Нікозніма Матн. J. 24 (1994), 55–62

Notes on minimax approaches in nonparametric regression

Teruo FUJIOKA (Received May 20, 1992)

1. Introduction

Consider the nonparametric regression model

$$Y_i = g(t_i) + \varepsilon_i, \qquad i = 1, \cdots, n,$$

where observations are taken at design points t_i for $i = 1, \dots, n$, and the errors ε_i are independent identically distributed as normal distribution with mean zero and variance σ^2 . The normality assumption is unnecessary in Section 2. The response function g is assumed to belong to a space $W = \{g: g \text{ and } g' \text{ are absolutely continuous, and } \int_0^1 |g''(t)|^2 dt < \infty\}$.

We deal with minimax estimators of g and σ^2 in some sense, based on a restricted class of the response function $W_C = \{g \in W: \int_0^1 |g''(t)|^2 dt < C\}$. To simplify the minimax problem, we shall use a natural coordinate system. Demmler and Reinsch [3] showed that there is a basis for the natural cubic splines, $\phi_1(\cdot), \dots, \phi_n(\cdot)$, determined essentially uniquely by

$$\sum_{i=1}^n \phi_j(t_i)\phi_k(t_i) = \delta_{jk}, \quad \int_0^1 \phi_j''(t)\phi_k''(t)dt = \delta_{jk}\omega_k$$

with $0 = \omega_1 = \omega_2 < \cdots < \omega_n$. Here $\delta_{jk} = 1$ if j = k and 0 otherwise. Let $\tilde{y} = (Y_1, \dots, Y_n)^T$ and $\tilde{g} = (g(t_1), \dots, g(t_n))^T$ be the vectors expressed with respect to a natural basis of \mathbb{R}^n , $\{(\phi_j(t_i))\}$. To estimate g, Speckman [4] proposed the linear estimator of g which minimizes the expected summed squared criterion

$$J(\hat{g}) = n^{-1} \max_{g \in W_C} E\left[\sum_{i=1}^n \left\{ \hat{g}(t_i) - g(t_i) \right\}^2 \right]$$

defined for any given estimator \hat{g} of g. Furthermore, he introduced a family of linear estimators \hat{g}_{γ} , $\gamma > 0$ which is optimal in the sense min $J(\hat{g}) = \min_{\gamma>0} J(\hat{g}_{\gamma})$. In this paper, Section 2 gives an explicit expression of the minimax solution γ_0 for fixed value of C/σ^2 .

To estimate σ^2 , Buckley, Eagleson and Silverman [1] proposed the quadratic estimator of σ^2 which minimizes the expected squared criterion

Teruo FUJIOKA

$$M(\hat{\sigma}^2) = \max_{g \in W_C} E(\hat{\sigma}^2 - \sigma^2)^2$$

defined for given any estimator $\hat{\sigma}^2$ of σ^2 . Furthermore, they gave a family $\hat{\sigma}_{\alpha}^2$, $\alpha > 0$, which is optimal in the sense min $M(\hat{\sigma}^2) = \min_{\alpha > 0} J(\hat{\sigma}_{\alpha}^2)$. In Section 3, we also give an explicit expression of the minimax solution α_0 for fixed value of C/σ^2 .

For an asymptotic approximation for large *n*, we use a particular series $\omega_j = \rho n^{-1} j^4 (3 \le j \le n)$ for some constant ρ . Asymptotic expansions of the minimax solutions are given in Section 4.

2. Minimax solution for estimating g

Let \hat{g} be a linear estimator of \tilde{y} . Then we can write $(\hat{g}(t_1), \dots, \hat{g}(t_n))^T = A\tilde{y}$. For simplicity, write $(\hat{g}(t_1), \dots, \hat{g}(t_n))^T = (g_1, \dots, g_n)^T$, and $J(\hat{g}) = J(A)$. Let \mathcal{M} be the set of all $n \times n$ matrices. Then

$$J(A) = n^{-1} \max_{\Sigma \omega_i g_i^2 \leq C} \left\{ \tilde{g}^T (I - A)^T (I - A) \tilde{g} + \sigma^2 \operatorname{tr} A^T A \right\}.$$

Speckman [4] proposed interpolating $A_0 \tilde{y}$ for A_0 which minimizes J(A) over $A \in \mathcal{M}$. The following theorem gives an explicit expression for A_0 .

