
HIROSHIMA MATH. J.
24 (1994), 25-40

Ultimately positive (negative) solutions to a

differential inclusion of order n

Marko SVEC

(Received December 30, 1991)

1. The aim of this paper is to prove the existence of nonoscillatory

solutions with the prescribed asymptotic behaviour of the differential inclusion

Lπx(ί)eF(ί,x(φ(ί))), n > 1, (E)

where Lnx(t) is the n-ih quasiderivative of x(f) with respect to the continuous

functions a t ( t ) : J = [ί0, oo)-»(0, oo), i = 0, l, ,n, L0x(ί) = a0(t)x(t)9 Ltx(t) =

Γ00

)', i = l , 2 , . . ,n, αΓ1

JίO

( f ) Λ = o o , i = 0, l, ,n- 1, F(t, x):

J x R -> {nonempty convex compact subsets of R}, R = (— oo, oo) and

φ(t)\ J->R is a continuous function such that lim,.^ φ(t) = oo.

We will use the following notation: F(ί, x)x > (<)0 means that yx > (<)0

for each yeF(t, x); if Λ : J x R ->R, then F(ί, x) ̂  (^)fcfo x) means that

>;^(g)Λ(t, x) for each yeF(t, x); i f 5 c R, then |B| = sup { |x | : xeB},

||B|| = inf { |x |: xeB}. If C is a set, then c/(C) is the set of all convex closed

subsets of C.

The basic assumptions on F(ί, x) are as follows:

1° F(ί, x) is upper semicontinuous on J x R.

2° F(ί, 0)= {0} for each teJ.

3° F(ί, x)x < 0 for each (ί, x)e J x R, x ^ 0;

or
4° F(ί, x)x > 0 for each (ί, x)e J x R, x Φ 0.

Let ί0 ̂  b < ί < oo. Then we denote

P0(ί, ft) = 1, Λ(ί, fc) = ΓαΓ'ίs i) f1 flί1^)- ί51"1^1^)^,
Jft J& Jb

ίίwf = dsi'"dsί, i =1, 2, ••-,« — 1,

QB(ί,ft)= 1, Qj(t,b)= Γα -^ίs^i) Γ" 'α-Λίs.-z)- ["" aj^dz,,
Jb Jb Jb

dZj = dSj dsn-l9 j = 1, 2, - ,n - 1.

It is easy to see that
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lim Pt(t9 b) = oo, lim g,(ί, b) = oo, i = 1, 2, ,rc - 1,
f-» oo f-> oo

lim Pt(ί, b)P^(t, b) = 0, 0 ̂  i < / ^ n - 1,
ί-*αo J

lim β.(ί, b)QΓ*(t, b) = 0, 0 < i <j ^ n - 1.
f-*oo J

Moreover, let us denote

y(t) = sup {5 ̂  ί0 : φ(s) ^ ί} for all t ^ ί0.

In this paper we will state the conditions which guarantee the existence
of nonoscillatory solutions of (E) which are asymptotic to the solutions of
Lny(t) = 0, more precisely, the existence of such solution c(ί) of (E) that

fc>0, k6{0,l, . ,n-l} . (1)
<^«> Pk(t,b)

On the other side we will state the conditions which guarantee the
existence of nonoscillatory solution x(ί) of (E) which is asymptotic to none of
the solutions of Lny(t) = 0, more precisely, we will prove the existence of
nonoscillatory solution x(t) of (E) such that

=0, lim ° =ao, ke{l, 2, ,n - 1}. (2)
k 9 ^Ph^(t9b) l ;

Such problems were discussed, in the case of a differential equation, by

Hale and Onuchic [1], Kitamura [2], Kusano and §vec [3], Svec [4].

2. In this part we will prove the existence of the positive and also negative
solution x(ί) of (E) which satisfies (1).

Taking into consideration the properties of φ(t) we can find T0 ^ y(ί0)
such that y(i) ^ ί0 for each t = Γ0.

THEOREM 1. Let the assumptions 1° — 4° be satisfied. Suppose that:
(HJ To each measurable function z(t): J -> R there exists a measurable

selector v(t)\ J -> R such that v(t)eF(t, z(t)) a.e. on J.

