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1. Introduction

Consider the nonparametric regression model

εi9 ί= l, ,n,

where observations are taken at design points t, for i = l, ,n, and the errors
Si are independent identically distributed as normal distribution with mean
zero and variance σ2. The normality assumption is unnecessary in Section
2. The response function g is assumed to belong to a space W= { g : g and

g' are absolutely continuous, and $Q\g"(t)\2dt < oo}.
We deal with minimax estimators of g and σ2 in some sense, based on a

restricted class of the response function Wc = {ge W: J* \g"(t)\2dt < C}. To
simplify the minimax problem, we shall use a natural coordinate system.

Demmler and Reinsch [3] showed that there is a basis for the natural cubic

splines, φ±( - ), ~,'φn( - ), determined essentially uniquely by

i = l

= δjk, Γ Φj(t)Φί(t)dt = δjkωk

JO

with 0 = ωx = ω2 < ••• < ωπ. Here δjk = 1 if j = k and 0 otherwise. Let
y = (Yί9 9 Yn)

τ and g = (g(tι)9 9g(tn))τ be the vectors expressed with respect

to a natural basis of /?", {(φj(t$)} To estimate g, Speckman [4] proposed
the linear estimator of g which minimizes the expected summed squared

criterion

defined for any given estimator g of g. Furthermore, he introduced a family

of linear estimators gr y > 0 which is optimal in the sense min J(g) =
minv > 0 J($γ). In this paper, Section 2 gives an explicit expression of the

minimax solution y0 for fixed value of C/σ2.
To estimate σ2, Buckley, Eagleson and Silverman [1] proposed the

quadratic estimator of σ2 which minimizes the expected squared criterion



56 Teruo FUJIOKA

M(σ2) = max E(σ2 - σ2)2

geWc

defined for given any estimator σ2 of σ2. Furthermore, they gave a family

σ2, α > 0, which is optimal in the sense min M(σ2) = minα>0 J(σ2). In

Section 3, we also give an explicit expression of the minimax solution α0 for

fixed value of C/σ2.

For an asymptotic approximation for large n, we use a particular series

ω; = ptt~V4(3 <j < n) for some constant p. Asymptotic expansions of the

minimax solutions are given in Section 4.

2. Minimax solution for estimating g

Let g be a linear estimator of y. Then we can write ( g ( t ί ) , ~9g(tn))τ =

Ay. For simplicity, write (g(tί)9 ,g(tn))τ = ( g ί 9 ~,gn)
τ, and J(g) = J(A).

Let Jί be the set of all n x n matrices. Then

= n~l max {gτ(I - A)T(I - A)g + σ2 tr ATA}.

Speckman [4] proposed interpolating A0y for A0 which minimizes J(A) over

A tJt. The following theorem gives an explicit expression for A0.

THEOREM 1. For any fixed value of C/σ2, say r, the minimum over AeJί

of J(A) is attained when A is diagonal with diagonal elements ait given by

% = i - (y^i)112 (ί < vj)
= 0 (i > Vj),

where γ0 and Vj are determined as follows : if for some 3 < j < n — 1

ωP(ωj'2 - ω}>2) < r < ω}'2(ω}'+\ - ω}'2}
i = 3

then

and if

then

X ω/'V J / 2 - ω//2) < r
i=3
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PROOF. Let JίD = {A e M : A = diag (1, 1, α3, , an)} . Speckman [4]
showed that mmA€MJ(A) = mmAeJtDJ(A) and for A = diag(l, 1, α3, •••,#„)

j(A) = n~^σ2{r max (1 - a^/ω, + £ a2}.
3<ι<n / = 1

Now let .Λry = {Λe-Λίi,: max 3 < ί < n ( l - α^/ωj = y}, y > 0. We get

nJC4)/σ2 = ry + 2 + £?=3 max {0, 1 - (yco,-)1/2}2, y < ω

Define H by H(y1/2) = mmAe^γ nJ(A)/σ2. Then for ξ > 0

- rξ2 + 2 + χ;=3 (1 - ξω,1/2)2, ξ < ωi/2

= rί2 + 2 + £^=3 (1 - ^ω//2)2, ωΓ+\/2 < ξ < ω/1/2

j1

The H(ξ) has a continuous derivative and twice differentiable on {ξ > 0} except
for points ωΓ 1 / 2(4 < i < n). H"(ξ) > 0, limξ^ + 0H'(ξ) < 0, and H'(ωϊ1/2) > 0.
Therefore there uniquely exists ξ0e(0, ω^"1/2) which minimizes H(ξ) over
{ξ > 0}. Note that H(ξ) is piecewise polynomial of degree 2. If ξ0 < ω~ 1 / 2

then (Σ .aω^/ίr + Σ ^ω^ω.-1/2 and ξ0 = (%_3 ω\'2}l(r + £?=3 ωέ).
If for some 3<;<n, ωΓ^/2 < ̂  < ω/1 / 2 then ωΓ+\/2 < (^'_3 ωt

1/2)/(r +
Σ ^ω^ωΓ1/2 and ίo = (Σί=3 ^

1/2)/(r + Σf= 3 ω,). Replacing £0 by y j / 2

we complete the proof of Theorem 1.

