Notes on minimax approaches in nonparametric regression

Teruo Fujioka
(Received May 20, 1992)

1. Introduction

Consider the nonparametric regression model

$$
Y_{i}=g\left(t_{i}\right)+\varepsilon_{i}, \quad i=1, \cdots, n,
$$

where observations are taken at design points t_{i} for $i=1, \cdots, n$, and the errors ε_{i} are independent identically distributed as normal distribution with mean zero and variance σ^{2}. The normality assumption is unnecessary in Section 2. The response function g is assumed to belong to a space $W=\{g: g$ and g^{\prime} are absolutely continuous, and $\left.\int_{0}^{1}\left|g^{\prime \prime}(t)\right|^{2} d t<\infty\right\}$.

We deal with minimax estimators of g and σ^{2} in some sense, based on a restricted class of the response function $W_{C}=\left\{g \in W: \int_{0}^{1}\left|g^{\prime \prime}(t)\right|^{2} d t<C\right\}$. To simplify the minimax problem, we shall use a natural coordinate system. Demmler and Reinsch [3] showed that there is a basis for the natural cubic splines, $\phi_{1}(\cdot), \cdots, \phi_{n}(\cdot)$, determined essentially uniquely by

$$
\sum_{i=1}^{n} \phi_{j}\left(t_{i}\right) \phi_{k}\left(t_{i}\right)=\delta_{j k}, \quad \int_{0}^{1} \phi_{j}^{\prime \prime}(t) \phi_{k}^{\prime \prime}(t) d t=\delta_{j k} \omega_{k}
$$

with $0=\omega_{1}=\omega_{2}<\cdots<\omega_{n}$. Here $\delta_{j k}=1$ if $j=k$ and 0 otherwise. Let $\tilde{y}=\left(Y_{1}, \cdots, Y_{n}\right)^{T}$ and $\tilde{g}=\left(g\left(t_{1}\right), \cdots, g\left(t_{n}\right)\right)^{T}$ be the vectors expressed with respect to a natural basis of $\boldsymbol{R}^{n},\left\{\left(\phi_{j}\left(t_{i}\right)\right)\right\}$. To estimate g, Speckman [4] proposed the linear estimator of g which minimizes the expected summed squared criterion

$$
J(\hat{g})=n^{-1} \max _{g \in W_{C}} E\left[\sum_{i=1}^{n}\left\{\hat{g}\left(t_{i}\right)-g\left(t_{i}\right)\right\}^{2}\right]
$$

defined for any given estimator \hat{g} of g. Furthermore, he introduced a familyof linear estimators $\hat{g}_{\gamma}, \gamma>0$ which is optimal in the sense $\min J(\hat{g})=$ $\min _{\gamma>0} J\left(\hat{g}_{\gamma}\right)$. In this paper, Section 2 gives an explicit expression of the minimax solution γ_{0} for fixed value of C / σ^{2}.

To estimate σ^{2}, Buckley, Eagleson and Silverman [1] proposed the quadratic estimator of σ^{2} which minimizes the expected squared criterion

$$
M\left(\hat{\sigma}^{2}\right)=\max _{g \in W_{C}} E\left(\hat{\sigma}^{2}-\sigma^{2}\right)^{2}
$$

defined for given any estimator $\hat{\sigma}^{2}$ of σ^{2}. Furthermore, they gave a family $\hat{\sigma}_{\alpha}^{2}, \alpha>0$, which is optimal in the sense $\min M\left(\hat{\sigma}^{2}\right)=\min _{\alpha>0} J\left(\hat{\sigma}_{\alpha}^{2}\right)$. In Section 3, we also give an explicit expression of the minimax solution α_{0} for fixed value of C / σ^{2}.

For an asymptotic approximation for large n, we use a particular series $\omega_{j}=\rho n^{-1} j^{4}(3 \leq j \leq n)$ for some constant ρ. Asymptotic expansions of the minimax solutions are given in Section 4.

