2.)

Let us now assume that (M, g) is a Riemannian symmetric space and
consider the problem to determine an actual estimate by the principle stated
above. Because of homogeneity, it suffices to calculate the number pG/κ(o) at
the origin o of G/K. Let g (resp. f) be the Lie algebra of G (resp. K) and
let g = I + m be the canonical decomposition. We fix a maximal abelian
subspace α of m, and let Ϊ0 be the centralizer of α in f. Then the integer

PG/K(= PG/K(°)) equals the maximum dimension of the subspaces W in m
satisfying

In particular, in the special case where f 0 .= {0} (i.e., the Satake diagram does
not contain any black circles nor any arrows), the equality pG/κ = rank G/K
holds (Theorem 2.4). From these results, it follows that the canonical
imbedding of the space SU(m)/Sp(m) (cf. [7]) gives the least dimensional local
isometric imbedding into the Euclidean spaces (Corollary 2.5). However, for
general spaces, it is difficult to determine the exact value pG/κ, even in the
case G/K is a compact Lie group.

We now introduce another quantity pc

M, which is just the complex version
of pM. For xeM and XeTxM, we denote by Λ^C(X) the family of complex
linear subspaces of (TXM)C satisfying

RC(Y, Z)X = 0 for all Y , Z e W ,

where (TXM)C and Rc mean the complexifications of TXM and R, respectively.
We denote by dc(X) the maximum dimension of the complex vector space
W<=^C(X), and set pc

M(x) = mmdc(X) (XeTxM). Then, in the same way as

before, we have the following inequalities on r;

r > n — pc

M (x) (the isometric case),
(**)

r > n — p€
M(x) — 2 (the conformal case).

Therefore, the same statement after (*) holds if we replace pM(x) by
pc

M(x). Since p€
M(x) > PM(X)> which follows directly from the definition, the

estimate obtained by p€
M(x) is in general inferior to the one obtained by

pM(x). However, by using the value pc
M for compact Lie groups, we can

improve the results in [3] on the codimension of isometric or conformal
immersions, and it is the main purpose of this paper to determine the value
pc

M for all compact Lie groups.
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Let G be a compact Lie group and g be its Lie algebra, and we fix a
Cartan subalgebra t of g. Then the integer pG equals the maximum dimension
of complex linear subspaces W of gc satisfying

[W, WTJ c tc.

Then, our problem is completely reduced to a problem concerning the root
system of gc. Let A be the set of all non-zero roots of gc with respect to
tc. We say that a subset Γ of A is non-additive if α + βφΔ for any α, βeΓ.
Then, the integer pc

G is equal* to the maximum of the value #Γ + rank g —
dim RΓ, where Γ runs over the set of all non-additive set in A (Proposition 3.4
and Corollary 3.5). Our main results are summarized in Theorem 3.1. In
particular, for compact classical Lie groups G, the order of p°G is about
l/4 dimG, and therefore, G cannot be locally isometrically (or conformally)
immersed in codimension about 3/4 dim G. This improves the previous
results in [3], where we showed the non-existence of isometric (or conformal)
immersions in codimension about l/2 dimG.

Now, we explain the contents of this paper. In §1, we first define two

functions pM(χ)> PM(X)> and prove the inequalities (*) and (**). Next, we state
some fundamental properties of these functions (Proposition 1.2). In §2, after
reformulating these results adapted to Riemannian symmetric spaces, we prove
Theorem 2.4. In § 3 ~ § 5, we determine the value pG for all compact simple
Lie groups G. First, in § 3, we state the main results on the value p€

G (Theorem
3.1), and to prove this theorem, prepare some notions on the root
systems. Using these results, we prove Theorem 3.1 in §4 and §5 for the
classical and the exceptional Lie groups, respectively. For the classical case,
we divide the non-additive sets Γ into five types, and after evaluating the
maximum of #Γ + rank g - dim RΓ inductively for each type, we determine
the value pG. Since each type possesses its own feature, we must prepare
several lemmas to obtain the final results. For the exceptional Lie groups,
we determine p€

G by applying the results of Malcev [10] on the maximum
dimension of abelian subsalgebras of complex simple Lie algebras. (See also
Appendix.) Finally, in § 6, we state a result on the value pG for compact Lie
groups with small rank. We also give some lower bound of pG for general
compact simple Lie groups, in terms of a set of roots satisfying some conditions.

§ 1. A condition derived from the Gauss equation

Let (M, g) be an rc-dimensional Riemannian manifold. In this section, we
first state some necessary conditions in order that (M, g) may be locally
isometrically (or conformally) imbedded into Rn+r in terms of some quantity
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associated with (M, g).
Let xeM and for each tangent vector XeTxM, we define two sets

and J^C(X) consisting of subspaces of TXM and its complexification (TXM)C by

={Wc:TxM\R(Y9Z)X = 09 for all Y,ZεW},

= {W^(TXM)C I RC(Y, Z)X = 0, for all Y9 ZeW},

where R: TXM x TXM x TXM -> ΓXM is the curvature tensor of type (1, 3) at
x, and RC:(TXM)C x (TXM)C x (TXM)C^(TXM)C is the complexification of

R. For a real tangent vector XeTxM, we put

= max
WeΛ (X)

dc(X) = max dim W.
We^c(X)

If the element XεTxM is sufficiently generic, the integers d(X) and dc(X) take

the minimum value and we denote them by pM(x) and PM(*) Namely, pM

and pc

M are Z-valued functions on M defined by

n (x) = min dϋΠ,FMV Λ:6rxM
 v ;'

/?C

M(X)= min dc(X).
M XeTxM

Since there is a canonical inclusion ^(X)^J^C(X) for each JfeTxM, the

inequality pM(x) < pc

M(χ) holds for xeM. The importance of these functions
are explained in the following proposition.

PROPOSITION 1.1. Assume that an n-dίmensional Rίemannian manifold

(M, g) is isometrically (resp. conformally) immersed into Rn+r. Then the
following inequalities hold for any xeM.

r>n- pM(x) (resp. r>n- pM(x) - 2)

r > n - pc

M(x) (resp. r>n- pc

M(x) - 2).

Consequently, any open submanifold of M containing x can not be isometrically

(resp. conformally) immersed into the Euclidean space with codίmension
r = n- pM(x) - 1, n - pc

M(x) - 1 (resp. r = n- pM(x) - 3, n - pc

M(x) - 3).

PROOF. We prove only "real" part of this proposition because the second

inequality follows immediately from pM(x) < pc

M(x) and the first inequality.
First, we treat the "isometric" case. We have only to show that the

inequality d(X) >n — r holds for any XeTxM because pM(x) = d(X) for some
XeTxM. We denote by Γ/M the normal space of the isometric immersion



Local isometric imbeddings 81

at x and let α: TXM x TXM -> T/M be the second fundamental form associated
with the immersion. For XeTxM, we define a linear map φx: TXM-*T^M
by φx(Y) = α(X, 7). If ί ZeKer φx, then for any We TXM, we have, from
the Gauss equation,

- g(R(Y9 Z)X, W) = <α(X, 7), α(Z, W» - <α(X, Z), α(i; W)> = 0

because αpf, 7) = α(X, Z) = 0. (We denote by < , > the inner product of
T/M.) Therefore, we have R(Y, Z)X = 0, which implies Keτφxe^(X).
Since dim Ker φx > dim TXM — dim T/M = n — r, we obtain the desired
inequality d(X) > dim Ker φx > n — r.

Next, we treat the "conformal" case. In our previous paper [3; p. 110],
we constructed symmetric tensors

α : TXM x TXM - > T/M

jβ: TXM x TXM — »/?

associated with the conformal immersion of (M, g), and showed that they
satisfy the modified Gauss equation for conformal immersions:

, 7), αW Z)> - <α(Jf, Z), α(PK 7)> + /?(*, Y)^(^ Z) + g(X, Y)β(W, Z)

, Z)g(W, Y) - g(X, Z)β(W, Y) = - pg(R(X, W)Y9 Z),

where p is a positive function on M (see [3; Lemma 1.1]). In terms of these
tensors, we define a linear map ψx : TXM -> T/M © /?2 (X e TXM) by
^χ(y) = (α(X, 7), jS(7), ^(X, 7)). Then, by using the modified Gauss equation
for conformal immersions, we can easily show that Ker ψxeΛ^(X) in the same
way as above. Hence, we have d(X) > dim Ker ψx > n — (r + 2), which

implies pM(x) > n — r — 2. q.e.d.

As seen in the above proposition, we may say that the functions pM and
p€

M are fundamental quantities associated with (M, g). Therefore, it is an
interesting problem to determine pM and p€

M for a given Riemannian manifold
(M, g).

Finally, we state some properties of pM and pc
M.

PROPOSITION 1.2. (1) Let π : M - > M be a Riemannian covering. Then,

π*PM = PM and π*pc

M = p^.
(2) Let M = M! x ••• x Mk be a product of Riemannian manifolds. Then,

for X eM;, the following equalities hold.
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(3) Let M be a Riemannian symmetric space. Then the functions pM and
p€

M are constant on M. In addition,
(a) If M is of Euclidean type, then pM = pc

M = dim M.
(b) If M is of compact type and M* is its non-compact dual, then

PM = PM* and pc
M = pc

M*.