THEOREM 1. For any fixed value of C/σ^2 , say r, the minimum over $A \in \mathcal{M}$ of J(A) is attained when A is diagonal with diagonal elements a_{ii} given by

$$a_{ii} = 1 - (\gamma_0 \omega_i)^{1/2} \qquad (i \le v_J)$$
$$= 0 \qquad (i > v_J),$$

where γ_0 and v_J are determined as follows: if for some $3 \le j \le n-1$

$$\sum_{i=3}^{j} \omega_i^{1/2} (\omega_j^{1/2} - \omega_i^{1/2}) \le r \le \sum_{i=3}^{j+1} \omega_i^{1/2} (\omega_{j+1}^{1/2} - \omega_i^{1/2})$$

then

$$v_J = j$$
 and $\gamma_0 = \left(\frac{\sum_{i=3}^j \omega_i^{1/2}}{r + \sum_{i=3}^j \omega_i}\right)^2$,

and if

$$\sum_{i=3}^{n} \omega_i^{1/2} (\omega_n^{1/2} - \omega_i^{1/2}) \le r$$

then

Minimax approaches in nonparametric regression

$$v_J = n$$
 and $\gamma_0 = \left(\frac{\sum_{i=3}^n \omega_i^{1/2}}{r + \sum_{i=3}^n \omega_i}\right)^2$.

PROOF. Let $\mathcal{M}_D = \{A \in \mathcal{M} : A = \text{diag}(1, 1, a_3, \dots, a_n)\}$. Speckman [4] showed that $\min_{A \in \mathcal{M}} J(A) = \min_{A \in \mathcal{M}_D} J(A)$ and for $A = \text{diag}(1, 1, a_3, \dots, a_n)$

$$J(A) = n^{-1} \sigma^2 \{ r \max_{3 \le i \le n} (1 - a_i)^2 / \omega_i + \sum_{i=1}^n a_i^2 \}$$

Now let $\mathcal{M}_{\gamma} = \{A \in \mathcal{M}_{D} : \max_{3 \le i \le n} (1 - a_{i})^{2} / \omega_{i} = \gamma\}, \ \gamma \ge 0.$ We get

$$\begin{split} \min_{A \in \mathcal{M}_{\gamma}} nJ(A) / \sigma^2 &= r\gamma + 2 + \sum_{i=3}^n \max\{0, 1 - (\gamma \omega_i)^{1/2}\}^2, \qquad \gamma \le \omega_3^{-1} \\ &= r\gamma + 2 + (1 - (\gamma \omega_i)^{1/2})^2, \qquad \gamma \ge \omega_3^{-1}. \end{split}$$

Define H by $H(\gamma^{1/2}) = \min_{A \in \mathcal{M}_{\gamma}} nJ(A)/\sigma^2$. Then for $\xi \ge 0$

$$\begin{split} H(\xi) &= r\xi^2 + 2 + \sum_{i=3}^n (1 - \xi \omega_i^{1/2})^2, \qquad \xi \le \omega_n^{1/2} \\ &= r\xi^2 + 2 + \sum_{i=3}^j (1 - \xi \omega_i^{1/2})^2, \qquad \omega_{j+1}^{-1/2} \le \xi \le \omega_j^{-1/2} \\ &= r\xi^2 + 2 + (1 - \xi \omega_3^{1/2})^2, \qquad \omega_3^{1/2} \le \xi. \end{split}$$

The $H(\xi)$ has a continuous derivative and twice differentiable on $\{\xi > 0\}$ except for points $\omega_i^{-1/2} (4 \le i \le n)$. $H''(\xi) > 0$, $\lim_{\xi \to +0} H'(\xi) < 0$, and $H'(\omega_3^{-1/2}) \ge 0$. Therefore there uniquely exists $\xi_0 \in (0, \omega_3^{-1/2})$ which minimizes $H(\xi)$ over $\{\xi \ge 0\}$. Note that $H(\xi)$ is piecewise polynomial of degree 2. If $\xi_0 \le \omega_n^{-1/2}$ then $(\sum_{i=3}^n \omega_i^{1/2})/(r + \sum_{i=3}^n \omega_i) \le \omega_n^{-1/2}$ and $\xi_0 = (\sum_{i=3}^n \omega_i^{1/2})/(r + \sum_{i=3}^n \omega_i)$. If for some $3 \le j \le n$, $\omega_{j+1}^{-1/2} \le \xi_0 \le \omega_j^{-1/2}$ then $\omega_{j+1}^{-1/2} \le (\sum_{i=3}^j \omega_i^{1/2})/(r + \sum_{i=3}^j \omega_i) \le \omega_j^{-1/2}$ and $\xi_0 = (\sum_{i=3}^j \omega_i^{1/2})/(r + \sum_{i=3}^j \omega_i)$. Replacing ξ_0 by $\gamma_0^{1/2}$ we complete the proof of Theorem 1.