Denote Mz(t) = [the set of all measurable selectors belonging to z ( t ) } .
(H2) There exists a continuous function G(ί, u): J x [0, oo) -» [0, oo) such

that:
a) G(ί, u) is nondecr easing in u for each fixed ίe J;

b) |F(ί, z)| ̂  G(t, |z|) for each (ί, z)eJ x R;
Λoo

ί "•"JΓo

c) a;1(s)Qk+ί(s,t0)G(s,ca0

1(φ(s))Pk(ψ(s),t0))ds«x>
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for some c > 0 and /ce{0, l, ,n — 1}.
7%£« the differential inclusion (E) /z0s infinitely many solutions x(ί) satisfying

(1).

PROOF. Let 0 < |αk | < |j8k | ^ c, akβk>0. Because of (H2-c) we can
choose T;> TQ ^ y(ί0) such that

Γ
Jr

, f0))<fa £ |0k| - |αk | . (3)

Let C[ί0, oo ) = C(J) be the locally convex space of all continuous functions
on J with the topology of uniform convergence on compact subintervals of
J. We will seek the desired solution x(t) of (E) in the set

y = (ιι(ί)6C(J): |αk |Pk(f, ί0) £ α0(ί)|u(ί)| ^ \βk\Pk(t, t0)} (4)

To prove our theorem we have to consider various situations.
α) Let Γ, 2°, 3° be satisfied and let n-k be even.
α :) We will first seek a positive solution of (E) satisfying (1). Thus, let

0 < αk < βk ^ c. In this case we have

Y= Y, = {u(ί)eC[ί0, oo): αkPk(ί, ί0) g α0(ί)w(ί) g jSfcPk(ί, ί0)}.

We will seek the desired solution of (E) in the set Y^ as a fixed point of the
multivalued operator A defined on Y± as follows: for u(i)€Y^

Au(t) = \aϊl(t)\βkPk(t,tQ)+ Γαf 1 ^) ί̂  fl2" 'fe)- Γ" ^k"1^)'
I Jr Jr Jr

Γ a-1(s)Qk + ί(s, sk)υ(s)dsd^k]9 v(t)eMu(φ(t))\9 t ̂  T9 (5)
Jsk J J

The operator A is well defined on Y±. In fact, from (H2) respecting the fact
that Qk+1 and G are monotone we get

poo poo

a-l(s)Qk+l(s9sk)v(s)ds ^ a-1(s)Qk+1(s, t0)\F(s9 u(φ(s)))\ds
J Sk J«k

< Γ -1
= Jsk

 α" s "+1 s' ° s' uφs

< Γ -1 -1

v Sk

From the assumption 3° we have v(t) < 0. Therefore, we get Au(t) ^ βkaol(t)
ί, ί0) for ί ̂  ί0.
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Furthermore, taking (3) into consideration, we get for t ^ T

βkPk(t, t0) - a0(t)Au(t)

Γsk-ί oo

fc+lfo Sk)v(s)dsdwk

Γt Γsι Γsk-ί poo

= - αΓ^l) «2~1(52)"- fl/Γ1^) fl.Γ^
JT JT JT Jsk

^ flΓ^Sl) Λί'fo)- " Λ^fajΛVfc fl-
Jr Jr JT Jr

• G(s, caό1(φ(s))Pk(φ(s)9 t0))ds g (ft - *JPk(t, ί0)

and finally αfePk(ί, ί0) ̂  α0(ί)^w(ί). Thus, we have ΛM(Ϊ) c= 7^ It is easy to
see that the set Au(t) is nonempty and convex.

Now, we will prove that: A: Y ί - ^ c f ( Y ί ) ; A is upper semicontinuous on

Y i ; AY1 is compact.

Let ξ ( t ) e A u ( t ) , u(t)e Y^. Then for t ^ T we have

jίfe ίo) + flΓ'W Γ flί'ω- Γ"1 αΓ1

Jr Jr

<*τ (s)Qk + ι(s, t0)G(s, ca0

 1(φ(s))Pk(φ(s)9 t0))ds.

From this we conclude that [a0(t)ξ(t)']'9 ξ(t)eAY1 are uniformly bounded on
each compact subinterval of J. Therefore, α0(ί)<^(ί), ξ^eAY^ are equicon-
tinuous on each compact subinterval of J. The uniform boundedness of the
functions a0(t)ξ(t), ξ(t)eAYl9 on each compact subinterval of J is clear. From
all this we conclude that the sets Au(t), u(t)EYί as well as the set AYl9 are
relatively compact in the topology of C[ί0, oo).