PROOF. The assertion (1) is clear. If M is a Riemannian symmetric space,
then, since the isometry group acts transitively on M, both the functions pM

and PM are constant. If M is of Euclidean type, M is locally isometric to
Rn and hence we have clearly pM = pc

M = dim M. If M is of compact type,
then the curvatures of M and M* differ only in sign, and therefore, we have
PM = PM* an<3 P°M — PM*' This proves the assertion (3).

Finally, we prove (2) in the case k = 2. The general case can be treated
in the same way. For x = (xl9x2)eM1 x M2, we take a tangent vector
X = (X19 X2)εTxM = TXίM1 ® TX2M2 such that pM(x) = d(X). Then there
exist subspaces W{ c TXiMi satisfying Wie^(Xi) and dim W{ = d(X^ (i = 1, 2).
We put W=W1@W2^ TXM. For tangent vectors Y=(Yl9 Y2), Z = ( Z ί 9 Z2)
εW9 we have R(Y9 Z)X = (Rί(Yί9 Z^X^ R2(Y29 Z2)X2) where K£ is the
curvature of M,. Using the conditions Ύi,Zi^Wi and WieΛr(Xi)ί it follows
that R(Y, Z)X = 0, and hence WεJ\f(X}. Therefore, we have pM(x) = d(X) >

dim W= dim W, + dim W2 = d(X1) + d(X2) > pMl(*ι) + pM2(x2).
Next, for x = (xl9x2)eM, we take A'ίe7]c.Mί such that pMi(xi) = d(Xt)9

and put X = ( X ί 9 X 2 ) . Then there exists a subspace Wa TXM satisfying
WeJf(X) and dim W= d(X). We denote by W{ c TXiMi the image of the
space W with respect to the orthogonal projection TXM = TXίMί 0 TX2M2 -+
Tx.Mt. Then we have Wie^(Xi). In fact, for Y^Z^W^ we can take
Y29 Z2eTX2M2 such that y=(y l 9 y2), Z = (Z 1,Z 2)eW Then we have

0 = #(X Z)X = (Λ^yi, ZJAΊ, ^2(^2. ^2)^2), and from the first component,
it follows that W1E^V(X1). The property W2e^(X2) can be proved in the
same way. Since W'c Wl®W2, we have pM(x) < rf(^) = dim ϊ^< dim W^ +

dim W2 < d(X1) H- d(X2) = pMl(
χι) + PM2(

X2) Thus, combining with the first
inequality, we obtain the desired result. q.e.d.

In particular, from this proof, it follows that the subspace VFcz TXM
realizing the equality pM(x) = dim W is expressed as a direct sum of subspaces

such that d(Xί) = dim W{.

§2. Riemannian symmetric spaces

In this section, we consider the problem to determine the quantities pM

and pc

M for Riemannian symmetric spaces. By Proposition 1.2, we may assume
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that M is irreducible and of compact type.
Let M = G/K be an irreducible Riemannian symmetric space of compact

type. Since the isometry group of M acts transitively on M, we have only
to determine pM and p€

M at the origin o of M. Let g (resp. !) be the Lie
algebra of G (resp. K) and B the Killing form of g. Let g = I + m be the
canonical decomposition. As usual, we identify m with the tangent space of
M at o. We define the Ad (K)-invariant inner product < , > of m by
<X, y> = — B(X, Y) for X, Yem. We may assume that the Riemannian
metric g on M coincides with < , > at o. Then the curvature tensor R of
(M, g) is given by

R(X, Y)Z = - [[X, y], Z] for X, y, Zem.

Now let us fix a maximal abelian subspace α of m and set

We define two sets JfM and Λ^ consisting of subspaces of m and mc as follows :

Then we have

PROPOSITION 2.1. Lei M = G/K fee #« irreducible Riemannian symmetric
space of compact type. Then:

(1) p = max dim W
^ ' rM WeJ^M

(2) plf = max dimr W.v ' yu w^M

 c

To prove this proposition, we first prepare the following lemma.

LEMMA 2.2. Let He a. Then:

(1) Λ^cΛ^H) and Λ£ c Λ^C(H).
(2) /« case // w regular, i.e., the centralίzer of H in m coincides with a,

PROOF. We prove only the real case, because the complex case can be
proved in the same way.

Let WE JfM and let Y 9 Z e W . Then, since [y, Z] e!0 and [f0, H] = 0, we
have

R(Y,Z)H= -
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This implies We^(H). Therefore we have JTM c
We now assume that H is a regular element of α and prove

Jf(H) = ̂ M. Let WeJf(H). We put V=[_W,W]. Then by the very
definition, we have [V, #] = 0. Since [m, m] c ϊ, we have K e f . Moreover
we can show that [K, α] = 0. We first note that [K cι] c= m, because
[ί, m] d m. By the Jacobi identity, we have

[if, IK α]] c [[/f, F], α] + [K [H, α]] = {0}.

This proves that [K α] is contained in the centralizer of H in m. Since H
is regular in α, we have [K α] c= α. Moreover, by the ad (g)-invariance of the

Killing form, we have

for Aί9 A2ea, XeV. Since < , > is positive definite on α, we have [K α] = 0.
Consequently, we have V a f0, which shows that We^M. Therefore, we have

J^(H] c: Λ^. This together with the first assertion implies Jf (H) = J^M.
q.e.d.

PROOF OF PROPOSITION 2.1. We prove the assertion (1). Let Xem.
Then there exists geK and Hea such that X = Ad(g)H. Then we have

Λr(X) = Ad(g)Λr(H) = {Ad(g)W\WeΛr(H)}9 and hence we have d(X) = d(H).
Therefore, to determine the integer pM, we may assume that X = HE a. By

(1) of Lemma 2.2, it follows that d(H) > max dim W. On the other hand, if

H is a regular element of α, we have the equality d(H) = max dim W from
We^M

(2) of Lemma 2.2. This proves the assertion (1).
The assertion (2) can be proved in the same way, and we omit the proof.

q.e.d.

As an immediate consequence of Proposition 2.1, the quantity pM can be

determined for a special class of Riemannian symmetric spaces.

PROPOSITION 2.3. Let M = G/K be an irreducible Riemannian symmetric
space of compact type satisfying rank M = rank G. Then the equality
pM = rank M holds.

PROOF. Since rank M = rank G and dim α = rank M, α is a maximal

abelian subalgebra of g. Hence the centralizer of α in g coincides with α
itself. Therefore we have Ϊ0 = {0}, because α n ϊ = {0}. Consequently, it is
clear that a subspace J^of m is contained in J\^M if and only if Wis abelian, i.e.,

[W, W~\ = 0. Since the dimension of an abelian subspace of m does not exceed
rank M, we have dim W< rank M for any Wε^M. On the other hand, since

and dim α = rank M, we have pM = rank M. q.e.d.
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In terms of the Satake diagram, an irreducible Riemannian symmetric
space M = G/K with rank M = rank G corresponds to a diagram without any
black circles nor any arrows. Viewing the classification table of irreducible
Riemannian symmetric spaces of compact type, we have

THEOREM 2.4. Let M = G/K be one of the following Riemannian

symmetric spaces of compact type and let M* be the non-compact dual of
M. Then the equality pM = pM* = rank M holds.

AI SU(m)/SO(m), BI S0(2m + l)/SO(m + 1) x S0(m),

CI Sp(m)/U(m), DI S0(2m)/S0(m) x S0(m),

El E6/Sp(4), EV E7/Sl/(8),

EVlll Es/Spin (16), FI FJSp(3) - SU(2),

G G2/SO(4).

For the spaces listed in Theorem 2.4, we can conclude the non-existence
of isometric (resp. conformal) immersions in codimension dim M — rank M — 1
(resp. dim M — rank M — 3). These results improve our previous estimates in

[3], where the non-existence of isometric (or conformal) immersions in

codimension about l/2 dimM is proved.

Since it is already known that the space CI Sp(m)/U(m) can be globally
isometrically imbedded into the Euclidean space with codimension m2 = dim M

— rankM (cf. [7]), we have

COROLLARY 2.5. For the space Sp(m)/U(m), the canonical isometric
imbedding gives the least dimensional (local) isometric imbedding into the
Euclidean spaces.

Finally, we consider the case of compact simple Lie groups. Let G be
a compact simple Lie group and g be its Lie algebra. As is known, G

endowed with a bi-invariant metric can be regarded as a Riemannian symmetric
space G = G/K where G = G x G and K denotes the diagonal subgroup of
G. Let t be a Cartan subalgebra of g. We define two sets JfG and Λ^ by

Then the statements in Proposition 2.1 can be reformulated as follows.

PROPOSITION 2.6. Let G be a compact simple Lie group. Then:

(1) PG = max dim W.
^ ' ™ WejTG

(2) pc

G = max diπv W.
^G C c
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PROOF. Let 9 (resp. !) be the Lie algebra of G (resp. K). Then we have
9 = 9 + 9 and ! = {(X, X)\Xe$}. If we put m = {(X, - X ) \ X G Q } , then
9 = f + m gives the canonical decomposition of 9 associated with G/K. We
note that ά = {(//, — H)\Het} is a maximal abelian subspace of m and that
the centralizer f 0 of α in ! is given by !0 = {(H, H)|Het}. Let W be a
subspace of 9 and set W= {(X, -X)\XεW}. Then we have W^m and
dim W — dim W. Conversely, any subspace of m can be expressed in this
form. We can easily show that [W, W] c !0 if and only if [W, W~\ c t. This
proves the assertion (1). The assertion (2) can be obtained in the same way.

q.e.d.