REMARK. We can write $\min_{A \in \mathcal{M}} J(A)/\sigma^2$ as $n^{-1} \{r\gamma_0 + \sum_{i=3}^{\nu_J} (1 - \gamma_0^{1/2} \omega_i^{1/2})\}^2$ in the proof of Theorem 1. By substituting our expression for γ_0 to this expression, we also have

$$\min_{A \in \mathcal{M}} J(A) / \sigma^2 = n^{-1} \{ v_J - \gamma_0^{1/2} \sum_{i=3}^{v_J} \omega_i^{1/2} \} = n^{-1} \operatorname{tr} A_0.$$

3. Minimax solution for estimating σ^2

We restrict our attention to estimators of σ^2 whose form is $\hat{\sigma}^2(D) = \tilde{y}^T D \tilde{y} / \text{tr } D, D \in \Delta$. Here Δ is the class of $n \times n$ symmetric non-negative definite matrices D for which $\hat{\sigma}^2(D)$ is unbiased when g is a straight line. For simplicity, write $M(\hat{\sigma}^2(D)) = M(D)$. Then

57

Teruo FUJIOKA

$$M(D) = \max_{\Sigma \omega_1 g_t^2 \leq C} \left\{ (\tilde{g}^T D \tilde{g})^2 + 4\sigma^2 \tilde{g}^T D^2 \tilde{g} + 2\sigma^4 \operatorname{tr} D^2 \right\} / (\operatorname{tr} D)^2.$$

Buckley et al. [1] proposed minimizing M(D) over $D \in \Delta$ of M(D). The following theorem gives an explicit expression for D which minimizes M(D).

THEOREM 2. For any fixed value of C/σ^2 , say r, the minimum over $D \in \Delta$ of M(D) is attained when D is diagonal with diagonal elements d_{ii} given by

$$d_{ii} = \alpha_0 \omega_i^+ \qquad (i \le v_M)$$
$$= 1 \qquad (i > v_M),$$

with $\omega_i^+ = \omega_i (1 + 4\omega_i/r)^{-1/2}$, where α_0 and ν_M are determined as follows: if for some $3 \le j \le n-1$

$$2\sum_{i=3}^{j} \omega_i^+ (\omega_j^+ - \omega_i^+) \le r^2 \le 2\sum_{i=3}^{j+1} \omega_i^+ (\omega_{j+1}^+ - \omega_i^+)$$

then

$$v_M = j$$
 and $\alpha_0 = \frac{2\sum_{i=3}^{j} \omega_i^+}{r^2 + 2\sum_{i=3}^{j} (\omega_i^+)^2}$,

and if

$$2\sum_{i=3}^{n}\omega_{i}^{+}(\omega_{n}^{+}-\omega_{i}^{+})\leq r^{2}$$

then

$$w_M = n$$
 and $\alpha_0 = \frac{2\sum_{i=3}^n \omega_i^+}{r^2 + 2\sum_{i=3}^n (\omega_i^+)^2}$

PROOF. Let $\Delta_D = \{D \in \Delta : D = \text{diag}(0, 0, d_3, \dots, d_n)\}$. Buckley et al. [1] reduced the problem of minimizing M(D) to finding $D \in \Delta$ which minimizes

$$L(D) = \max_{\Sigma \omega_i g_i^2 \le C} \left\{ (\tilde{g}^T D \tilde{g})^2 + 4\sigma^2 \tilde{g}^T D^2 \tilde{g} + 2\sigma^4 \operatorname{tr} D^2 - \lambda \operatorname{tr} D \right\}$$

for any fixed Lagrangian multiplier λ . Furthermore they showed that $\min_{D \in \Delta} L(D) = \min_{D \in \Delta_D} L(D)$ and for $D = \text{diag}(0, 0, d_3, \dots, d_n)$

$$L(D) = \sigma^{4} \{ r^{2} \max_{3 \le i \le n} (d_{i}/\omega_{i}^{+})^{2} + 2 \sum_{i=1}^{n} d_{i}(d_{i} - \lambda/2\sigma^{4}) \}.$$