Let Ui(t)εYί9 i= 1, 2, , and let the sequence {u^t)} converge to u(t) in
C[ί0, oo). Furthermore, let z^eAu^t), ί = 1, 2, . The set AY^ being
relatively compact, there exists a subsequence { z t j ( t ) } of {zt (ί)} which converges

to a function z(f)e^4Yι c ^ in the topology of C[ί0, oo). We have

Γ _ ΓS1 r s k~ !

ar^i) ^"'ω fljΓ'
Jr Jr Jr

> (t t \ t < f < T
fc\Λ? ^O/' ^0 == *• = L •>

where Vi(t)eMu^(t)). From (H2) and (3) we get

Γ -1

Jr "
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a-l(s)Qk + l(s9 ί0)G(s, cflί ^ςφHPfcOjφ), ί0))<fa ^ βk - αk.

Let 1 (̂7", oo) denote the set of all measurable functions / on [Γ, oo) such that

II/W 111
Γ00

l ι = β«~^)β*+ι(Mo)l/(
Jr

Thus, we see that the sequence {vt(t)} is bounded in the space L^Γ, oo).

Furthermore, if {Em}, Em c [T, oo), is a decreasing sequence of sets such that

n*=1£m = 0, then

m^°° ' IF) Ln

lim a

^ lim a'1
m"°° JEm

£ lim

, caϊl(φ(s))Pk(φ(s), tQ))ds = 0.

Then (see [2, Th. IV. 8.9]) it is possible to choose a subsequence { v t j ( t ) } of

{ι?i(ί)} which weakly converges to some t^OeL^Γ, oo).
Because (Wf/ί)} converges to u(t) in C[ί0, oo) and v^eFfa Ui.(φ(t))),

7 = 1 , 2, , using the assumption 1°, to given ε > 0 and tεJ there exists

N = N(t, ε) such that for any ί,. = JV we have F(ί, M0(φ(ί))) c Oe(^(i> w(φ(ί))),
where Oε(F(ί, w(φ(ί)))) is the ε-neighbourhood of the set F(ί, u(φ(t))).

Consider the sequence {^(ί)}, ^ = ̂  Then (see [2, Corollary V. 3.14])
it is possible to construct such convex combinations from t?f (ί), ij = N, denoted

by gm(t)l m = 1, 2, , that the sequence {#m(f)} converges to ι (ί) in
L^Γ, oo). Then by the Riesz theorem there exists a subsequence {gm.(t)} of

{^mW} which converges to v(t) a.e. on [T, oo). From the convexity of

O e ( F ( t , u ( φ ( t ) ) ) ) and from the fact that u f < /(f)eO e(F(f, w(φ(ί)))) it follows that

gmi(t)eOε(F(t, u(φ(t))))9 i = 1, 2,- and, therefore, ι>(f)eOε(F(ί, u(φ)))). In the
limit as ε-^0 we see that u(f)eF(ί, u(φ(t))). We note that in our

considerations t was a fixed point and that F(ί, u(φ(t))) is a compact convex
subset of R.

Thus, the function

Γt rsi Γsk-ι ΛOO *\
aϊl(sι) aϊ1^)'" e^fok) fln'^sjβfc+iίs, sk)ί;(s)ίίsrfwV

Jr Jr Jr Jsk J

for ί ̂  T,
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is well defined and z(t)eAu(t) for teJ.
Now, it follows from the weak convergence of { .̂(ί)} to v(t) in L1(Tί oo)

that the subsequence {z^f)} of [zt(t)} converges to z(ί) a.e. on J. However,

the functions z^f) belong to the compact set AY1 . Therefore, there exists a

subsequence of the sequence {z^ί)} which converges to a function z(ί) in the
topology of C[ί0, oo). This means that z(t) = z(t)εAu(t) a.e. on J. With
this the upper semicountinuity of the operator A on Y1 is proved.

The similar considerations as in the proof of upper semicontinuity of A

on Yj , made for case that Zι(t)eAu(t) and {z, (ί)} converges to z(ί) in C[ί0, oo)
give us that z(t)eAu(t). This means that the set Au(t) is closed. Thus, we
have proved that Au(t) is compact and A maps Yί into cf(Y1).