§3. The value p€
G for compact Lie groups

In this and subsequent sections, we determine the quantity pc
G for compact

Lie groups G. On account of Proposition 1.2, we have only to determine p€
G

for compact simple Lie groups. Our main results are summarized in the
following theorem.

THEOREM 3.1. The values p€
G for compact simple Lie groups are given in

the following tables:

^\
G

4»-ι
Bm

cm

Dm

-\^ m

^̂ ^
St/(m)

S0(2m + 1)

Sp(m)

S0(2m)

1

0

2

2

1

2

2

4

4

4

3

3

6

5

4

5

8

8

1/2

1/2

1/2

IV/4;
m(m —

m(m +

m(m —

]

1)+ 1

1)

1)

(m

(m

(m

(m

>5)

>5)

>3)

>5)

16

27

36

Before proceeding to the proof, we first state several remarks on this
theorem.

REMARK 1. By Proposition 1.1, it follows that G cannot be locally
isometrically (resp. conformally) immersed into the Euclidean space with
codimension = dim G — pG — 1 (resp. dim G — pG — 3). The isometric part of
this statement is essentially equivalent to the following theorem, which the
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first named author proved in the previous paper [2] by applying the theory
of generalized Gauss equations.

THEOREM 3.2. (cf. [2; Theorem 3.1]). Assume that an n-dίmensional
compact semi-simple Lie group G is locally isometrically immersed into
Rn+r. Then, there exists a non-zero decomposable r-form Φe Λ rg c* such that
φ Λ dωΛ = 0, where dωΛ is the exterior derivative of the ^-component of the
complexified Maurer-Cartan form of G. (gα is the root subspace of gc

corresponding to the root α.)

In fact, a non-zero decomposable element Φe Λ rg c* determines the
(n — r)-dimensional subspace We: gc, and it is easy to see that the condition
Φ Λ dωa = 0 is equivalent to [W, W~\ c tc. Hence, we have pc

G > n — r, i.e.,
r > dim G — pc

G by this theorem. In addition, in the paper [2], we determined
the value pc

G for the groups 517(3), 50(4), SO (5) by using the exterior
calculus. Thus, Theorem 3.1 may be considered as a generalization of these
results.

REMARK 2. For each compact classical group G, the order of the value
p€

G is about l/4 dimG, and hence, G cannot be locally isometrically or
conformally immersed into the Euclidean space with codimension about
3/4 dimG. This improves the previous results in [3], where we proved the
non-existence of the immersion in codimension ~ l/2 dimG.

Theorem 3.1 also improves the estimates for exceptional Lie groups. In
fact, we showed in [3] that £6, E7, E8, F4 and G2 cannot be locally
isometrically immersed into the Euclidean space with codimension 35, 62, 119,
23 and 5, respectively, while Theorem 3.1 indicates the impossibility in
codimension 61, 105, 211, 42 and 9.

REMARK 3. It is known that the symplectic group Sp(m) can be globally
isometrically imbedded in codimension 2m2 — m (cf. [7]). Hence, as an
immediate consequence of Theorem 3.1, we have

THEOREM 3.3. For the group Sp(\), Sp(2) and Sp(3), the canonical
imbeddings give the least dimensional local isometric imbeddings into the
Euclidean spaces.

For G = Sp(l) and 5p(2), these results are already known because
Sp(l)~S3 , and Sp(2) is locally isometric to S0(5) (cf. [1]).

Now, in the following, we state a systematic method to determine the
value pc

G for general compact Lie groups. For this purpose, we first fix some
notations. Let ( , ) be an inner product of g which is invariant by the adjoint
action of G, and for αet, we put
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gα = {Xetf I [H, X] = ̂ l(H, α)*, for all Het}.

We say that α e t is a root if gα φ {0} , and denote by A the set of all non-zero
roots of g. It is well-known that dimc gα = 1 for α e z f , gc = tc + Σαe4gα (direct
sum), and [gα, g^] c gα+/3. We denote by τ : gc -> gc the conjugation of gc with
respect to g. Then, there exists a basis Zα of gα satisfying

for cue A (cf. [3; p. 113]). We use these properties in §6. Note that for
α, βeΛ, [Zα, Zβ] φ 0 if a + βεA. (We consider g0 = f.) In the following,
we fix a linear order in t and denote by A+ (resp. A~) the set of all positive
(resp. negative) roots with respect to this order.

Let Γ be a non-empty subset of A. We denote by RΓ the subspace of
t spanned by the elements of Γ, and by (RΓ)L the orthogonal complement
of RΓ in t. For Γ a A, we define an integer a(Γ) by

a(Γ) = *Γ + dim

= #Γ + dim t - dim RΓ.

The above definition is naturally applicable to the case Γ = 0. We then have
R0 = {0}, (R0)L = ϊ and a(0) = dim t.

We say that a subset Γ c= zl is non-additive if α + β £ zf for all α, β 6 /". We
denote by ί2 the set of non-additive subsets of A. For Γeί2, we define a
subspace Wr of gc by

αeΓ

The following proposition is essential in the proof of Theorem 3.1.

PROPOSITION 3.4. Under the above notations,
(1) WΓE^ for Γ.eΩ (i.e., \_WΓ, WΓ] c f), α/ιrf dimc ̂

Γ=
(2) Let W be an element of J^Q. Then, there exists ΓeΩ such that

dim€W<a(Γ).

As an immediate consequence of this proposition, we have

COROLLARY 3.5. For a compact Lie group G, pc

G = max a(Γ).

PROOF OF PROPOSITION 3.4. (1) The equality dim c W Γ =α(Γ) clearly
holds. We prove the property [_WΓ, WΓ] c f. First, [(/?Γ)lc, (/?Γ)lc] = 0,
and for α, βeΓ such that α + β Φ 0, we have [Zα, Z^] = 0 because
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α + βφA. In addition, we have [Zα, Z_Jet c, and for # e(/?Γ)lc, [#, ZJ =

yJ^\(H, α)Zα = 0. Combining these results, we have [_WΓ, WΓ~\ c tc.

(2) Let {αι, ,<*m} be the set of all positive roots of gc such that
α : > ••• > αm, and {H!,•••,#£} be a basis of f. Then, the vectors

(*) Z.t,.. ,Zam,H1, ,Ht,Z-βm, ' ;Z-.l

form the basis of cjc. We take a basis {Xl9 9Xt} of WeJ^Q, and express
J^i as a linear combination of (*) according as the above order. Next, we
deform Xt such that the top terms of Xί ~ Xι-ι do not appear in Xt. Then,
finally, after multiplying some non-zero constants, we have the following
expressions:

X, =Z, ,+ 'Σ AlΛZ. + Ht

α<0

<*<βp+l

a<βp

where βl > - > βp > 0 > βj+l > ~ > βp+q (βteA)9 HhHtetc

9 AiΛeC and
p + q + r = I. (Note that Hl9' ,Hr are linearly independent.) Namely,

Xt = Zβ. + £ AiaZΛ + HI (1 < i < p + q)
α < βi

and Xp+q + i = Hf + X Ap+q,+ i>αZβ (1 < i < r).
α<0

(Hp+1 = ••• = Hp+q = 0.) Then, for 1 < i, /< p + g, it is easy to see that the
top term of [Xί? Xj] with respect to the order in (*) is equal to [Zβi, Zβ']. If
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βi + β j £ Λ , then 0 Φ [Zβ.9 Zβj]eQβi+βj, which contradicts the assumption

[Xi9 Xj]εtc. Therefore, fa + 'βjφΛ,. i*.9 the set Γ = {βl9 9βp+q} is non-
additive. Next, for 1 < i < p + q, 1 <j < r, the top term of [Xp+q+j, X^\ is

equal to [//,, ZβJ = ^/ — 1(HJ9 βi)Zβi, and since this element must belong to

tc, we have (Hj9βJ = 09 i.e., Hje(RΓ)JLc. Then, since Hl,'-,Hr are linearly
independent, we have dimc(RΓ)λc > r. In particular, we obtain the inequality

a(Γ) = *Γ.+ dim (RΓ)λ >p + q + r = l = dimc W. q.e.d.

§4. Proof of Theorem 3.1. (The case of the compact classical Lie groups)

4.1. In this section, by applying the results in §3, we give a proof of

Theorem 3.1 for compact simple classical Lie groups. For the group SU(m),

however, we determine the value pc

G for G = U(m) instead of SU(m) in order

to simplify the arguments. Note that these values are related by pc

u(m) = pc

su(m)
+ 1 because U(m) is locally a product of SU(m) and R1 (cf. Proposition 1.2).