2. Minimax solution for estimating g

Let \hat{g} be a linear estimator of \tilde{y}. Then we can write $\left(\hat{g}\left(t_{1}\right), \cdots, \hat{g}\left(t_{n}\right)\right)^{T}=$ $A \tilde{y}$. For simplicity, write $\left(\hat{g}\left(t_{1}\right), \cdots, \hat{g}\left(t_{n}\right)\right)^{T}=\left(g_{1}, \cdots, g_{n}\right)^{T}$, and $J(\hat{g})=J(A)$. Let \mathscr{M} be the set of all $n \times n$ matrices. Then

$$
J(A)=n^{-1} \max _{\Sigma \omega_{i} g_{i}^{2} \leq C}\left\{\tilde{g}^{T}(I-A)^{T}(I-A) \tilde{g}+\sigma^{2} \operatorname{tr} A^{T} A\right\}
$$

Speckman [4] proposed interpolating $A_{0} \tilde{y}$ for A_{0} which minimizes $J(A)$ over $A \in \mathscr{M}$. The following theorem gives an explicit expression for A_{0}.

THEOREM 1. For any fixed value of C / σ^{2}, say r, the minimum over $A \in \mathscr{M}$ of $J(A)$ is attained when A is diagonal with diagonal elements $a_{i i}$ given by

$$
\begin{aligned}
a_{i i} & =1-\left(\gamma_{0} \omega_{i}\right)^{1 / 2} & & \left(i \leq v_{J}\right) \\
& =0 & & \left(i>v_{J}\right)
\end{aligned}
$$

where γ_{0} and v_{J} are determined as follows: if for some $3 \leq j \leq n-1$

$$
\sum_{i=3}^{j} \omega_{i}^{1 / 2}\left(\omega_{j}^{1 / 2}-\omega_{i}^{1 / 2}\right) \leq r \leq \sum_{i=3}^{j+1} \omega_{i}^{1 / 2}\left(\omega_{j+1}^{1 / 2}-\omega_{i}^{1 / 2}\right)
$$

then

$$
v_{J}=j \quad \text { and } \quad \gamma_{0}=\left(\frac{\sum_{i=3}^{j} \omega_{i}^{1 / 2}}{r+\sum_{i=3}^{j} \omega_{i}}\right)^{2}
$$

and if

$$
\sum_{i=3}^{n} \omega_{i}^{1 / 2}\left(\omega_{n}^{1 / 2}-\omega_{i}^{1 / 2}\right) \leq r
$$

then

$$
v_{J}=n \quad \text { and } \quad \gamma_{0}=\left(\frac{\sum_{i=3}^{n} \omega_{i}^{1 / 2}}{r+\sum_{i=3}^{n} \omega_{i}}\right)^{2}
$$

Proof. Let $\mathscr{M}_{D}=\left\{A \in \mathscr{M}: A=\operatorname{diag}\left(1,1, a_{3}, \cdots, a_{n}\right)\right\}$. Speckman [4] showed that $\min _{A \in \mathscr{M}} J(A)=\min _{A \in \mathscr{M}_{D}} J(A)$ and for $A=\operatorname{diag}\left(1,1, a_{3}, \cdots, a_{n}\right)$

$$
J(A)=n^{-1} \sigma^{2}\left\{r \max _{3 \leq i \leq n}\left(1-a_{i}\right)^{2} / \omega_{i}+\sum_{i=1}^{n} a_{i}^{2}\right\} .
$$

Now let $\mathscr{M}_{\gamma}=\left\{A \in \mathscr{M}_{D}: \max _{3 \leq i \leq n}\left(1-a_{i}\right)^{2} / \omega_{i}=\gamma\right\}, \gamma \geq 0$. We get

$$
\begin{aligned}
\min _{A \in \mathscr{M}_{\gamma}} n J(A) / \sigma^{2} & =r \gamma+2+\sum_{i=3}^{n} \max \left\{0,1-\left(\gamma \omega_{i}\right)^{1 / 2}\right\}^{2}, & & \gamma \leq \omega_{3}^{-1} \\
& =r \gamma+2+\left(1-\left(\gamma \omega_{i}\right)^{1 / 2}\right)^{2}, & & \gamma \geq \omega_{3}^{-1} .
\end{aligned}
$$

Define H by $H\left(\gamma^{1 / 2}\right)=\min _{A \in M_{\nu}} n J(A) / \sigma^{2}$. Then for $\xi \geq 0$

$$
\begin{aligned}
H(\xi) & =r \xi^{2}+2+\sum_{i=3}^{n}\left(1-\xi \omega_{i}^{1 / 2}\right)^{2}, & & \xi \leq \omega_{n}^{1 / 2} \\
& =r \xi^{2}+2+\sum_{i=3}^{j}\left(1-\xi \omega_{i}^{1 / 2}\right)^{2}, & & \omega_{j+1}^{-1 / 2} \leq \xi \leq \omega_{j}^{-1 / 2} \\
& =r \xi^{2}+2+\left(1-\xi \omega_{3}^{1 / 2}\right)^{2}, & & \omega_{3}^{1 / 2} \leq \xi .
\end{aligned}
$$