From all this we conclude by Ky Fan's theorem that the operator A has

a fixed point in Yl9 i.e. there exists u(t)EYί such that u(t)eAu(t).
It is easy to see that u(t) is the desired positive solution of (E) satisfying

(1). In fact, from the positiveness of u(t) on [ί0, oo) and from the assumption
3° it follows that Lnu(t) has a constant sign on some interval [Tu, oo) and all

quasiderivatives Ltu(t)9 i = 0, l, ,n — 1 are monotone on some ray [Γl5 oo),
T; ^ Tu. By ΓHospitaΓs rule we get

0 < αk < lim L°U® = lim Lfcιι(ί) = ck < βk.*-'-« Pt(ί,ί0) — *-**

From the construction of the operator A it is evident that there exist infinitely
many solutions of (E) satisfying (1).

α2) Now, we will seek a negative solution x(ί) of (E) satisfying (1). In
this case we put βk < αfc < 0, 0 < |αk | < |/?k| ^ c and

Y2 = {ιι(ί)eC[ί0, oo): βhPk(t, ί0) ̂  fl0(ί)"(ί) ̂  «kΛfe ίo)}

The desired solution will be obtained a fixed point of the operator A in Y2 .

If u(t)e Y2 and v(t)eMu(φ(t))9 then from assumption 3° we see that υ(t) > 0
and from (5) we have a0(t)Au(t) ^ βkPk(t, ί0) for ί ̂  ί0 and

g flf1^) flί1^)- flfc"1^*)^- ^"'Wβt + i f e ί o ) -
Jr Jr Jr Jr

- G(s, ca^(φ(s))Pk(φ(s)9 t0))ds ^(-βk + α,)Pk(ί, ί0),

where we have used the fact that Qk + 1 and G are monotone and the fact

that v(s)^G(s9\u(φ(s))\)^G(s9caQ1(φ(s))Pk(φ(s)9t0)). From this we have
a0(t)Au(t) ^ αkPfc(ί, ί0) < 0. Thus, we have Au c Y2.

The proof that: ,4: ^2^
c/(^2)» ^ is upper semicontinuous on 72> ^^2
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is compact can be made in the same way as it was done for 7^ The end

of the proof is similar to that in case αj.

β) Let 1°, 2°, 3° be satisfied and let n-k be odd.

βi) We shall investigate the existence of a positive solution x(t) of (E)
satisfying (1). We seek this solution in the set Yx as a fixed point of the

operator B: u(t)e Y ί 9

f f _ ΓS1 _ f5"-1 Γ°° 1
a1

 1(s1) a2

 I(s2) - ak

 1(sk) an

 1(s)Qk + 1(s, sk)v(s)dsdwk ,
JT Jr Jr Jsk J

Ό ( s ) e M u ( φ ( s ) ) l , t^ T9

Applying similar arguments as in the preceeding cases, we obtain a fixed point

u(t) of B in the set Yl which is the desired positive solution of (E) with the

asymptotic behavior (1).

β2) We get the existence of negative solution of (E) satisfying (1) as a

fixed point of the operator B in the set Y2 using similar procedure as in the

previous cases.

y) Let Γ, 2°, 4° be satisfied let n-k be even.
y ι ) We seek a positive solution x(ί) of (E) satisfying (1). In this case

we use the set Yi and the operator C: u(t)e Y l 5

Pk(t> ίo)

\ flΓ'ω I 'flί1^)- I " 'α^^Sfc) I
JΓ Jr Jr Jsk

Ό(s)eMu(φ(s))l9

Cu(t) = ocka^(t)Pk(t, ί0),

As in the previous cases it is easy to prove that this operator C is well

defined on Y1 and maps Yί into Y±. The rest of the proof can be made in

the same way as in the previous cases.

y2) We seek a negative solution of (E) satisfying (1) as a fixed point of

the operator C defined on Y2. The considerations are similar as in the
previous cases.

δ) Let 1°, 2°, 4° be satisfied and let n-k be odd.
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<5 t) A positive solution of (E) satisfying (1) can be found as a fixed point

of the operator D defined on Yx as follows: u(t)eY1,

= |flo 1(0 KPfc(ί, *o)

Γ ΓS1 Γ^"1 _ Ί
- fliVi) ^21(52) βπ^faJβfc + ifo sk)v(s)dsdwk ,

Jr Jr Jr J

The proof is similar to those in the previous cases.

δ2) The desired negative solution of (E) satisfying (1) can be found as

a fixed point of the operator D defined on Y2 using similar arguments as in

the previous cases.

3. In this part we will deal with the existence of positive (negative)

solutions of (E) which have the asymptotic behaviour (2).