In the following, we prove Theorem 3.1 for four types of classical groups

in parallel. For this purpose, we prepare several notations concerning the

roots and the Weyl groups of classical Lie algebras. First, we consider the

countable set {λi\ieN}9 and for a positive integer m, we denote by Vm the

m-dimensional real vector space spanned by λί9-~9λm9 i.e.,

ί = l

Note that there is a natural inclusion

{0} d V1 c= V2 c ••• c Vm~1 c: Vm c: - . . ,

because λt e Vj for j > i. We introduce an inner product ( , ) on Vm such that

(λi9 λj) = δtj. Next, we define subsets Δm

A, Δ^9 Δ%9 A™ of Vm by

±λi±λj

For X = A9 B, C or D, we call an element α e A™ a root of type X. Note

that in the case X = A or D, the length of the root is always ^/29 and in

the case X = B or C, it is equal to 1, 2 or ^/2. We can consider the space

Vm and the sets Δ™ (X = A ~ D) as a Cartan subalgebra and the set of

non-zero roots of the Lie algebras u(m), o(2m + 1), sp(m) and o(2m),
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respectively (cf. [4]). We remark that there is a natural inclusion relation of

the sets of roots:

/ί1 t— Λ 2 r- e— Λm~l f— Λm t—ZJ χ C— ZJ χ d • • ' ζΣ. ZJ χ C_ /I χ d '".

Next, for α e Λ ™ , we define a linear transformation Sα of Vm by

Λ , .
(α, α)

Clearly, 5α is an isometry of Vm. The following lemma is easy to check, and

we omit the proof.

LEMMA 4.1. (1) 5α = S_α (αeΛJ), and S2λ. = Sλi.

(2) For distinct i,j, fe, ί/ze following equalities hold.

Sλi-λj(λi) = λj9. Sλ. -λj(λj) = λi9 Sλ. -λj(λk) = λk,

^λi+λj(^i) = ~ Λj9 Sλ.+λj(λj) = — Λ, , Sλ.+λj(λk) = λk,

sΛ(α;) = - λt, sλί(λk) = λk.
In particular, applying this lemma, it is easy to see that SΛ (αezf™) preserves

the set zί™. We denote by Wχ1 the group generated by the transformations

Sα, and call it the Weyl group of Δ™. (It just coincides with the usual Weyl

group of the Lie algebras u(m) ~ o(2m).) The following lemma is also easy

to check (cf. [4]).

LEMMA 4.2. (1) For distinct i and j, there exists weW™ such that

w(λi) = λj9 w(λj) = λt and w(λk) = λk (k φ ij).

(2) In the case X = B or C, there exists we W™ such that w(/y = — λ{

and w(/lfe) = λk for k / ί. In the case X = D, there exists we W™ such that

wμ.) = _ χh w(λj) = - λj (i ϊj) and w(/lfc) = λk (k Φ ij).

(3) Assume m>2 for X = A9 m > 3 for X = D, and m>\ otherwise. If

α, βeAx satisfy \\ct\\ = \\β\[, then there exists weW™ such that w(α) = β.

In the following arguments, we often use this lemma.

4.2. Next, for a subset Γ c Δ1^ and keN, we define an integer ak(Γ) as

in §3 by

ak(Γ) = «Γ + k - dim RΓ,

where RΓ is the subspace of Vm spanned by the elements of Γ. (As stated

before, in the case Γ=0, we consider RΓ= {0} and ak(Γ) = k.) Note that

if k is equal to the rank of the Lie algebra, the integer ak(Γ) coincides with

a(Γ) which we defined in §3. As in §3, we say that a subset Γ a Δ™ is
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non-additive if α + βφ Δ1^ for all α, βeΓ, and put

β£ = {Γ c= J™ I Γ is non-additive}.

Then, by Corollary 3.5, our problem is to determine the integer max am(Γ)
ΓeΩy

because the integer w is equal to the rank of the Lie algebra in our
situation. In the following, we express this integer as p% instead of p€

G in
order to distinguish the rank of the group. By the definition, in the case of
m = 0, we have clearly p™ = 0.

Now, we prepare two lemmas, which play an important role in the proof
of Theorem 3.1.

LEMMA 4.3. (1) Let Γ be an element of Ω%~^. Then, ΓeΩ%, and

(2) For ΓeΩ%andweW?, we put w(Γ) = {w(α)|αeΓ}. Then, w(Γ)eΩ%
and the equality am(w(Γ)) = am(Γ) holds.

This lemma immediately follows from the definition.

LEMMA 4.4. Assume ΓeΩ% and Γ' ci Γ. Then, Γ'eΩ%, and am(Γ} =
am(Γ') + s - ί, where s = *(Γ\Γ') and t = dim (RΓ/RΓ'). In particular, the
following inequality holds:

am(Γ') < am(Γ) < am(Γ') + s.

PROOF. We have

am(Γ) = *Γ + m - dim RΓ

= *Γ' + 5 + m - dim RΓ' -t

= am(Γ') + s-t.

Next, we put Γ\Γ' = {βl9-"9βs} (ft Φ βj). Then, we have clearly

and hence t < s. The latter half of this lemma follows immediately from this
fact. q.e.d.

4.3. We put / = {!,-••, m}, and for Γ c= A™, we define subsets of / by

/°(Γ) ={ίe/ |U,,α) = 0 for all αeΓ},

/ + (Γ) = {ϊ6/. |(λ ί, α) >0 for some αeΓ},

Γ(Γ) = {iel\(λh α)<0 for some αeΓ},

and /
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Clearly, we have / = /°(Γ)u/ + (Γ)u/~(Γ) and /°(Γ)n/ + (Γ) = J°(Γ)n/~(Γ)
= 0. Next, we put — Γ = {— α |αeΓ}, and using these notations, we define
five subsets of Ω$ by

2£ I Γ contains ± α such that || α || = .

βj,πι = {^eβx I ̂  contains ± α such that | |α|| = 1 or 2},

Ωr

XΛy = {ΓeΩϊ

x\I±(Γ}^0 and

Ω%v = [ΓεΩ% I /°(Γ) = J^CΠ =

Then, it is easy to see that

and each subset Ω% , ~ ί2£ v is invariant with respect to the action of W™
because w^) = ± λj for weW™. (Remark that the above union is not
necessary disjoint.) Next, we put

(We consider q™^ = 0 if Ωχt^ = 0.) Then, clearly we have p™ = max {^χ,ι, ,
qxtv}. In the following, we evaluate the value ' c(χt\ ~ q™ΛV in terms of pk

x

(k < m), and after calculating the exact value of g£?v>
 we determine the value

p™ by induction on m.

4.4. First, we prove the following lemma.

LEMMA 4.5. q$tl = p™~1 -f 1 (m > 1).

PROOF. Let Γ be an element of ΩχΛ. Since /°(Γ) Φ 0, we may assume
meI°(Γ) by considering w(Γ) (weH^1) instead of 7" if necessary, (cf. Lemma
4.2 (1) and Lemma 4.3 (2).) Then, we have ΓcK 1 "" 1 , and hence
ΓeΩχ~l. In particular, by Lemma 4.3 (1), we have the inequality am(Γ) =
am-ι(Γ)+ 1 ̂ Px'1 + l Next» we take ΓeΩχ~l such that ^m-ι(Γ) = p^"1.
Then, Γ also belongs to ΩX and αm(Γ) = α m _i(Γ) -f 1 = p^"1 + 1. Combining

these results, we have q1

xι = max am(Γ) = p^"1 + 1. q.e.d.
^eβ^,

LEMMA 4.6. Assume m>3 for X = D and m>2 otherwise. Then,

m fpΓ 2 + 3, X = AorC,

|pΓ2 + 4, X = BorD.

PROOF, (i) The case X = A or C. Assume m>2 and ΓeΩχΛl. Then,
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by the definition, there exist ± αeΓ such that | |α| | = ^/2. Since w > 2, we
can apply Lemma 4.2 (3), and we may consider a, = λm-l — λm. We put
Γ' = Γ\{± α}. Then, we have Γ' c K m ~ 2 . In fact, an element βeΓ' such
that βφVm~ 2 must be of the form ±2λm.l9 ± 2 A W , ±(λ ϊ f l _. 1 +AJ, ± /I,- ± / l m _ 1 ?

± A£ ± λm (I <i<m- 2). But, using the facts ± (λm.i - λm)eΓ and Γ is
non-additive, we can easily see that these elements cannot belong to Γ, and
hence Γ' a Vm~2. Since Γ'eΩ%-2, s = *(Γ\Γf) = 2 and t = ά\m(RΓ/RΓ')
= 1, we have by Lemma 4.4 and Lemma 4.3 (1),

and hence, q™Λl < p™~2 4- 3.
Conversely, we take Γ'eΩ%~2 such that am_2(Γ') = p™~2, and put

Γ = Γ'Ό{±(λm..ί -λj}. Then, using the fact Γ' c K m ~ 2 and Γ' is
non-additive, we can easily show that ΓeΩχU. In addition, in the same way
as above, we have am(Γ] = am_2(Γ') + 3 = p£~2 H- 3, and hence, the equality
<$,π = />Γ2 + 3 holds.