The $H(\xi)$ has a continuous derivative and twice differentiable on $\{\xi>0\}$ except for points $\omega_{i}^{-1 / 2}(4 \leq i \leq n) . \quad H^{\prime \prime}(\xi)>0, \lim _{\xi \rightarrow+0} H^{\prime}(\xi)<0$, and $H^{\prime}\left(\omega_{3}^{-1 / 2}\right) \geq 0$. Therefore there uniquely exists $\xi_{0} \in\left(0, \omega_{3}^{-1 / 2}\right)$ which minimizes $H(\xi)$ over $\{\xi \geq 0\}$. Note that $H(\xi)$ is piecewise polynomial of degree 2. If $\xi_{0} \leq \omega_{n}^{-1 / 2}$ then $\left(\sum_{i=3}^{n} \omega_{i}^{1 / 2}\right) /\left(r+\sum_{i=3}^{n} \omega_{i}\right) \leq \omega_{n}^{-1 / 2}$ and $\xi_{0}=\left(\sum_{i=3}^{n} \omega_{i}^{1 / 2}\right) /\left(r+\sum_{i=3}^{n} \omega_{i}\right)$. If for some $3 \leq j \leq n, \omega_{j+1}^{-1 / 2} \leq \xi_{0} \leq \omega_{j}^{-1 / 2}$ then $\omega_{j+1}^{-1 / 2} \leq\left(\sum_{i=3}^{j} \omega_{i}^{1 / 2}\right) /(r+$ $\left.\sum_{i=3}^{j} \omega_{i}\right) \leq \omega_{j}^{-1 / 2}$ and $\xi_{0}=\left(\sum_{i=3}^{j} \omega_{i}^{1 / 2}\right) /\left(r+\sum_{i=3}^{j} \omega_{i}\right)$. Replacing ξ_{0} by $\gamma_{0}^{1 / 2}$ we complete the proof of Theorem 1 .

Remark. We can write $\min _{A \in \mathcal{M}} J(A) / \sigma^{2}$ as $n^{-1}\left\{r \gamma_{0}+\sum_{i=3}^{v_{J}}\left(1-\gamma_{0}^{1 / 2} \omega_{i}^{1 / 2}\right)\right\}^{2}$ in the proof of Theorem 1. By substituting our expression for γ_{0} to this expression, we also have

$$
\min _{A \in \mathscr{M}} J(A) / \sigma^{2}=n^{-1}\left\{v_{J}-\gamma_{0}^{1 / 2} \sum_{i=3}^{v_{J}} \omega_{i}^{1 / 2}\right\}=n^{-1} \operatorname{tr} A_{0}
$$

3. Minimax solution for estimating σ^{2}

We restrict our attention to estimators of σ^{2} whose form is $\hat{\sigma}^{2}(D)=\tilde{y}^{T} D \tilde{y} /$ $\operatorname{tr} D, D \in \Delta$. Here Δ is the class of $n \times n$ symmetric non-negative definite matrices D for which $\hat{\sigma}^{2}(D)$ is unbiased when g is a straight line. For simplicity, write $M\left(\hat{\sigma}^{2}(D)\right)=M(D)$. Then

$$
M(D)=\max _{\Sigma \omega_{i} g_{i}^{2} \leq C}\left\{\left(\tilde{g}^{T} D \tilde{g}\right)^{2}+4 \sigma^{2} \tilde{g}^{T} D^{2} \tilde{g}+2 \sigma^{4} \operatorname{tr} D^{2}\right\} /(\operatorname{tr} D)^{2} .
$$

Buckley et al. [1] proposed minimizing $M(D)$ over $D \in \Delta$ of $M(D)$. The following theorem gives an explicit expression for D which minimizes $M(D)$.