THEOREM 2. Let all assumptions of the Theorem 1 be satisfied. Moreover,

let the following assumption be satisfied:

(H3) There exists a continuous function G^t, u): J x [0, oo) -> [0, oo)

nondecreasing in u for each fixed te J such that

O i l , xe f l (6)

and

i , , Γs ~ , . , , , , / « , Aan (s) Qk+l(s, z)ak (z)dzG11 s, -a0 (φ(s))Pk_1(φ(s), £0) las = oo (7)
To Jτ0 V 2 /

where ke{\, 2, ,n - 1}, 0 < 2a < c where c is from (H2) —(c).
i) If the assumption 3° is satisfied and if n — k is odd, then the inclusion

(E) has infinitely many positive as well as negative solutions satisfying (2).

ii) If the assumption 4° is satisfied and if n — k is even, then the inclusion

(E) has infinitely many positive as well as negative solutions satisfying (2).

iii) If the assumption 3° is satisfied and if n — k is even or if the assumption

4° is satisfied and if n — k is odd, then there is no positive (negative) solution

of (E) satisfying (2).

PROOF, i) Let the assumption 3° be satisfied and let n — k be odd. First,

we will prove the existence of a positive solution x(t) of (E) satisfying (2). Let
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Y3 = «(ί)eC(J): flPn-iίt, t0) g fl0(0«(f) ̂  a\_Pk^(t, ί0) + Pk(t, t0)] .

We define the operator BI on Y3 as follows: u(t)eY 3,

c Γ Λt pi Γs"-'
B1u(t) = Uo 1 W βP»-ι(t, ίo)- βΓVi) flj1^)- β^

(. L Jr Jτ Jr

sk

ittίί) = αα0~

I °° a-1(s)Qk_1(s, sk)v(s)dsdWk],
Jsk J

(s)Qk_1(s, sk)v(s)dsdWk, φ)eM«(φ(s)) , t 2; T'.

where α > 0 and T' ^ Γ0 are such that Pk-^(s)9 ί0) + Pk(ψ(s)> ίo) =
to) for s ̂  T' and

fJr'
+ife ί0)G(s, 2αα0-

 1(φ(s))Pk(φ(s), ί0))ds g α. (8)

The existence of such T' follows from (H2)-(c). As in the proof of Theorem
1 it is easy to prove that B1 is well defined on Y3. It follows from the
assumption 3° that u(t)εY3 implies t (ί) < 0 for ί ̂  T'. Therefore, we have

B^t) ^ aaQ 1(t)Pk_1(t, t0) ^ -α«o 1(t)Pk-ί(t, ί0) for t ̂  t0. On the other side,

respecting (H2) and (8), we obtain

Pβ-WV^o-Γ"'
Jr * l Jr 2 2 Jr

L(φ(s))Pfc(φ(s), t0))ds

+ flPk(ί, ί0)}, ί^ r.

Thus, we get £t Y3 c 73. It is easy to see that B^uψ) is nonempty and convex.

The proof that Bί: Y 3 - + c f ( Y 3 ) 9 B1 is upper semicontinuous on 73, B1 Y3

is compact can be made in the same way as it was done for A1 in the proof
of Theorem 1. Therefore, Ky Fan's theorem can be applied. It gives the

existence of a fixed point of B^ in Y3. Denote it by x(t). To finish the
proof we have to prove that x(ί) satisfies (2). We have
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Γ -i ΓS1 - Γ^"1 Γ }- tfi (si) a2 (s2)'" ak

 l ( s k ) \ an

 ί(s)Qk+1(s, sk)v(s)dsdwk>
JT' JT' JT' Jsk J

for t ^ 7", where ϋ(s) is an appropriate element from Mx(φ(s)). Then

Γ -i Γ00 -iL ι k - ^ x ( t ) — d — I dk \sk) I dn (5)^^ + 1(5, sk)v(s)dsdsk,JT Lk
Γ00 1

^/t*(0 = — fl« ( s)βfc+ι(s, ί)^(s)ίis, ί ̂  T'
Jr

and

0 g Lkx(ί) ^ f " α
Jί

respecting (H2) and (8). From this we obtain lim^^ Lkx(t) = 0.
For Lk_lx(t), using Fubini's theorem, we get

Γ Γ -Lk_1x(t) = a— an

ί(s)v(s) ak

 1(z)Qk + 1(s, z)dzds
JT' Jr

- Γ -1 Γ -1

}τ

ak S Jr fe+1 Z ? S I ; Z *'

From this, respecting (6) and (7), we obtain

Γ _ Γs

fl^ίs) ak

l(
JT' JT'