(ii) The case X = B (m>2) or D (m > 3). Let 7" be an element of
Ωχtn As in the above case, we may assume ± (λm_l — λm)εΓ, and we put
f = Γu{±(λm-ί+λJ}. Then, we have feΩ%. In fact, assume that βeΓ
satisfies β H- (λm_! 4- Λm)e ^5- Such a j? must be of the form — Λ m _ l 5 — Aw,
± Λ - Λ m _ l 5 ± Λ - Λm (1 < ί < m - 2). But, since ± (λm.1 - λm)εΓ and Γ
is non-additive, these elements cannot belong to Γ, and hence β -i- (λm_1 + λm)φ
A™. In the same way, we can prove that β — (λm_± + λm)φA™ for βeΓ, and
therefore, we have ΓeΩ$. Now, we put f' = Γ\{±λm_ί± λm}. Then, as
in the case of (i), we can easily show that f'eΩ% and /" c K m ~ 2 . Since

5 = *(/\/") = 4 and ί = dim (RΓ/RΓ) = 2, we have

αw(Γ) < αm(

= am(f") + s-t

and hence, ^>π < p^"2 + 4.
Conversely, we take Γ'εΩ%~2 such that αm (Γ ') = p™ ~ 2 , and put

Γ = Γ'u{± λm-! ± λm}. Then, as before, we have ΓeΩ$Λl and am(Γ) =
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am-2(Γ'} + 4 = pχ~2 + 4, and therefore, we obtain the desired equality

cfx H == p™ ~f~ 4. q.e.d.

LEMMA 4.7. g£m = 0 /or X = A or D,

9c.ιπ=Pc'"1 +2. ( m~

PROOF. Since J™ and JJJ do not contain a root of length 1 or 2, we

have Ωχiu = 0 for Jf = A or D, and hence, q% ΠI = gJJ f I I I = -0. Next, we

consider the case X = B. Asrsume Γeί2£m. Then, Γ contains ± αezίg such

that | |α| | = 1. By considering the action of the Weyl group if necessary, we

may assume that α = λm. We put Γ' = Γ\{±λm}. Then, by similar

arguments in the proof of Lemma 4.6, we can show that Γ'c Fm~ 1 . In

addition, since Γ is non-additive, we have λi9 — λtφΓ' for 1 < ί < m - 1, and

hence, Γ'eΩ^1. By using the facts 5 = *(Γ\Γ') = 2 and t = dim (RΓ/RΓ')

= 1, we have

αm(Γ) = αm(Γ') + s - t

= α m _ 1 ( Γ ' ) + l + s - ί

and hence g£IΠ < pS'1 + 2

Conversely, we take Γ'eΩ%~1 such that flm-ι(Γ') = pS"1* an^ Put

Γ = Γ ' u { ± λm}. Then, we have easily ΓeΩ%ΛU and αm(Γ) = ̂ .^Γ') + 2 =

pS'1 -f 2, which implies g£,m = p^'1 + 2.

The proof of the equality #£,111 = Pc"1 +2 can be done in completely the

same way, and we omit it. q.e.d.

LEMMA 4.8. q%tlv = 0 (X = A or C), and q%tlv < p^~l + 2 for X = B

(m > 2) and X = D (m > 3).

PROOF. Let Γ be an element of Ω%ΛV, i.e., /*(/") ̂  0 and Γn(- Γ) = 0.

By considering the action of W^1 if necessary, we may assume that

me/ ± (Γ). We first show that λm, — λmφΓ in the case X = B. Assume

λmeΓ. Then, since Γn(— Γ) = 0, we have —λmφΓ, and hence λί — λmeΓ

or — λι — λmeΓ for some i (1 < i < m — 1) because meI~(Γ). This contradicts

the fact that Γ is non-additive since Am + (± λt — λm) = ± λ^Δ^. The

property — λm φ Γ can be proved in the same way. Similarly, in the case

X = c, we can show 2λm, — 2λmφΓ. In particular, for X = A ~ D, we have

λj + λmeΓ or — A£ + λmeΓ for some ί (1 < i < m — 1) because meI + ( Γ ) , and

hence, we have Ω%ιv = 0 if m = 1. In the following, we assume m > 2 for
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X = A, B or C, and m > 3 for X = D. By considering the action of W£, we
may assume λm — λm_± eΓ (cf. Lemma 4.2 (1), (2). Note that in the case

X = D and m = 2, w(λί + Λ,2) Φ λ2 — λ1 for any we Wj}). Next, since
meI~(Γ) and — Λm, — 2λmφΓ, we have Λ; — λmeΓ or — Λ7 — λmeΓ for some

7 (1 <j < m — 1). We assume that λj — λmeΓ. Then, since Γ is non-additive,

and (λm - λm. J + (̂  - /IJ = λj - Λ m _ i , we have j = m - 1, i.e., ± (λm - Λ m _ t)
e/", which contradicts Γ(](— Γ) = 0. Hence, we have λj — λmφΓ. In

particular, we obtain the result β^Γ.iv = 0> and f°r ^e remaining case X = B, C
or D, we have —λj—λmeΓ. Then, by the same argument, we have
- λm..1 ± ΛmeΓ. But, in the case X = C, (- λm_, + λm) + (- Am^ - AJ =
— 2Λ m _ 1 ezί£ ) and hence we have ί2™IV = 0. For the case X = B or D, we

put JΓ' = / 1 \{— λm.1 ±λm}. Then, as in the proof of Lemma 4.6, we can
easily show Γ' aVm~l. Hence, Γ'eίJJ"1, and by using the facts s = \Γ\Γ')
= 2 and ί = dim (RΓ/RΓ') > 1, we have

= am(Γ) + s - ί < 0,,,-^Γ') + 2,

and therefore, g£IV < Px'1 + 2 for X = B or D. q.e.d.

REMARK. As is easy to see, the set Γ = Γ ' [ ] { — λm_l± λ^ is not
necessary non-additive for ΓΈΩχ~l (X = B or D), and the equality

<7 ?,ιv = P ?"1 +2 does not hold in general.

4.5. Finally, for the type V, we have the following results.

LEMMA 4.9. For m > 2,

*3,v = l>2/4] + 1,

9jf i V = l/2 m(m- 1)+ 1,

g£v = l/2 m(m+ 1),

PROOF. Since /°(Γ) = 7*00 = 0, the set / is expressed as a disjoint
union of I + (Γ) and I ~ ( Γ ) , i.e., for each iel, (λi9 α) is always positive or
negative for all αeΓ.

We first treat the case X = A, For ΓeΩ%v, we put #I + (Γ) = a and
#I~(Γ) = b. Then, clearly we have a + b = m and a, b > 1 because ^ - λ^Γ
implies iεI + (Γ) and jeI~(Γ). Now, we define a subset Γ0 c zl by

Γ0 = (^ - /I,- 1 1 < i < α, a + 1 <7 < m}.

It is clear that Γ0 is non-additive, and /°(Γ0) = 0, / + (Γ0) = {!,-••, α},
/~(Γ0) = {α + l, ,w}. In particular, Γ0eΩ^v. For the set Γ, we can
choose w e W J such that /~(w(Γ)) = {!,•••, a} and 7"(w(Γ)) = {a + l, ,m}.
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Then, if λt — A7 ew(Γ), we have ie{l, •••,#} and je{a + l, ,m}, which implies
w(Γ) c ΓQ. Since the independent roots λί — A f (a + 1 < i < m) and A, — Aα + 1

(2 < i < 0) span the space /?Γ0, we have dim RΓ0 = a + b — 1 = m — 1, and
by Lemma 4.3 (2), Lemma 4.4,

βJΓ) = αm(w(Γ)) < αm(Γ0)

= #Γ0 + w - dim RΓQ

= ab + m — (m — I)

= a(m - a) + 1,

and therefore q™v = max α(m — α) + 1 = [m2/4] -f 1.
1 <α < m — 1

Next, we consider the case X = B, C or D. For ΓeΩ% v, we first show
that there exists Γ'εΩ%v such that /~(Γ') = 0 and 0m(Γ') = αm(Γ). For the
case X = B, we put *I~(Γ) = a. Then, by the action of W™, we may assume
Γ(Γ) = {I,-, a} and I + (Γ) = {a + l, -,m}, i.e.,

Γ c { - A j (1 < i < α), λf (α + 1 < i < m), ̂  - λt (1 < z < a < j < m),

λj + A4 (α -f 1 < ί < j < m), - λj - λj (1 < i < j < a)} .

By putting w = Sλl 5Λ αe W^m, we have easily w(A f) = — Λ,£ (1 < i < α), and

wμ.) = AJ (α + 1 < ί < m). Then, we have w(Γ) c {Af (1 < i < m), λ,- + λ4

(1 < i <j < m)}, which implies /"(w(Γ)) - 0. The proof for the case X = C
is completely the same. For the case X = D, we may assume I ~ ( Γ ) = {1, •••,#}
and I + (Γ) = {a -h l, ,w}, as above. Then we have

Γ ci {̂  - λf (1 < i < α < 7 < m), A7 + λ£ (α + 1 < i < j < m),

-λj-λt (l<ί<j<a)}.

We put

Pi = λι — λ2, P2 — ̂ 3 — λ4, • • • , ^[fl/2] = ^2[α/2]-l ~~ ^2[α/2]»

and w = SβίSn SβlamSyiam.