If $\lambda \leq 0$, then L(D) is minimized when D is zero matrix. Assume that $\lambda > 0$. Multiplying D by a positive constant does not change M(D), so that we replace d_i by $\lambda d_i/4\sigma^4$ ($3 \leq i \leq n$). Then

58

Minimax approaches in nonparametric regression

$$L(D) = (\lambda^2/16\sigma^4) \left\{ r^2 \max_{3 \le i \le n} (d_i/\omega_i^+)^2 + 2 \sum_{i=1}^n d_i(d_i-2) \right\}.$$

Now let $\Delta_{\alpha} = \{D \in \Delta_D : \max_{3 \le i \le n} d_i / \omega_i^+ = \alpha\}, \ \alpha \ge 0$. If $\alpha \le (\omega_3^+)^{-1}$ then the minimum of L(D) over $D \in \Delta_{\alpha}$ is attained when $d_i = \min\{1, \alpha\omega_i^+\}$ and if $\alpha \ge (\omega_3^+)^{-1}$ then the minimum of L(D) over $D \in \Delta_{\alpha}$ is attained when $d_3 = \alpha\omega_3^+$ and $d_i = 1 \ (4 \le i \le n)$. Define H by $H(\alpha) = \min_{A \in \Delta_{\alpha}} 16\sigma^4 L(D) / \lambda^2$. Then for $\alpha \ge 0$

$$H(\xi) = \alpha^{2} \{ r^{2} + 2 \sum_{i=3}^{n} (\omega_{i}^{+})^{2} \} - 4\alpha \sum_{i=3}^{n} \omega_{i}^{+}, \qquad \alpha \leq (\omega_{n}^{+})^{-1}$$

$$= \alpha^{2} \{ r^{2} + 2 \sum_{i=3}^{j} (\omega_{i}^{+})^{2} \} - 4\alpha \sum_{i=3}^{j} \omega_{i}^{+} - 2(n-j), \qquad (\omega_{j+1}^{+})^{-1} \leq \alpha \leq (\omega_{j}^{+})^{-1}^{-1}$$

$$= \alpha^{2} \{ r^{2} + 2(\omega_{3}^{+})^{2} \} - 4\alpha \omega_{3}^{+} - 2(n-3), \qquad (\omega_{3}^{+})^{-1} \leq \alpha.$$

The $H(\alpha)$ has a continuous derivative and twice differentiable on $\{\alpha > 0\}$ except for points $(\omega_i^+)^{-1} (4 \le i \le n)$. $H''(\alpha) > 0$, $\lim_{\alpha \to +0} H'(\alpha) < 0$, and $H'((\omega_3^+)^{-1}) \ge 0$. Therefore there uniquely exists $\alpha_0 \in (0, (\omega_3^+)^{-1})$ which minimizes $H(\alpha)$ over $\{\alpha \ge 0\}$. Note that $H(\alpha)$ is piecewise polynomial of degree 2. If $\alpha_0 \le (\omega_n^+)^{-1}$ then $(2\sum_{i=3}^n \omega_i^+)/(r^2 + 2\sum_{i=3}^n \omega_i^+) \le (\omega_n^+)^{-1}$ and $\alpha_0 = (2\sum_{i=3}^n \omega_i^+)/(r^2 + 2\sum_{i=3}^n (\omega_i^+)^2)$. If for some $3 \le j \le n - 1$, $(\omega_{j+1}^+)^{-1} \le \xi_0 \le (\omega_j^+)^{-1}$ then $(\omega_{j+1}^+)^{-1} \le (2\sum_{i=3}^j \omega_i^+)/(r^2 + 2\sum_{i=3}^j (\omega_i^+)^2) \le (\omega_j^+)^{-1}$ and $\alpha_0 = (2\sum_{i=3}^j \omega_i^+)/(r^2 + 2\sum_{i=3}^j (\omega_i^+)^2)$. This completes the proof.