(z)Qk+l(s9z)dzG1s,-aaόl(φ(s))Pk-1(φ(s)9t0)\ds

where the function on the right hand side tends to infinity for ί-> oo.
Thus, the solution x(t) satisfies lim^^ Lkx(t) = 0, lim^^ L Λ _!x(ί) = oo

which is equivalent to (2) by Γ Hospital's rule.
From the fact that G1(t, ύ) is nondecreasing in u it follows that if (7) is

satisfied for some α, 0 < 2 a < c, then (7) will be satisfied also if instead of a
we put arbitrary a' ', 2 a < 2 a' < c. From this we conclude that there exist

infinitely many positive solutions x(t) of (E) satisfying (2).
Now, we will prove the existence of a negative solution of (E) satisfying

(2) assuming that 3° is satisfied and n — k is odd. Let

Y4 = ( t ) e C ( J ) : - flIΛ-Λί, ί0) + Pk(t> ίo)]

We use the operator B2 defined on Y4 as follows: w(ί)eY 4 ,



A differential inclusion 35

2u(ί) = j f l ά ' W -αPfc-ΛUo)

Γ _ f s ι _ Γ^"1 Γ°° Ί
«ι MSI) «2 H^)'" a* ^fc) «,. 1(s)Qk+ι(s, sk)v(s)dsdwk ,

Jr Jr Jr Jsk J

φ)eMw(φ(s))>, ί^ Γ'.

B2ιι(t) = - flfl

where α > 0 and T" are such that (8) is satisfied.
It is easy to see that B2 is well defined on 74. If u(t)eY4, then from

3° we see that t;(ί)>0, v(t)eMu(φ(t)). Therefore, B2u(t)^ - aa^ HOP/c-i^ ίo)

fc-iίί, ί0)> t ^ ίo Respecting (H2) and (8), we obtain B2u(t) ^

- a v l ( t ) a [ _ P k _ ι ( t , ί0) + Pk(ί, ί0)]. Thus, B274 c Y4.

Then, applying the same arguments as in the proof of Theorem 1, we

see that B2: Y4 -> c/(74), B2 is upper semicontinuous on Γ4, 52^4 i§

compact. Therefore, application of Ky Fan's theorem gives the existence of

a fixed point of B2 in 74. Denote it by y(t). Then

- βΓ'ίsi) ^21(s2) " %1(s f e) α.Γ^sίQfc + iίs, sk)t;
JΓ' JΓ' Jr' J s k .

for ί ̂  T', where ι (ί) is an appropriate element from My(φ(t)) and

Γ Γ^
^k-i^O = - α - αfc HsJ απ ^sjβk+ife sk)υ(s)dsdsk,

Jr Jsk

1(s9 t)υ(s)ds, t ̂  T.

:w.

Respecting the assumption (H2), we get lim^^ Lky(t) = 0. Use of Fubini's
theorem and of (6) gives

-a

which combined with (7) implies that Lk_ly(t)^> — oo as ί-»oo. The same
arguments as in the case of positive solutions of (E) satisfying (2) give us the
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existence of infinitely many negative solutions of (E) satisfying (2).

ii) Let 4° be satisfied and let /c, 1 ̂  k ̂  n — 1, be an integer such that

n — k is even.

First, we will prove the existence of a positive solution x(t) of (E) satisfying

(2). In this case we take the set 73 and we define the operator B3 on 73 as

follows: u(t)e Y3,

Γt pi Λsk-i Λoo ~|

tfΓ^i) βί1^)"- ak

ί(sk) a~l(s)Qk + l(s, sk)v(s)dsdwk\,
Jτr JT' JT' Jsk J

υ(s)eMu(φ(s))9

The assumption 4° implies that for w(ί)e73 we have ί (ί) > 0 for t^T'.