Then we have w(^) - - A f (1 < i < 2[α/2]) and w(A4) = λj (2[α/2] + 1 < i < m).
Hence, if a is even, we have w(.Γ) c {Aj -h λ, (1 < i <j < m)}, which implies
/~(w(Γ)) = 0. In the case a is odd, we have I~(w(Γ)) = {a}. In this case,
we consider w(Γ) as an element of Ω%+ ί , and put β = λa — λa + ί, y = λa + λa+ 1 ,
w' = SβSy\v. Then, since S^S^Aj) = - λt (ί = a, m + 1) and SβSy(λi) = λt (i / α,
m + 1 ) ; we have w'(Γ)eΩS. (Note that w'(Γ) c Km.) Clearly, wr(Γ) c
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{λj + λt (1 < i <j < w)}, and hence /~(w'(Γ)) = 0. In addition, by Lemma

4.3 (1),

αm(w'(Γ)) = flm+1(w'(Γ)) - 1 = am+1(Γ) - 1 - αm(Γ),

which completes the proof. Thus, we may assume that I ~ ( Γ ) = 0.
Now, we put Γ0 = {λi + λj (1 < ί <j < m)} for the case X = B, C or

D. Then, we have Γ0eΩ%v because /°(Γ0) = /~(Γ0) = 0. In addition, by
using the facts that #Γ0 = 1/2 m(m - 1) and dim RΓ0 = 1 (m = 2), = w

(m > 3), it is easy to see that am(Γ0) = 1/2 m(m — 1) 4- <5m>2

For the case X = D, by using I ~ ( Γ ) = 0, we have Γ a Γ0, and hence
αm(Γ) < αm(Γ0). Since Γ0eί2£v, we obtain the equality ̂ )V = αm(Γ0) =

1/2 m(m — 1) + δm t2. Next, for the case X = C, by putting /" = 7" 0 u{2A 1 , ,
2λm}, we have easily Γ c Γ, and Γeί2^v. Hence, am(Γ) < am(f) = *f =

l/2 m ( m + l ) , which implies ,̂v = 1/2 w(w -h 1). Finally, for the case
X = B9 assume λiφΓ. Then, we have Γc=Γ 0, and in particular, am(Γ) <
am(Γ Q) < 1/2 m(m — 1) + 1. If λ^Γ for some /, then other λj cannot belong
to Γ because Γ is non-additive. Hence, by putting /f = Γ 0u{A ί}, we have
Γc:f. We can easily check that Γeβjy and αm(Γ) < αm(Γ) = 1/2 m(m - 1)
+ 1, and therefore we have q^v = 1/2 m(m - 1) + 1. q.e.d.

4.6. Now, under these preliminaries, we determine the value p™ for
X = A ~ D. For this purpose, we prepare one more lemma.

LEMMA 4. 10. Assume k > 3 and X = A, C or D. If p™ = q™ίV for m = k

and k + 1, then p% = q%tV for m > k.

PROOF. We have only to show the equality in the case m = k + 2. First,

for m > 4, by using Lemma 4.9, we have immediately,

n2s _ Π2s- 1 _ι_ «
4>ι,v — <Lι,v -r s,

2s+l _ 2s , V — j
— ~~

and hence, ^>v > ̂ ,V + 1 for Jί = A, C or D. Similarly, we can show that
the inequality q% v ^ (fx'v2 + 4 holds for m > 5. Hence, we have by Lemma
4.5,

and by Lemma 4.6,
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For the type III, we have by Lemma 4.7,

99

and 2 =

Similarly, by Lemma 4.8, we have

and

= 0,

+ 2 = qk

D+

+k

Therefore, we have pk

x

+2 = max {^2, ,^v

2} = <fx*\ q.e.d.

PROOF OF THEOREM 3.1. We prove the theorem inductively by applying

Lemma 4.10. First, we treat the case X = A. If m = 1, then we have Δ\ = 0,

and hence p\ = 1. In the case m = 2, since the set of roots Δ2

A = {± (λ1 - λ2)}

is itself non-additive, we have by Lemma 4.4, p2

A = a2(A2

4) = 2 + 2-1 = 3.
Then, using the equalities q^Λ = p^"1 + 1, q™ π = p™~2 + 3, q^v = [w2/4] + 1
and Λ.III = 4!ϊ,iv = 0 (Lemmas 4.5 - 4.9), we obtain the table

m

Λ.ι
«".!!

<?2,V

PmA

1 2 3

4

4

3

1 3 4

4

5

6

5

6

5

7

7

7

7

6

8

9

10

10

Since p™ = ςβ.v f°r w = 5, 6, we have by Lemma 4.10, p^ = gj v = [m2/4] + 1
for m > 5. Therefore, by using the equality pc

u(m} = pc

su(m) + 1, we obtain the
desired results for G = SU(m).

Next, we consider the case X = C. For m = 1, the set of roots

^ = {±2/1,!} is non-additive, and we have by Lemma 4.4, pc = al(Δ§ =

2 + 1 — 1=2. As in the case of X = A, by using the equalities q™Λ = p™'1

+ 1 4c,ιι = Pc~2 + 3, ,̂,, = 3, Cπι = PΓ1 + 2, < z ™ v = l / 2 m ( m + l ) and
<7c,ιv = 0, we have the following table

m

4c.ii

4™III

ίc.v

Pf

1 2

3

4

3

2 4

3

5

6

6

6

4

7

8

10

10

(We may omit the value g£,ι because g£,ι < 4c,m f°Γ m ^ 2.) Hence, as above,
we have p% = q£tV = 1/2- m(m + 1) for m > 3.
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For the case X = D9 since Ap = 0, we have pl

D = 1. And in the case
m = 2, the set Δ2

Ό = {± λ1 ± λ2} is itself non-additive, which implies
p2 = a2(A2

D) = 4 + 2 - 2 = 4. For m = 3, since the group S0(6) is locally

isomorphic to S£/(4), we have p^ = pc

SU(4) = 5, as we showed above. Then,
by using the equalities in Lemmas 4.5 ~ 4.9, we obtain the table

m

flS.ι

43.11

fl3.IV

flS,v

PS

1 2 3 4

6

8

<7

6

1 4 5 8

5

9

9

< 10

10

10

6

11

12

< 12

15

15

Hence, as above, we have by Lemma 4.10, p% = q%v = 1/2 m(m - 1) for
m > 5.

Finally, we determine the value p™ for X = B. Since the set Δ\ = {± λ^}
is non-additive, we have pl

B = a^A^) = 2 + 1 - 1 = 2 . Then, by using the
results in Lemmas 4.5 ~ 4.9 and the value /?£, we have the table

m

flβ,I

flS.π

flS.nι

flβ,IV

flS.v

Pϊ

1 2

3

4

3

<4

2

2 4

3

5

6

6

<6

4

6

4

7

8

7

<8

7

8

5

9

10

10

< 10

11

11

6

12

12

12

< 13

16

16

In particular, we have pg = q%tV for m = 5, 6. Then, in completely the same
way as Lemma 4.10, we can prove that the equality p% = g£ v holds for
m > 5. (We omit the details. Note that q^m = p%~ * + 2 = 1/2 (m - l)(m - 2)
+ 2 < 1/2 m(m - ! )+ != q%v for m > 6.) q.e.d.

§5. Proof of Theorem 3.1. (The case of the compact exceptional Lie
groups)

In this section, we determine the value pc

G for the exceptional Lie groups
E6 ~ ES> F4 and G2, by applying the results stated in Appendix (Theorem
Al, A2). We first prepare the following lemma.
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LEMMA 5.1. Let Γ be a finite subset of the vector space Vm. If

Γ = Γl\jΓ2 and Γl{]Γ2 = 0, then for positive integers k and /, the following
equality holds:

ak(Γ) = α,(/\) + *Γ2 + k - I - dim (RΓ2/(RΓ1Γ(RΓ2)).

Using the definition and the fact RΓ = RΓ^ + RΓ2, we can easily prove

this lemma, and we omit the details. In this section, we denote by ΔG the

set of roots of G (= E6 ~ Es, F4 or G2), and by ΩG the set of non-additive

subsets Γ of ΔG. As we showed in Corollary 3.5, we have the equality

pc

G = max am(Γ), where m is the rank of G, and we determine this integer for
ΓeΩc

G = E6 ~ G2.

5.1. The case G = £6, EΊ or Es. It is well known that the set of roots
e expressed as

ΔE6 = {± λi ± λj (l<i<j< 5), ± 1/2 - ( X (- IJ 'λ, - λ6 - λΊ + λ8)
i = l

5

(£ βf is even)},
i = 1

Λ£, = {± λi ± λj (1 < i <j < 6), ± (A, - A8),

± 1/2 ( £ (- l)ε'A,. + A, - A8) ( X e, is odd)},
i = 1 i = 1

AEί = {± λt± λj (1 < i < j < 8), ± 1/2 Σ (- lί 'λ, ( Σ ε. is even))'
i = l i = 1

where {Λ. l 5 ,λ8} is an orthonormal basis of K8 (cf. [4]).

Now, assume that ΓeΩErn (m = 6, 7 or 8) satisfies Γn(— Γ) = 0, i.e.,

there does not exist a root α e Γ satisfying ± α e Γ. Then, it is easy to see

that the space WΓ which we defined in § 3 is abelian. (Remind the proof of

Proposition 3.4.) Hence, by combining Theorem Al and A2 in Appendix, we

have am(Γ) = dimc W
Γ < 16, 27, 36, according as G = E6, E7, E8.