Theorem 2. For any fixed value of C / σ^{2}, say r, the minimum over $D \in \Delta$ of $M(D)$ is attained when D is diagonal with diagonal elements $d_{i i}$ given by

$$
\begin{aligned}
d_{i i} & =\alpha_{0} \omega_{i}^{+} & & \left(i \leq v_{M}\right) \\
& =1 & & \left(i>v_{M}\right),
\end{aligned}
$$

with $\omega_{i}^{+}=\omega_{i}\left(1+4 \omega_{i} / r\right)^{-1 / 2}$, where α_{0} and v_{M} are determined as follows: if for some $3 \leq j \leq n-1$

$$
2 \sum_{i=3}^{j} \omega_{i}^{+}\left(\omega_{j}^{+}-\omega_{i}^{+}\right) \leq r^{2} \leq 2 \sum_{i=3}^{j+1} \omega_{i}^{+}\left(\omega_{j+1}^{+}-\omega_{i}^{+}\right)
$$

then

$$
v_{M}=j \quad \text { and } \quad \alpha_{0}=\frac{2 \sum_{i=3}^{j} \omega_{i}^{+}}{r^{2}+2 \sum_{i=3}^{j}\left(\omega_{i}^{+}\right)^{2}} \text {, }
$$

and if

$$
2 \sum_{i=3}^{n} \omega_{i}^{+}\left(\omega_{n}^{+}-\omega_{i}^{+}\right) \leq r^{2}
$$

then

$$
v_{M}=n \quad \text { and } \quad \alpha_{0}=\frac{2 \sum_{i=3}^{n} \omega_{i}^{+}}{r^{2}+2 \sum_{i=3}^{n}\left(\omega_{i}^{+}\right)^{2}} .
$$

Proof. Let $\Delta_{D}=\left\{D \in \Delta: D=\operatorname{diag}\left(0,0, d_{3}, \cdots, d_{n}\right)\right\}$. Buckley et al. [1] reduced the problem of minimizing $M(D)$ to finding $D \in \Delta$ which minimizes

$$
L(D)=\max _{\Sigma \omega_{i} g_{i}^{2} \leq c}\left\{\left(\tilde{g}^{T} D \tilde{g}\right)^{2}+4 \sigma^{2} \tilde{g}^{T} D^{2} \tilde{g}+2 \sigma^{4} \operatorname{tr} D^{2}-\lambda \operatorname{tr} D\right\}
$$

for any fixed Lagrangian multiplier λ. Furthermore they showed that $\min _{D \in \Delta} L(D)=\min _{D \in A_{\mathrm{D}}} L(D)$ and for $D=\operatorname{diag}\left(0,0, d_{3}, \cdots, d_{n}\right)$

$$
L(D)=\sigma^{4}\left\{r^{2} \max _{3 \leq i \leq n}\left(d_{i} / \omega_{i}^{+}\right)^{2}+2 \sum_{i=1}^{n} d_{i}\left(d_{i}-\lambda / 2 \sigma^{4}\right)\right\} .
$$

If $\lambda \leq 0$, then $L(D)$ is minimized when D is zero matrix. Assume that $\lambda>0$. Multiplying D by a positive constant does not change $M(D)$, so that we replace d_{i} by $\lambda d_{i} / 4 \sigma^{4}(3 \leq i \leq n)$. Then

$$
L(D)=\left(\lambda^{2} / 16 \sigma^{4}\right)\left\{r^{2} \max _{3 \leq i \leq n}\left(d_{i} / \omega_{i}^{+}\right)^{2}+2 \sum_{i=1}^{n} d_{i}\left(d_{i}-2\right)\right\} .
$$

Now let $\Delta_{\alpha}=\left\{D \in \Delta_{D}: \max _{3 \leq i \leq n} d_{i} / \omega_{i}^{+}=\alpha\right\}, \alpha \geq 0$. If $\alpha \leq\left(\omega_{3}^{+}\right)^{-1}$ then the minimum of $L(D)$ over $D \in \Delta_{\alpha}$ is attained when $d_{i}=\min \left\{1, \alpha \omega_{i}^{+}\right\}$and if $\alpha \geq\left(\omega_{3}^{+}\right)^{-1}$ then the minimum of $L(D)$ over $D \in \Delta_{\alpha}$ is attained when $d_{3}=\alpha \omega_{3}^{+}$ and $d_{i}=1(4 \leq i \leq n)$. Define H by $H(\alpha)=\min _{A \in \Delta_{\alpha}} 16 \sigma^{4} L(D) / \lambda^{2}$. Then for $\alpha \geq 0$