Therefore, a0(t)B3u(t) ^ aPk_l(t, t0) ^ %aPk-i(t, ί0)> ί ̂  ίo> and? respecting (H2)
and (8), we get a0(t)B3u(t) ^ atP,.^, t0) + Pk(t, t0)] for ί ̂  ί0. Thus,

B3Y3 c= 73. Applying the similar arguments as in the proof of Theorem 1,

we obtain a fixed point x(t) of B3 in 73 which gives rise to a positive solution

x(ί) of (E) existing in [T', oo). Then

k_1(ί, ί0)

Γt Γsi Γsk-i poo Ί

+ flΓHsi) -flί1^" ^/Γ1 a-1(s)Qk+1(s,sk)v(s)dsdwΛ
JT' JT' JT Jsk J

for £ ̂  T', where v(s) is an appropriate element from Mx(φ(s)) and

Γ f Γ00

0 ^ Lfc.^W = a + fl^1^ ^"'(sίGk + ife sfc)^(5)rf5dsfc,
Jr Jsk

Γ00

0 ^ Lkx(t) = a-1(s)Qk + 1(s) t)v(s)ds, t^Γ.
Jt

Use of (H2) leads to the conclusion that lim^^ Lkx(t) = 0 and use of Fubini's

theorem, (6) and (7) give lim^^ L k_ 1x(ί) = oo. This is equivalent to (2) by

ΓHospitaΓs rule. Similar arguments as in the preceeding case i) give the

existence of infinitely many positive solutions of (E) existing on [Γ', oo) and

satisfying (2).

We obtain the existence of a negative solution y(t) of (E) satisfying (2)

as a fixed point of the operator
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u(ί) = |αo1(ί) -βP^ifcto)

i t Γsi Γsk-i poo ~

flΓH Si) «2~1(52) βfc"1^*) βn'^βfc+ite sk)υ(s)dsdwk
r Jr Jr Jsk

υ(s)eMu(φ(s)),

B4u(t) = - ααo

in the set 74 by use of the similar procedurre as in the preceding cases. The
same arguments as before give also the existence of infinitely many negative
solutions of (E) existing on [T', oo) and satisfying (2).

iii) Let 3° be satisfied and let n — k be even. Let x(ί) be a solution of
(E) such that |x(f) | >0 on some interval [7^, oo) and satisfies (2). Then the
assumption 3° implies that x(t)Lnx(t) < 0 for all t^Tx and this implies (see
[5, Lemma 4]) that |Lkx(ί)| is increasing on some interval [Tl5 oo), 7i ^ Tx,
which leads to the contradiction with the assumption lim,^ Lkx(t) = 0.

Let 4° be satisfied and let n — k be odd. Let y(t) be a solution of (E)
such that |.y(ί)|>0 on some interval [Ty, oo) and satisfies (2). Then the
assumption 4° implies that y(t)Lny(t) > 0 on [Ty, oo). From this we see (see
[5, Lemma 6]) that |Lkj;(ί)| is increaisng on some interval [T2, oo), T2 ^ Ty.
This leads to the contradiction with the assumption lim^^ Lky(t) = 0.

4. The existence of the desired solutions in Theorem 1 was proved on
the interval [T, oo), T^ T0 ^ ί0 and in Theorem 2 on the interval [T', oo),
T' ^ T0 ^ ί0. The definition of T is given by the condition (3) and the
definition of T' by the condition (8). We will show that, under some
hypotheses concerning the sublinearity of G(ί, M), we will be able to prove the
existence of the desired solutions on the interval [T0, oo).

THEOREM 3. Let all assumptions of Theorem 1 be satisfied. Moreover,
suppose that:

w-1G(ί, u) is nonincr easing in u for u ̂  0 and each fixed ίeJ, (9)

lim w-1G(ί, u) = 0 for each fixed teJ. (10)
u -» m \ *

Then the inclusion (E) has infinitely many positive as well as negative solutions
x(t) existing on [T0, oo) and satisfying (1).

PROOF. We sketch the proof for the case α t) from Theorem 1. Similar
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procedure can be used in the remaining cases. Thus, let the condition 3° be
satisfied and let n — k be even. From the assumption (H2) — (c) we conclude
that the function

iβ fo)G(s, ca^(φ(s))Pk(φ(s), ί0))

is integrable on [Γ0, oo). Then, respecting (9), we get for b > c

s9 t0)b-lG(s, baϊl(φ(s))Pk(φ(s)9 ί0))

, ί0)), 5 ̂  T0

and by (10)

i m a s s ^^s ^ ) , ί0)) = 0 (12)

point wise on [Γ0, oo). Use of the Lebesgue dominated convergence theorem
gives

lim b'1 Γ a-1(s)Qk + 1(sίt0)G(s, baό1(φ(s))Pk(φ(s)9 t0))ds = 0. (13)
b^CO Jτ0

Therefore, for p > 0 there exists b0(p) > 0 such that

Γ00 1an (s)Qk + ι(s> fo)G(s, ba0

 1(φ(s))Pk(φ(s), t0))ds ^ pb (14)
v TO

for each b > b0 > c. Let p = 1/2, bk > b0(l/2)> 0 < ak < bk/2. We define

Y^iu^eC^'.a.P^t^^a,

and the operator A on Yί as follows: u(t)eYl9

Γ -i ΓS1 -i Γ5""1 -i Γ00 -i 1
JTo

ai SJTo

a2 "2 Jro a" S Jsk

 a" S k+lS'SkVS S W kJ'

>, ί^ T0,

Au(t) = a^(t)bkPk(t9 ί0), t0^t^T0.