Next, we consider the case where ΓeΩEm contains roots ± α. We put

Γr = Γ\{± <x}. Then, since T is non-additive, we have β + α, β — aφΓ for

βeΓ' ', which implies (α, β) = 0. (Note that the length of α-series containing

β is 1.) In particular, we have Γ' c (α)1. If G = E6, we may assume

α = 1/2 (λ± -f ••• + A 5 — Λ-6 — ^7 + ^-s) by considering the action of the Weyl
group of E6. (Note that any two elements α, j8ez)£m (m = 6, 7 or 8) can be

mapped to each other by the action of the Weyl group because all roots are

of the same length and ΔEm is irreducible, cf. [4].) Then, it is easy to see that
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and hence, we have Γ' a Δ\. By putting Γl = Γ' and Γ2 = {± α} in Lemma
5.1, it follows that

a6(Γ) = a 5 ( Γ f ) + 2 + 1 - dim (/?α/(/?Γ'n/?α))

< as(n + 3

< 10 < 16.

Therefore, combining with Theorem Al and A2, we have p€
E6= max a6(Γ)=16.

For the group El9 we may assume α = λΊ — A8 by the same reason as E6. In
this case, we have easily

and by using the fact p^ = 15, we have in the same way as above,
aη(Γ) < 18 < 27, which implies p€

Ej = 27. For the group Es, we use the root
α = A7 + A 8, and carry out the same procedure. Since <α>1n^£8 = £7 and
pc

Ej = 27, we have a8(Γ) < 30 < 36, and therefore, pc

Es = 36.

5.2. The case of G = F4. In this case, it is known that the set of roots
of F4 is given by

AFΛ = { ± A, (1 < i < 4), ± λt ± λj (ΐ<ί<j< 4), 1/2 - (± λ, ± λ2 ± λ3 ± λ4)},

where {λl9 "9λ4} is an orthonormal basis of V4. We apply the same method
as Em. First, if ΓeΩF4 satisfies Γr\(—Γ) = 09 we have maxa4(Γ) = 9 by
Theorem Al and A2. In the case where Γ contains roots ± α, we must divide

the proof into two cases according as | |α | | = 1 or | |α | | = ^/2.
(i) The case | |α| | •= 1. In this case, we may assume α = λ4 by considering

the action of the Weyl group of F4. Then, we have

<α> 1 n/f F 4 = {± λt (ΐ<i< 3), ± λt ± λj (1 < / <j < 3)} = Al

and hence, by putting Γ' = Γ\{± α}, we have

a4(Γ) = a3(Γ') + 2 + 1 - dim (Ra/(RΓ n Λα))

< 9 - 1 = 8.

(Note that dim (Ra/(RΓf n Λα)) > 1.)

(ii) The case ||α 11=^/2. In this case, we may assume α = λ1 — λ2.
Then, we have

nz/F 4 = {± λ39 ±λ4, ±λ3± A4, ±μ x +A 2 ), ± 1/2- (A! + A2 db A3 ± A4)}.
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We define three vectors A J , λ'29 λ'3 by

A! -I- A2 = 2 A J , A3 + A4 = 2A 2 and A3 — A4 = 2A 3 .

Then, we have (A;, Aj) = 0, | |A; | | = | |A j | | for i Φj, and

<α>1n^F 4 = {±2A; ( i < * < 3 ) , ± A ; ± A J (i < * < 7 < 3 ) } ^Δ\.

Therefore, as above, we have a4(Γ) < a3(Γ') + 3 — 1 < 8.

Combining these results, we obtain the desired result p€
F4 = max α4(Γ) = 9.

5.3. The case of G = G2. In this case, we prove the equality pc

G2 = 4. It
is known that the set of roots of G2 is expressed as

{± (A, - λj) (1 < i <j < 3), ± (2A X - A2 - A3),

± (2A2 - A! - A3), ± ( 2 A 3 - A 1 - A 2 ) } ,

by using an orthonormal basis {AJ of K3. Since the rank of G2 is two, we
can express this set in the plane as follows.

We first show that #Γ < 4 for ΓeΩG2. The roots with length ^/2 constitute
a small regular hexagon, and it is easy to see that among them, α + βφΛG2

if and only if α + β = 0. Hence the number of roots of Γ with length ^/2
is at most two. Similarly, in a large regular hexagon, α + β$ΔG2 if and only
if either "α + β = 0" or "α and β are adjacent", which implies that the number

of roots of Γ with length y/6 is also at most two. Therefore, we have #Γ < 4
for ΓeΩG2. Now, we take ΓeΩG2 such that Γ Φ 0. Then, since dim RΓ > 1,

we have
a2(Γ) = *Γ+ 2-dimRΓ

< 6 — dim
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If a2(Γ) — 5, we have #Γ = 4 and dim RΓ = l. But, in this case Γ is contained
in a line, which contradicts #Γ = 4. Hence, we have a2(Γ) < 4. On the other

hand, it is easy to see that the set Γ = {± (λί — A2), ± (2Λ3 — λί — λ2)} is
non-additive and a2(Γ) = 4. Combining these results, we obtain the equality

REMARK. For the groups G = E6, EΊ9 E8 and F4, the non-additive set Γ
with maximum am(Γ) satisfies ΓΓ\( — Γ) = 0, while the group G2 possesses
the non-additive set Γ satisfying a2(Γ) = 4 and Γ = — Γ.

§6. Some facts on the values pG

In this final section, we determine the value pG for compact Lie groups
G with small rank. The results are stated as follows.

PROPOSITION 6. 1. For the groups G = U(m) (1 < m < 5), SU(m) (2 < m < 5),
S0(2m + 1) (1 < m < 4), Sp(m) (1 < m < 3), S0(2m) (1 < m < 4) and G2, the
value pG is equal to pc

G.

To prove this proposition, we first prepare the following lemma.

LEMMA 6.2. Let G be a compact Lie group. If there exists ΓeΩ such
thai Γ = — Γ, then the inequality pG > a(Γ) holds. In addition, if ΓeΩ satisfies
Γ = — Γ and a(Γ) = pG, then we have pG = pG.

PROOF. Let τ be the conjugation of gc with respect to g. Then, by the
definition of roots, we have τgα = g_ α for each αezf . Now, assume ΓeΩ

satisfies Γ = — Γ. For αe^Γn^" 1", we put

and VΛ = ̂ ~\/^ϊ - (Zβ - τ(Zα)),

where Zα is the basis of gα which we defined in §3. Then, Ua and VΛ are

real vectors, i.e., C7α, t^eg. Now, using the set Γ, we define a subspace WQ c g

by

W0=

where (RΓ)L implies the orthogonal complement of /?7" in t. Then, we have

[Wo> ^o] c t. In fact, since Γ is non-additive, we have [Zα, Z^] = [Z_α, Z_^]
= 0 for α, βeΓϊ\A+, and in addition [Zα, Z_^] = 0 (α / β) because
-βe-Γ = Γ. Hence, we have [l/β, l/J = [l/β, ΪJ] = [ϊζ, ]̂ = 0 for α, jSeΓ

Π/ί+ (α φ j8), and [l/α, P ]̂ = 2/(α, α) αet. Therefore, combining with the

equalities [//, ZJ = [//, Z_J = 0 for He(RΓ)±

9 αeΓn^ + , we have [_W0,
c= t. Next, since Γ — — Γ, the complexification of W0 is equal to
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= Σ
αeΓn4+

= Σ 9.

Therefore, we have

pG = max dimR W> dimR W0 = dime W
Γ= a(Γ).

17 ίΓe^G

The second statement follows immediately from the fact pG>pG>a(Γ).
q.e.d.

PROOF OF PROPOSITION 6.1. By Lemma 6.2, we have only to find ΓeΩ
satisfying Γ = — Γ and a(Γ) = pG for each G. First, for the group C/(m), we
put

Γ = 0, m = 1,

r={±(^-A 2 )}, m = 2, 3,

Γ = {± (̂  - A2), ± (A3 - A4)}, m = 4, 5.

Then, it is easy to see that the above Γ satisfy the desired conditions. For
the group 5l/(m), the results follow immediately from the equalities

Pu(m) = Psu(m) + 1 and pc

u(m) = pc

su(m) + 1 (cf. Proposition 1.2). The remaining
case can be checked in completely the same way, and in the following, we
only list up such Γ for each group.

S0(3): Γ = {± λj

SQ(5): Γ={±λl ±λ2}

SO(Ί):Γ={±λi ±λ29 ±λ3}

S0(9): Γ={±λί ±λ2, ±/l 3 ± λ4}

Sp(l):Γ={±2λ1}

Sp(2):Γ={±2λί,±2λ2}

Sp(3) : Γ= {± 2λl9 ± 2A 2, ± 2λ3}

SO(2):Γ = 0

SO{4),SO(6):Γ={±Ai±λ 2 }
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50(8): Γ= {±λi ±λ2, ±λ3 ±λ4}

G2 :Γ= {±(^ -λ2), ±(2λ3-λ1 - A2)}. q.e.d.