REMARK. We can write min^ J(A)/σ2 as n-^ryo + Σ ^ίl-y^2^^2)}2

in the proof of Theorem 1. By substituting our expression for y0 to this
expression, we also have

ω/'2 = rΓ1

3. Minimax solution for estimating σ2

We restrict our attention to estimators of σ2 whose form is σ2(D) = yτDy/
tτD,DθA. Here A is the class of nxn symmetric non-negative definite
matrices D for which σ2(D) is unbiased when g is a straight line. For

simplicity, write M(σ2(D)) = M(D). Then
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M(D)= max {(gτDg)2 + 4σ2gτD2g + 2σ4trD2}/(trD)2.

Buckley et al. [1] proposed minimizing M(D) over Dezf of M(D). The
following theorem gives an explicit expression for D which minimizes M(D).

THEOREM 2. F0r α^y ybced i α/wβ of C/σ2, say r, ίλe minimum over Dezf
M(D) is attained when D is diagonal with diagonal elements d ή given by

du = α0ω+ (i < VM)

with cθj+ = o>i(l 4- 4α)j/r)~ 1 / 2, where α0 αwJ VM are determined as follows: if
for some 3 < j < n — 1

2 X ω,+ (ω; - ωf

+) < r2 < 2^ ω^ω/^ - ω,+)
i = 3 i = 3

vM=j and α0 =

i=3

VM = n and α0 = —

PROOF. Let ΔD = {DεA\D = diag (0, 0, </3, , </„)}. Buckley et al. [1]
reduced the problem of minimizing M(D) to finding Dezί which minimizes

L(£>)= max {(^Dg)2 + 4σ2gτD2g + 2σ 4trD 2 -
Σωigf<C

for any fixed Lagrangian multiplier A. Furthermore they showed that
mmDeΔL(D) = mmD€ΔDL(D) and for D = diag(0, 0, d3,••-,</„)

L(D) ̂  σ4{r2 max ft/ωf)2 + 2 f'^d,

If A < 0, then L(D) is minimized when D is zero matrix. Assume that
λ > 0. Multiplying D by a positive constant does not change M(D), so that we
replace ά{ by λdi/4σ4(3 < i < n). Then
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L(D) = (λ2/16σ4){r2 max (d. /ω*)2 + 2 V dΛdi — 2)}.
3 < i < n .̂ "Ί

Now let AΛ = {DeAD: max3< I <M djωf = α}, α > 0. If α < (ω^)"1 then the

minimum of L(D) over Dezlα is attained when dt = min {1, αω^} and if

α > (ω^)'1 then the minimum of L(D) over DeAΛ is attained when d3 = αω^
and di = 1 (4 < i < n). Define H by //(α) = min^eJβ !6σ4L(D)/λ2. Then for

α > 0

//(^) = α

2{r2 + 2^"=3 (ω^)2} - 4α£"=3 ω^, α < (ωπ

+) x

= α2{r2 + 2(ω3

+)2} - 4αω3

+ - 2(n - 3), (ω^)"1 < α.

The ^(α) has a continuous derivative and twice differentiable on {α > 0} except

for points (ω^)"1 (4 < i < n). H"(ά) > 0, limα_> + 0#'(α) < 0, and H'^ω^Γ1)
> 0. Therefore there uniquely exists α0e(0, (ω^)"1) which minimizes H(y)

over {α>0}. Note that H(a) is piecewise polynomial of degree 2. If

αo^K+Γ1 then (2^=3 ω+}/(r2 + 2£;=3 ω^J^K)"1 and α0 = (2^;=3 ωf

+)/
(r2 + 2χ;=3(ωί

+)2). If for some 3 <j < n - 1, (co/^)'1 < ^o < (O'1 then
(ω;+J-1<(2Σ;=3ωr)/(r2 + 2Σ^3(ω^2)<(ω;)-1 and α0 = (2^f=3 ω+)/
(r2 H- 2^]^=3(ωί

+)2). This completes the proof.