$$
\begin{aligned}
H(\xi) & =\alpha^{2}\left\{r^{2}+2 \sum_{i=3}^{n}\left(\omega_{i}^{+}\right)^{2}\right\}-4 \alpha \sum_{i=3}^{n} \omega_{i}^{+}, & & \alpha \leq\left(\omega_{n}^{+}\right)^{-1} \\
& =\alpha^{2}\left\{r^{2}+2 \sum_{i=3}^{j}\left(\omega_{i}^{+}\right)^{2}\right\}-4 \alpha \sum_{i=3}^{j} \omega_{i}^{+}-2(n-j), & & \left(\omega_{j+1}^{+}\right)^{-1} \leq \alpha \leq\left(\omega_{j}^{+}\right)^{-1} \\
& =\alpha^{2}\left\{r^{2}+2\left(\omega_{3}^{+}\right)^{2}\right\}-4 \alpha \omega_{3}^{+}-2(n-3), & & \left(\omega_{3}^{+}\right)^{-1} \leq \alpha .
\end{aligned}
$$

The $H(\alpha)$ has a continuous derivative and twice differentiable on $\{\alpha>0\}$ except for points $\left(\omega_{i}^{+}\right)^{-1}(4 \leq i \leq n) . \quad H^{\prime \prime}(\alpha)>0, \lim _{\alpha \rightarrow+0} H^{\prime}(\alpha)<0$, and $H^{\prime}\left(\left(\omega_{3}^{+}\right)^{-1}\right)$ ≥ 0. Therefore there uniquely exists $\alpha_{0} \in\left(0,\left(\omega_{3}^{+}\right)^{-1}\right)$ which minimizes $H(\alpha)$ over $\{\alpha \geq 0\}$. Note that $H(\alpha)$ is piecewise polynomial of degree 2 . If $\alpha_{0} \leq\left(\omega_{n}^{+}\right)^{-1}$ then $\left(2 \sum_{i=3}^{n} \omega_{i}^{+}\right) /\left(r^{2}+2 \sum_{i=3}^{n} \omega_{i}^{+}\right) \leq\left(\omega_{n}^{+}\right)^{-1}$ and $\alpha_{0}=\left(2 \sum_{i=3}^{n} \omega_{i}^{+}\right) /$ $\left(r^{2}+2 \sum_{i=3}^{n}\left(\omega_{i}^{+}\right)^{2}\right)$. If for some $3 \leq j \leq n-1,\left(\omega_{j+1}^{+}\right)^{-1} \leq \xi_{0} \leq\left(\omega_{j}^{+}\right)^{-1}$ then $\left(\omega_{j+1}^{+}\right)^{-1} \leq\left(2 \sum_{i=3}^{j} \omega_{i}^{+}\right) /\left(r^{2}+2 \sum_{i=3}^{j}\left(\omega_{i}^{+}\right)^{2}\right) \leq\left(\omega_{j}^{+}\right)^{-1} \quad$ and $\quad \alpha_{0}=\left(2 \sum_{i=3}^{j} \omega_{i}^{+}\right) /$ $\left(r^{2}+2 \sum_{i=3}^{j}\left(\omega_{i}^{+}\right)^{2}\right)$. This completes the proof.

Remark. We can write $\min _{D \in \Delta} M(D) / \sigma^{4}$ as $\left\{r^{2} \alpha_{0}^{2}+\sum_{i=3}^{v_{M}}\left(\alpha_{0} \omega_{i}^{+}\right)^{2}+\right.$ $\left.n-v_{M}\right\} /\left\{\sum_{i=3}^{v_{M}} \alpha_{0} \omega_{i}^{+}+n-v_{M}\right\}^{2}$ in the proof of Theorem 2. By substituting our expression for α_{0} to this expression, we also have

$$
\min _{D \in \Delta} M(D) \nvdash \sigma^{4}=2\left\{\alpha_{0} \sum_{i=3}^{v_{M}} \omega_{i}^{+}+n-v_{M}\right\}^{-1}
$$

Buckley et al. [1] defined a new criterion

$$
K(D)=\max _{\Sigma \omega_{i} g_{i}^{2} \leq c}\left\{\left(\tilde{g}^{T} D \tilde{g}\right)^{2}+2 \sigma^{4} \operatorname{tr} D^{2}\right\} /(\operatorname{tr} D)^{2}
$$

for estimating σ^{2}, and discussed the relations between minimax estimators based on these two criterions. The following theorem gives an explicit expression for D which minimizes $K(D)$.