REMARK. We can write $\min_{D \in \Delta} M(D)/\sigma^4$ as $\{r^2 \alpha_0^2 + \sum_{i=3}^{\nu_M} (\alpha_0 \omega_i^+)^2 + n - \nu_M\}/\{\sum_{i=3}^{\nu_M} \alpha_0 \omega_i^+ + n - \nu_M\}^2$ in the proof of Theorem 2. By substituting our expression for α_0 to this expression, we also have

$$\min_{D \in \Delta} M(D) / \sigma^4 = 2 \{ \alpha_0 \sum_{i=3}^{\nu_M} \omega_i^+ + n - \nu_M \}^{-1}.$$

Buckley et al. [1] defined a new criterion

$$K(D) = \max_{\Sigma \omega_i g_i^2 \le C} \left\{ (\tilde{g}^T D \tilde{g})^2 + 2\sigma^4 \operatorname{tr} D^2 \right\} / (\operatorname{tr} D)^2$$

for estimating σ^2 , and discussed the relations between minimax estimators based on these two criterions. The following theorem gives an explicit expression for D which minimizes K(D).

THEOREM 3. For any fixed value of C/σ^2 , say r, the minimum over $D \in \Delta$ of K(D) is attained when D is diagonal with diagonal elements d_{ii} given by

$$d_{ii} = \beta_0 \omega_i \qquad (i \le v_K)$$
$$= 1 \qquad (i > v_K),$$

where β_0 and v_K are determined as follows: if for some $3 \le j \le n-1$

$$2\sum_{i=3}^{j}\omega_i(\omega_j-\omega_i) \le r^2 \le 2\sum_{i=3}^{j+1}\omega_i(\omega_{j+1}-\omega_i)$$

then

$$v_{K} = j$$
 and $\beta_{0} = \frac{2\sum_{i=3}^{J} \omega_{i}}{r^{2} + 2\sum_{i=3}^{J} \omega_{i}^{2}}$

and if

$$2\sum_{i=3}^{n}\omega_{i}(\omega_{n}-\omega_{i})\leq r^{2}$$

then

$$v_K = n$$
 and $\beta_0 = \frac{2\sum_{i=3}^n \omega_i}{r^2 + 2\sum_{i=3}^n \omega_i^2}$

PROOF. Replacing ω_i^+ by ω_i in the proof of the Theorem 2 suffices the proof.

REMARK. We can write $\min_{D \in \Delta} K(D) / \sigma^4$ as $\{r^2 \beta_0^2 + \sum_{i=3}^{\nu_K} (\beta_0 \omega_i)^2 + n - \nu_K\} / \{\sum_{i=3}^{\nu_K} \beta_0 \omega_i + n - \nu_K\}^2$ in the proof of Theorem 3. By substituting our expression for β_0 to this expression, we also have

$$\min_{D \in \Delta} K(D) / \sigma^4 = 2 \{ \beta_0 \sum_{i=3}^{v_K} \omega_i + n - v_K \}^{-1}.$$

4. Asymptotic results

In this section we discuss the asymptotic behavior for large sample size of minimax solutions obtained in Sections 2 and 3. Speckman [4] showed that for large *n* the ω_j is approximately $n^{-1}\rho j^4$, where ρ is a constant.

Let \bar{v}_J be the solution of the equation $\sum_{i=3}^{\nu} \omega_i^{1/2} (\omega_v^{1/2} - \omega_i^{1/2}) = r$. Then the v_J is the largest integer that is smaller than n and \bar{v}_J by Theorem 1. By expanding \bar{v}_J in decreasing powers of n, we have the following theorem.

THEOREM 4. Under the assumption $\omega_j = \rho n^{-1} j^4 (3 \le j \le n), \ \bar{v}_J - 1 \le v_J \le \bar{v}_J$ and the \bar{v}_J is expanded as

(4.1)
$$\bar{v}_J = z + \frac{1}{4}z^{-1} + O(z^{-2})$$

with $z = (15rn/2\rho)^{1/5}$, as $n \to \infty$. Write $v_J = \bar{v}_J - a_J (0 \le a_J \le 1)$, then the γ_0 is expanded as

60

Minimax approaches in nonparametric regression

(4.2)
$$\gamma_0 = \frac{1}{15r} z \left[1 + \left(-6a_J^2 + 6a_J - 1 \right) z^{-2} + O(z^{-3}) \right].$$

The minimum of $J(A)/\sigma^2$ is

(4.3)
$$\frac{1}{n} \left[\frac{2}{3}z + \frac{1}{2} + O(z^{-2}) \right].$$

Speckman [4] obtained the leading terms of (4.1) and (4.2). Carter, Eagleson and Silverman [2] obtained the leading tem of (4.3).