REMARK. We can write minDeΔM(D)/σ4' as {^2αo + ΣI^3 (αoωί+)2 +
n — vΛf}/{Σ^3 αoωi+ + n — vΛί}2 in the proof of Theorem 2. By substituting
our expression for α0 to this expression, we also have

VM

min M(Z))/σ4 = 2 {α0 Σ ω;

+ + n - VM} - ! .

Buckley et al. [1] defined a new criterion

K(D)= max {(gτDg)2 + 2σ4ίτD2}/(tτD)2

for estimating σ2, and discussed the relations between minimax estimators

based on these two criterions. The following theorem gives an explicit

expression for D which minimizes K(D).

THEOREM 3. For any fixed value of C/σ2, say r, the minimum over DeA

of K(D) is attained when D is diagonal with diagonal elements dn given by

= 1 (ί>V j c),

where β0 and vκ are determined as follows : if for some 3 < j < n — 1
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j j+
2 £ ω_ί(ωj - ωt) < r2 < 2 £

i=3 i =

then

ϊ/

2 £ ω£(ωπ - ω£) < r2

i = 3

= n and β0 =

PROOF. Replacing ωf

+ by ωt in the proof of the Theorem 2 suffices the

proof.

REMARK. We can write minDeΔK(D)/σ4 as {r2β2

0 + Σ ί3 (βo^)2 + n - vκ}/

{ΣtV=3^oωi + n - vκ}2 in the Proof of Theorem 3. By substituting our
expression for β0 to this expression, we also have

DeA

4. Asymptotic results

In this section we discuss the asymptotic behavior for large sample size
of minimax solutions obtained in Sections 2 and 3. Speckman [4] showed
that for large n the ωj is approximately n~1pj4, where p is a constant.

Let Vj be the solution of the equation £*=3 ω\l2(ωl

v

12 - ω\12} = r. Then
the Vj is the largest integer that is smaller than n and v7 by Theorem 1. By
expanding v, in decreasing powers of n, we have the following theorem.

THEOREM 4. Under the assumption ω^ = pn~17*4(3 <j<n), Vj — 1 < Vj <
Vj and the Vj is expanded as

(4.1) v j = z + -z~ 1+0(z- 2)
4

with z = (15rn/2p)1/5, as n -> oo. Wπ'te V j = V j - flj(0 < flj < 1), then the y0

w expanded as
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(4.2) 7o = τ^[l + (~ 6α2 + 6a} - l)z~2 + 0(z~^.
15r

The minimum of J(A)/σ2 is

(4.3)

Speckman [4] obtained the leading terms of (4.1) and (4.2). Carter,
Eagleson and Silverman [2] obtained the leading tern of (4.3).

Similarly the next theorem gives the asymptotic results on minimax
solutions for estimating σ2 based on two criterions M(D) and K(D).

THEOREM 5. Under the assumption coy = pn~lj4(3 <j<ri), VM — 1 < VM <

VM> vκ ~~ 1 ̂  vκ ^ VK-> and the VM and vκ are expanded as

46 /45\ 1 / 2

 1 / 2 2095 73016675 /45 V / 2 _ 1 / 2— w i / z — w L/

1 1 7 \ 8 / 5746 63530649 \ 8 /
(4.4) vM = w + ^L _ w ι/2_^ι^_ _ -
x x lvl 1 1 T V O / rι-ι A s /"> r ^rv/^ Λ Γ V \ n I

117 \ δ /

16413426245 2x0(w~2)
2160042066

(4.5) vκ = w + ̂ w-1 + 0(w-2)

with w = (45r2n2/8p2)1/9, as n -» oo. Write VM = VM — αM(0 < αM < 1), and
vκ = VK — ακ(0 < aκ < 1), respectively, then the α0 and β0 are expanded as

(4.6)

8 v / 2 w ι / 2 r 50 / 4 5 \ ι / 2 8725 _ t

7956

2922875/45\1 / 2 ... / i f t , tn 908518055\ ,
— w~ 3 / 2 + - lOαL + 10αM H w~ 2

9773946V 8 / V 182860704/

0(w-3))l,

(4.7)
\ ι/2 1/2

minimum of M(D)/σ4 is

(4.8)

13p

iQrcsm^ + amη/^v/'
45986p \45/

l.
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The minimum of K(D)/σ4 is

1(4.9) -I 1- — I — ) w - τ / 2 _ ~ v—M . ^ι _«_ w-9/2 + 0(v»r5)
t t |_ 2 p V 4 5 / 16p V 4 5 /

Buckley et al. [1] obtained the leading term in (4.5), (4.7) and (4.9). Carter
et al. [2] obtained the second order term in (4.9). They made use of
approximations of sums by integrals.
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