Theorem 3. For any fixed value of C / σ^{2}, say r, the minimum over $D \in \Delta$ of $K(D)$ is attained when D is diagonal with diagonal elements $d_{i i}$ given by

$$
\begin{aligned}
d_{i i} & =\beta_{0} \omega_{i} & & \left(i \leq v_{K}\right) \\
& =1 & & \left(i>v_{K}\right),
\end{aligned}
$$

where β_{0} and v_{K} are determined as follows: if for some $3 \leq j \leq n-1$

$$
2 \sum_{i=3}^{j} \omega_{i}\left(\omega_{j}-\omega_{i}\right) \leq r^{2} \leq 2 \sum_{i=3}^{j+1} \omega_{i}\left(\omega_{j+1}-\omega_{i}\right)
$$

then

$$
v_{K}=j \quad \text { and } \quad \beta_{0}=\frac{2 \sum_{i=3}^{j} \omega_{i}}{r^{2}+2 \sum_{i=3}^{j} \omega_{i}^{2}},
$$

and if

$$
2 \sum_{i=3}^{n} \omega_{i}\left(\omega_{n}-\omega_{i}\right) \leq r^{2}
$$

then

$$
v_{K}=n \quad \text { and } \quad \beta_{0}=\frac{2 \sum_{i=3}^{n} \omega_{i}}{r^{2}+2 \sum_{i=3}^{n} \omega_{i}^{2}}
$$

Proof. Replacing ω_{i}^{+}by ω_{i} in the proof of the Theorem 2 suffices the proof.

REMARK. We can write $\min _{D \in \Delta} K(D) / \sigma^{4}$ as $\left\{r^{2} \beta_{0}^{2}+\sum_{i=3}^{v_{K}}\left(\beta_{0} \omega_{i}\right)^{2}+n-v_{K}\right\} /$ $\left\{\sum_{i=3}^{v_{K}} \beta_{0} \omega_{i}+n-v_{K}\right\}^{2}$ in the proof of Theorem 3. By substituting our expression for β_{0} to this expression, we also have

$$
\min _{D \in \Delta} K(D) / \sigma^{4}=2\left\{\beta_{0} \sum_{i=3}^{v_{K}} \omega_{i}+n-v_{K}\right\}^{-1}
$$

4. Asymptotic results

In this section we discuss the asymptotic behavior for large sample size of minimax solutions obtained in Sections 2 and 3. Speckman [4] showed that for large n the ω_{j} is approximately $n^{-1} \rho j^{4}$, where ρ is a constant.

Let \bar{v}_{J} be the solution of the equation $\sum_{i=3}^{v} \omega_{i}^{1 / 2}\left(\omega_{v}^{1 / 2}-\omega_{i}^{1 / 2}\right)=r$. Then the v_{J} is the largest integer that is smaller than n and \bar{v}_{J} by Theorem 1. By expanding \bar{v}_{J} in decreasing powers of n, we have the following theorem.

THEOREM 4. Under the assumption $\omega_{j}=\rho n^{-1} j^{4}(3 \leq j \leq n), \bar{v}_{J}-1 \leq v_{J} \leq$ \bar{v}_{J} and the \bar{v}_{J} is expanded as

$$
\begin{equation*}
\bar{v}_{J}=z+\frac{1}{4} z^{-1}+O\left(z^{-2}\right) \tag{4.1}
\end{equation*}
$$

with $z=(15 r n / 2 \rho)^{1 / 5}$, as $n \rightarrow \infty$. Write $v_{J}=\bar{v}_{J}-a_{J}\left(0 \leq a_{J} \leq 1\right)$, then the γ_{0} is expanded as

$$
\begin{equation*}
\gamma_{0}=\frac{1}{15 r} z\left[1+\left(-6 a_{J}^{2}+6 a_{J}-1\right) z^{-2}+O\left(z^{-3}\right)\right] . \tag{4.2}
\end{equation*}
$$

The minimum of $J(A) / \sigma^{2}$ is

$$
\begin{equation*}
\frac{1}{n}\left[\frac{2}{3} z+\frac{1}{2}+O\left(z^{-2}\right)\right] . \tag{4.3}
\end{equation*}
$$

Speckman [4] obtained the leading terms of (4.1) and (4.2). Carter, Eagleson and Silverman [2] obtained the leading tem of (4.3).

Similarly the next theorem gives the asymptotic results on minimax solutions for estimating σ^{2} based on two criterions $M(D)$ and $K(D)$.