REMARK. For the compact classical Lie groups, we showed in §4 that

the non-additive set with maximum a(Γ) is of type V if the rank is sufficiently

large. Then, since I±(Γ) = 09 we have Γ.^ — Γ9 and hence, we cannot

calculate the value pG for these groups by only using Lemma 6.2. The same

phenomena occur for the groups £6, EΊ9 Es and F4. (See Remark at the end

of §5.)

Finally, we give some estimate on the value pG for general compact simple

Lie group G. For this purpose, we define integers s0(g) for compact simple

Lie algebras g by

g / su(m), o(2m) or E6

g = su(m)

9 = E6.

Then, we have

PROPOSITION 6.3. Let G be a compact simple Lie group with the Lie

algebra g. Then, we have pG > rank g + s0(g).

PROOF. In Appendix of the paper [3], we constructed a subset

Γo = {βι> ~>β«>}cΛ + satisfying ft±j3,.<Mu{0} (ΐ /;')• Using this set Γ0,
we put Γ=Γ0U'(-Γ0) = {± βl9~ ,± ft0} Then, we have clearly Γeί2
and Γ — — Γ. In addition, since (ft, βj) = 0 (i /j), we have dim RΓ = s0.
Therefore, a(Γ) = *Γ + rank g — dim RΓ = rank^ + s0, which implies pG >

rank g + 50. q.e.d.

For the simple Lie groups listed up in Proposition 6.1 (except for

£/(w), 50(2), S0(4)), the equality pG = rank g + s0(g) actually holds. But at
present, we do not know whether the above equality holds for all compact

simple Lie groups.

Appendix. Maximum dimensions of abelian subalgebras of complex simple
Lie algebras

In this appendix, we refer to the relation between our results (Theorem

3.1 for classical Lie algebras) and the maximum dimensions of abelian

subalgebras of complex simple Lie algebras. Our purpose is to determine

such dimensions by using the results in §4 and the theorem of Malcev
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[10]. We need this result in order to complete the proof of Theorem 3.1 for

exceptional Lie algebras (see §5).
Let g be a compact simple Lie algebra and gc the complexification of

g. We denote by ^/(gc) the family of abelian subalgebras of gc and by «s/m z(gc)
the subfamily of J/(gc) consisting of abelian subalgebras all whose elements
are nilpotent in gc. (For a complex Lie algebra I, an element Xel is called
nilpotent (resp. semi-simple) if ad(A") is a nilpotent (resp. semi-simple)
endomorphism of I.) By the very definition, we have

where G denotes the adjoint group of g. Then, by putting

α(gc) = maxc dimc A, anil(tf) = max c dimc A,

we have clearly

Our purpose in this appendix is to determine the value α(gc) for all

compact simple Lie algebras.
Concerning the value anil(cf), Malcev [10] obtained the following result.

THEOREM Al (cf. [10]). Let § be a compact simple Lie algebra. Then

the integer anil(cf) is given by

9

Am(

Bm(

B,

Cm(

Dm(

m > l )

m > 4 )

vn "> J}

m > 4 )

«Bi,(9
c)

C(m

1/2

1/2

1/2

+ l)2/4]

m(m —

5

m(m +

m(m —

1H

1)

1)

- 1

9

£6

£7
ES

F*

G2

fl-αW)

16

27

36

9

3

Malcev [10] stated a plan to obtain the integer α(gc) on the basis of the
above theorem. However, details were not shown there.

In the following, we prove the following theorem.

THEOREM A2. Let g be a compact simple Lie algebra. Then the equality

α(9c) = ana(tf} holds.

First, we note that Theorem A2 holds for the following classical compact
simple Lie algebras of large rank:

Am(m > 4), Bm(m > 5), Cm(m > 3), Dm(m > 5).
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In fact, comparing the results in Theorem 3.1 and Theorem Al, we can observe
that the equality pc

G = anil(cf) holds for each g stated above. Therefore, on
account of the inequlity (*), we have a(cf) = anil(§c).

To complete the proof of Theorem A2, we prepare the following two
lemmas.

LEMMA A3. Let I be a complex semi-simple Lie algebra and H a non-zero
semi-simple element of I. Let V denote the centralizer of H in I, i.e., V =
{ X ε \ \ [ _ H , X ] = 0}. Then:

(1) V is a reductive Lie algebra, i.e., the radical of V is congruent with
the center c of V. Consequently, the derived ideal \" = [Γ, Γ] is a complex
semi-simple Lie algebra and V can be expressed as V = c + Γ' (direct sum).

(2) rank I = rank Γ = dimc c + rank Γ.

(3) I" is a regular semi-simple subalgebra of I.

For the definition of "regular subalgebra", see Dynkin [5], where all the

regular semi-simple Lie subalgebras were completely determined. The proof
of Lemma A3 is easy, and hence it is left to the readers.

LEMMA A4. Let I be a complex semi-simple Lie algebra with rank I = n.
Let α be an abelίan subalgebra of I. Then it holds

(**) dimc α < 1/2 n(n + 1).

In addition, if α contains a non-nilpotent element, it holds

(***) dimc α < 1/2 n(n - 1) + 1.

PROOF. We prove the lemma by induction on n. In the case n = 1, I

is isomorphic to si (2, Q. As is easily seen, the dimension of any abelian
subalgebra of si (2, C) is at most 1. Hence, the lemma holds in the case n = 1.

Now, we assume that the lemma holds in case rank I < n (n>2). We
first consider the case where I is expressed as a direct sum of two proper
semi-simple ideals Ix and I2. Then, there are abelian subalgebras α : c= Ix and

α2 c I2 such that α ci c^ + α2. We put nt = rank Ij (i = 1, 2). Then, we have
n = n1 + n2 and nt < n. Hence, by the induction hypothesis, we have

dimc α < dimc al + dimc α2

< 1/2 -n 1(n 1 + l)+ 1/2- Λ 2(w 2 + 1)

< l/2-n(n+ 1).

Moreover, in case α contains a non-nilpotent element, either α t or α2 also
contains a non-nilpotent element. Assume that α x contains a non-nilpotent
element of 1^ Then, by the induction hypothesis, we have
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dimc α < dimc a1 + dimc α2

< 1/2 rc^ -!)+! + 1/2

We next consider the case where I is simple. Then, by Malcev [10], we

have the following two possibilities:

(i) All element of α are nilpotent;
(ii) α contains a non-zer o semi-simple element.

In view of Theorem Al, we can easily observe that the inequality
Λmί(9c) ̂  1/2 n(n + 1) holds for each compact simple Lie algebra g with
rank g = n. Therefore, in the case (i), we have dimc α < l / 2 n ( n + l ) .

Now, we consider the case (ii). Let He a be a non-zero semi-simple
element of I. We denote by Γ the centralizer of H in I. Let c (resp. I") be
the center of Γ (resp. the derived ideal of Γ). Then, by Lemma A3, it follows

that Γ is semi-simple; Γ = c 4- 1" (direct sum); and n = rank I = dimc c + rank I".
Since α c Γ, there is an abelian subalgebra α" in I" such that α a c + α". Put
k = rank I". Then, since He c, we have k = n — dimc c < n — 1. Therefore, by

the induction hypothesis, we have dimc α" < 1/2 k(k -f 1). Consequently, we
have

dimc α < dimc c + dimc α"

< n - k + l/2 k(k+ 1)

= l/2 k(k- l) + n.

Since the last expression takes its maximum value in the case fc = n — 1, we
have dimc α < 1/2 (n - l)(rc - 2) + n = 1/2 n(n - 1) + 1. This completes the
proof of the lemma. q.e.d.

REMARK. Viewing the proof of Lemma A4, we can easily verify that

if the equality holds in (**), then I is a complex simple Lie algebra.

Now, using Lemma A4, we prove Theorem A2 for the remaining simple
Lie algebras of small rank:

Am(m = 1, 2, 3), Bm(m = 2, 3, 4), D4, Em(m = 6, 7, 8), F4, G2.

Let g be one of the compact simple Lie algebras listed above. Put
m = rank g. Then, if g is not of type D4, we can easily check that the

inequality a n i l ( t f ) > 1/2 m(m — 1) -f 1 holds. Therefore, we have dimc α <
anil(cf) for all αej/(gc) (see Lemma A4), which implies that α(gc) = anil(cf).

Finally, we assume that g is of type D4. Then, by Theorem Al, we have
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flnΐί(9c) = 6. We now suppose that there exists an abelian subalgebra α of gc

with dimc α > 6. By the assumption, we may assume that α contains a
non-zero semi-simple element H of gc. We denote by Γ the centralizer of H
in gc and by Γ the derived ideal of Γ. Applying the inequality (***) in Lemma

A4, we have dimc α < 7 and hence dimc α = 7. This implies that the equality
holds in (***). Thus, in view of the proof of Lemma A4, we can verify that
rank Γ = 3 and that Γ contains an abelian subalgebra α" with dimc a" = 6.
Taking account of Remark after Lemma A4, we can conclude that Γ is a
regular simple subalgebra of gc with rank I" = 3. By the result of Dynkin
[5], it follows that I" is of type A3. On the other hand, as we have proved

in the above discussion, the complex simple Lie algebra of type A3 does not
contain any abelian subalgebra whose dimension is greater than 4. This is
a contradiction. Thus we have α(gc) = 6, which completes the proof of
Theorem A2.
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