Similarly the next theorem gives the asymptotic results on minimax solutions for estimating σ^2 based on two criterions M(D) and K(D).

THEOREM 5. Under the assumption $\omega_j = \rho n^{-1} j^4 (3 \le j \le n), \ \bar{v}_M - 1 \le v_M \le \bar{v}_M, \ \bar{v}_K - 1 \le v_K \le \bar{v}_K, \ and \ the \ \bar{v}_M \ and \ \bar{v}_K \ are \ expanded \ as$

(4.4)
$$\bar{v}_{M} = w + \frac{46}{117} \left(\frac{45}{8}\right)^{1/2} w^{1/2} - \frac{2095}{5746} - \frac{73016675}{63530649} \left(\frac{45}{8}\right)^{1/2} w^{-1/2} + \frac{16413426245}{2160042066} w^{-1} + O(w^{-2})$$

(4.5)
$$\bar{v}_K = w + \frac{5}{12} w^{-1} + O(w^{-2})$$

with $w = (45r^2n^2/8\rho^2)^{1/9}$, as $n \to \infty$. Write $v_M = \bar{v}_M - a_M (0 \le a_M < 1)$, and $v_K = \bar{v}_K - a_K (0 \le a_K < 1)$, respectively, then the α_0 and β_0 are expanded as (4.6)

$$\alpha_{0} = \left(\frac{8}{45}\right)^{1/2} \frac{w^{1/2}}{r} \left[1 + \frac{50}{117} \left(\frac{45}{8}\right)^{1/2} w^{-1/2} - \frac{8725}{7956} w^{-1} - \frac{2922875}{9773946} \left(\frac{45}{8}\right)^{1/2} w^{-3/2} + \left(-10a_{M}^{2} + 10a_{M} + \frac{908518055}{182860704}\right) w^{-2} + O(w^{-3})\right],$$

$$A T_{0} = \left(\frac{8}{2}\right)^{1/2} \frac{w^{1/2}}{r} \left[1 + \left(-10a_{M}^{2} + 10a_{M} - \frac{5}{2}\right) w^{-2} + O(w^{-3})\right]$$

(4.7)
$$\beta_0 = \left(\frac{8}{45}\right)^{1/2} \frac{w^{1/2}}{r} \left[1 + \left(-10a_K^2 + 10a_K - \frac{5}{3}\right)w^{-2} + O(w^{-3})\right].$$

The minimum of $M(D)/\sigma^4$ is

(4.8)
$$\frac{1}{n} \left[1 - \frac{9r}{2\rho} \left(\frac{8}{45} \right)^{1/2} w^{-7/2} - \frac{10r}{13\rho} w^{-4} - \frac{10r(51714a_M + 31217)}{45986\rho} \left(\frac{8}{45} \right)^{1/2} w^{-9/2} + O(w^{-5}) \right].$$

The minimum of $K(D)/\sigma^4$ is

(4.9)
$$\frac{1}{n} \left[1 - \frac{9r}{2\rho} \left(\frac{8}{45} \right)^{1/2} w^{-7/2} - \frac{45r(2a_M + 1)}{16\rho} \left(\frac{8}{45} \right)^{1/2} w^{-9/2} + O(w^{-5}) \right].$$

Buckley et al. [1] obtained the leading term in (4.5), (4.7) and (4.9). Carter et al. [2] obtained the second order term in (4.9). They made use of approximations of sums by integrals.

References

- M. J. Buckley, G. K. Eagleson and B. W. Silverman, The estimation of residual variance in nonparametric regression, Biometrika, 75 (1988), 189-99.
- [2] C. K. Carter, G. K. Eagleson and B. W. Silverman, A comparison of the Reinsch and Speckman splines, Biometrika, 79 (1992), 81–91.
- [3] A. Demmler and C. Reinsch, Oscillation matrces with spline smoothing, Numer. Math., 24 (1975), 375-82.
- [4] P. Speckman, Spline smoothing and optimal rates of convergence in nonparametric regression models, Ann. Statist., 13 (1985), 970-83.

Department of Mathematics Faculty of Science Hiroshima University Higashi-Hiroshima 724, Japan