Theorem 5. Under the assumption $\omega_{j}=\rho n^{-1} j^{4}(3 \leq j \leq n), \bar{v}_{M}-1 \leq v_{M} \leq$ $\bar{v}_{M}, \bar{v}_{K}-1 \leq v_{K} \leq \bar{v}_{K}$, and the \bar{v}_{M} and \bar{v}_{K} are expanded as

$$
\begin{align*}
\bar{v}_{M}=w & +\frac{46}{117}\left(\frac{45}{8}\right)^{1 / 2} w^{1 / 2}-\frac{2095}{5746}-\frac{73016675}{63530649}\left(\frac{45}{8}\right)^{1 / 2} w^{-1 / 2} \tag{4.4}\\
& +\frac{16413426245}{2160042066} w^{-1}+O\left(w^{-2}\right)
\end{align*}
$$

$$
\begin{equation*}
\bar{v}_{K}=w+\frac{5}{12} w^{-1}+O\left(w^{-2}\right) \tag{4.5}
\end{equation*}
$$

with $w=\left(45 r^{2} n^{2} / 8 \rho^{2}\right)^{1 / 9}$, as $n \rightarrow \infty$. Write $v_{M}=\bar{v}_{M}-a_{M}\left(0 \leq a_{M}<1\right)$, and $v_{K}=\bar{v}_{K}-a_{K}\left(0 \leq a_{K}<1\right)$, respectively, then the α_{0} and β_{0} are expanded as

$$
\begin{align*}
\alpha_{0}= & \left(\frac{8}{45}\right)^{1 / 2} \frac{w^{1 / 2}}{r}\left[1+\frac{50}{117}\left(\frac{45}{8}\right)^{1 / 2} w^{-1 / 2}-\frac{8725}{7956} w^{-1}\right. \tag{4.6}\\
& -\frac{2922875}{9773946}\left(\frac{45}{8}\right)^{1 / 2} w^{-3 / 2}+\left(-10 a_{M}^{2}+10 a_{M}+\frac{908518055}{182860704}\right) w^{-2} \\
& \left.+O\left(w^{-3}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
\beta_{0}=\left(\frac{8}{45}\right)^{1 / 2} \frac{w^{1 / 2}}{r}\left[1+\left(-10 a_{K}^{2}+10 a_{K}-\frac{5}{3}\right) w^{-2}+O\left(w^{-3}\right)\right] . \tag{4.7}
\end{equation*}
$$

The minimum of $M(D) / \sigma^{4}$ is

$$
\begin{align*}
& \frac{1}{n}\left[1-\frac{9 r}{2 \rho}\left(\frac{8}{45}\right)^{1 / 2} w^{-7 / 2}-\frac{10 r}{13 \rho} w^{-4}\right. \tag{4.8}\\
& \left.\quad-\frac{10 r\left(51714 a_{M}+31217\right)}{45986 \rho}\left(\frac{8}{45}\right)^{1 / 2} w^{-9 / 2}+O\left(w^{-5}\right)\right] .
\end{align*}
$$

The minimum of $K(D) / \sigma^{4}$ is

$$
\begin{equation*}
\frac{1}{n}\left[1-\frac{9 r}{2 \rho}\left(\frac{8}{45}\right)^{1 / 2} w^{-7 / 2}-\frac{45 r\left(2 a_{M}+1\right)}{16 \rho}\left(\frac{8}{45}\right)^{1 / 2} w^{-9 / 2}+O\left(w^{-5}\right)\right] \tag{4.9}
\end{equation*}
$$

Buckley et al. [1] obtained the leading term in (4.5), (4.7) and (4.9). Carter et al. [2] obtained the second order term in (4.9). They made use of approximations of sums by integrals.

References

[1] M. J. Buckley, G. K. Eagleson and B. W. Silverman, The estimation of residual variance in nonparametric regression, Biometrika, 75 (1988), 189-99.
[2] C. K. Carter, G. K. Eagleson and B. W. Silverman, A comparison of the Reinsch and Speckman splines, Biometrika, 79 (1992), 81-91.
[3] A. Demmler and C. Reinsch, Oscillation matrces with spline smoothing, Numer. Math., 24 (1975), 375-82.
[4] P. Speckman, Spline smoothing and optimal rates of convergence in nonparametric regression models, Ann. Statist., 13 (1985), 970-83.

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 724, Japan