By the assumption 3°, w(ί)e^ι implies ι (ί) < 0. Therefore, a0(i)Xw(i) ̂
bkPk(t, ί0) for ί ̂  ί0. Furthermore, taking (14) into consideration, we get for
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bkPk(t, t0) - Oo(t)Au(t)

1(s, t0)ί Γ αΓ^Si) I 1«2"1(s2)-- Γ V'foJdWk \ a
J Γ0 J Γ0 J To J To

- G(s, b fcαo 1(φ(5))Pk(φ(5), f0))ds ^ -6kPk(ί, ί0))

and finally 0 < akPk(t, ί0) < - bkPk(t, t0) ̂  α0(ί)^4w(ί). This all proves that

AY± c= yx. Proceeding as in the proof of Theorem 1 (for the case αj, we
can show that A has a fixed element x(t) in ^ and this element x(t) is a
positive solution of (E) which exists on [T0, oo) and satisfies (1). Since any
number bk greater than b 0 ( l / 2 ) can be taken in defining Y^ and A, it is clear
that there exist infinitely many such solutions of (E).

THEOREM 4. Let all assumptions of Theorem 2 be satisfied. Moreover^
let (9) and (10) be satisfied. Then all statements of Theorem 2 hold and the
solutions in i) as well as in ii) exist on [T0, oo) and satisfy (2).

PROOF. We only sketch the proof of i), since the proof of ii) is similar
and the proof of iii) is the same as in Theorem 2. From the assumption
(H2) — (c) we conclude that

a~1(s)Qk+1(s9 ί0)Gί s, -αό 1 ( φ ( s ) ) l P k _ 1 ( φ ( s ) 9 ί0) + Pk(φ(s), ί0)]

is integrable on [T0, oo). Let 2b > c. Then, in view of (9), we obtain

\ ί0) + Pk(φ(s)9 ί0)])

.ί(φ(s), ί0) + Pk(φ(s), ί0)]

for s ^ T0 and, respecting (10),

lim a~l(s)Qk + l(s9 t0)b~lG(s9 ba^(φ(s))lPk.1(φ(s), ί0) + Pk(φ(s)9 ί0)]) = 0
-

pointwise on [T0, oo). Use of the Lebesgue dominated convergence theorem

gives

foo

lim b'1 a-1(s)Qk+1(s,t0)G(s, ba^(φ(s))[_Pk_,(φ(s\ t0) + Pk(φ(s)9

^°° Jr0

It means that for p > 0 there exists b0(p) > 0 such that



40 Marko SVEC

Γ°° 1an

 1(s)Qk + 1(s, t0)G(s, ba0 (φ(s))[Pfc_1(φ(s), ί0) -f Pk(φ(s), t 0 ) ] ) d
Jro

for each b ̂  &0(p) Put P = 1 an^ let α = b > b0(l) be fixed. Consider the
set

Y3 = ιι(ί)eC(J): flΛ-Λf, ί0) ̂  fl0(ί)κ(f) ̂  fl[Λ-ιfe

and the operator B1 defined on Y3 as follows: u(t)eY3,

Γ _ ΓS1 _ Γ*"1 _ Γ°° Ί
«ι ^^i) ^fc ^Sfc)--- ak

 l(sk) sn

 1(s)Qk+1(s, sk)v(s)dsdwk ,
J Γo J Γo J Γ0 J sk J

ί ̂  T0,

It is easy to prove that B1Y3CY3. If we proceed as in the proof of i) of
Theorem 2, then we can prove that Bί has a fixed element y(t)eY3 and that
this element is a solution of (E) existing on [Γ0, oo) and satisfying (2). Since
any number a greater than b0(l) can be taken in defining Y3 and Bl9 there
exist infinitely many such solutions of (E).

The existence of infinitely many negative solutions of (E) existing on
[T0, oo) and satisfying (2) can be proved in the similar way.
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