Ultimately positive (negative) solutions to a differential inclusion of order n

Marko Švec
(Received December 30, 1991)

1. The aim of this paper is to prove the existence of nonoscillatory solutions with the prescribed asymptotic behaviour of the differential inclusion

$$
\begin{equation*}
L_{n} x(t) \in F(t, x(\varphi(t))), \quad n>1, \tag{E}
\end{equation*}
$$

where $L_{n} x(t)$ is the n-th quasiderivative of $x(t)$ with respect to the continuous functions $a_{i}(t): J=\left[t_{0}, \infty\right) \rightarrow(0, \infty), i=0,1, \cdots, n, L_{0} x(t)=a_{0}(t) x(t), L_{i} x(t)=$ $a_{i}(t)\left(L_{i-1} x(t)\right)^{\prime}, \quad i=1,2, \cdots, n, \quad \int_{t_{0}}^{\infty} a_{i}^{-1}(t) d t=\infty, \quad i=0,1, \cdots, n-1, \quad F(t, x):$ $J \times \mathbf{R} \rightarrow\{$ nonempty convex compact subsets of $\mathbf{R}\}, \quad \mathbf{R}=(-\infty, \infty)$ and $\varphi(t): J \rightarrow \mathbf{R}$ is a continuous function such that $\lim _{t \rightarrow \infty} \varphi(t)=\infty$.

We will use the following notation: $F(t, x) x>(<) 0$ means that $y x>(<) 0$ for each $y \in F(t, x)$; if $h: J \times \mathbf{R} \rightarrow \mathbf{R}$, then $F(t, x) \geqq(\leqq) h(t, x)$ means that $y \geqq(\leqq) h(t, x)$ for each $y \in F(t, x)$; if $B \subset \mathbf{R}$, then $|B|=\sup \{|x|: x \in B\}$, $\|B\|=\inf \{|x|: x \in B\}$. If C is a set, then $c f(C)$ is the set of all convex closed subsets of C.

The basic assumptions on $F(t, x)$ are as follows:
$1^{o} \quad F(t, x)$ is upper semicontinuous on $J \times \mathbf{R}$.
$2^{o} \quad F(t, 0)=\{0\}$ for each $t \in J$.
$3^{o} F(t, x) x<0$ for each $(t, x) \in J \times \mathbf{R}, x \neq 0$;
or
$4^{0} \quad F(t, x) x>0$ for each $(t, x) \in J \times \mathbf{R}, x \neq 0$.
Let $t_{0} \leqq b<t<\infty$. Then we denote

$$
\begin{aligned}
& P_{0}(t, b)=1, P_{i}(t, b)=\int_{b}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{b}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{b}^{s_{i-1}} a_{i}^{-1}\left(s_{i}\right) d w_{i}, \\
& d w_{i}=d s_{i} \cdots d s_{1}, i=1,2, \cdots, n-1, \\
& Q_{n}(t, b)=1, Q_{j}(t, b)=\int_{b}^{t} a_{n-1}^{-1}\left(s_{n-1}\right) \int_{b}^{s_{n-1}} a_{n-2}^{-1}\left(s_{n-2}\right) \cdots \int_{b}^{s_{j+1}} a_{j}^{-1}\left(s_{j}\right) d z_{j}, \\
& d z_{j}=d s_{j} \cdots d s_{n-1}, j=1,2, \cdots, n-1 .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} P_{i}(t, b)=\infty, \lim _{t \rightarrow \infty} Q_{i}(t, b)=\infty, i=1,2, \cdots, n-1, \\
& \lim _{t \rightarrow \infty} P_{i}(t, b) P_{j}^{-1}(t, b)=0,0 \leqq i<j \leqq n-1 \\
& \lim _{t \rightarrow \infty} Q_{j}(t, b) Q_{i}^{-1}(t, b)=0,0<i<j \leqq n-1
\end{aligned}
$$

Moreover, let us denote

$$
\gamma(t)=\sup \left\{s \geqq t_{0}: \varphi(s) \leqq t\right\} \quad \text { for all } t \geqq t_{0}
$$

In this paper we will state the conditions which guarantee the existence of nonoscillatory solutions of (E) which are asymptotic to the solutions of $L_{n} y(t)=0$, more precisely, the existence of such solution $x(t)$ of (E) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\left|L_{0} x(t)\right|}{P_{k}(t, b)}=c_{k}>0, \quad k \in\{0,1, \cdots, n-1\} . \tag{1}
\end{equation*}
$$

On the other side we will state the conditions which guarantee the existence of nonoscillatory solution $x(t)$ of (E) which is asymptotic to none of the solutions of $L_{n} y(t)=0$, more precisely, we will prove the existence of nonoscillatory solution $x(t)$ of (E) such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{L_{0} x(t)}{P_{k}(t, b)}=0, \lim _{t \rightarrow \infty} \frac{\left|L_{0} x(t)\right|}{P_{k-1}(t, b)}=\infty, \quad k \in\{1,2, \cdots, n-1\} . \tag{2}
\end{equation*}
$$

Such problems were discussed, in the case of a differential equation, by Hale and Onuchic [1], Kitamura [2], Kusano and Švec [3], Švec [4].
2. In this part we will prove the existence of the positive and also negative solution $x(t)$ of (E) which satisfies (1).

Taking into consideration the properties of $\varphi(t)$ we can find $T_{0} \geqq \gamma\left(t_{0}\right)$ such that $\gamma(t) \geqq t_{0}$ for each $t \geqq T_{0}$.

Theorem 1. Let the assumptions $1^{\circ}-4^{\circ}$ be sadisfied. Suppose that:
$\left(\mathrm{H}_{1}\right)$ To each measurable function $z(t): J \rightarrow \mathbf{R}$ there exists a measurable selector $v(t): J \rightarrow \mathbf{R}$ such that $v(t) \in F(t, z(t))$ a.e. on J.
Denote $M z(t)=\{$ the set of all measurable selectors belonging to $z(t)\}$.
$\left(\mathrm{H}_{2}\right)$ There exists a continuous function $G(t, u): J \times[0, \infty) \rightarrow[0, \infty)$ such that:
a) $G(t, u)$ is nondecreasing in u for each fixed $t \in J$;
b) $|F(t, z)| \leqq G(t,|z|)$ for each $(t, z) \in J \times \mathbf{R}$;
c) $\int_{T_{0}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s<\infty$
for some $c>0$ and $k \in\{0,1, \cdots, n-1\}$.
Then the differential inclusion (E) has infinitely many solutions $x(t)$ satisfying (1).

Proof. Let $0<\left|\alpha_{k}\right|<\left|\beta_{k}\right| \leqq c, \alpha_{k} \beta_{k}>0$. Because of $\left(\mathrm{H}_{2}-\mathrm{c}\right)$ we can choose $T \geqq T_{0} \geqq \gamma\left(t_{0}\right)$ such that

$$
\begin{equation*}
\int_{T}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq\left|\beta_{k}\right|-\left|\alpha_{k}\right| \tag{3}
\end{equation*}
$$

Let $C\left[t_{0}, \infty\right)=C(J)$ be the locally convex space of all continuous functions on J with the topology of uniform convergence on compact subintervals of J. We will seek the desired solution $x(t)$ of (E) in the set

$$
\begin{equation*}
Y=\left\{u(t) \in C(J):\left|\alpha_{k}\right| P_{k}\left(t, t_{0}\right) \leqq a_{0}(t)|u(t)| \leqq\left|\beta_{k}\right| P_{k}\left(t, t_{0}\right)\right\} . \tag{4}
\end{equation*}
$$

To prove our theorem we have to consider various situations.
a) Let $1^{\circ}, 2^{\circ}, 3^{\circ}$ be satisfied and let $n-k$ be even.
α_{1}) We will first seek a positive solution of (E) satisfying (1). Thus, let $0<\alpha_{k}<\beta_{k} \leqq c$. In this case we have

$$
Y=Y_{1}=\left\{u(t) \in C\left[t_{0}, \infty\right): \alpha_{k} P_{k}\left(t, t_{0}\right) \leqq a_{0}(t) u(t) \leqq \beta_{k} P_{k}\left(t, t_{0}\right)\right\}
$$

We will seek the desired solution of (E) in the set Y_{1} as a fixed point of the multivalued operator A defined on Y_{1} as follows: for $u(t) \in Y_{1}$

$$
\begin{align*}
A u(t)= & \left\{a _ { 0 } ^ { - 1 } (t) \left[\beta_{k} P_{k}\left(t, t_{0}\right)+\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) .\right.\right. \\
& \left.\left.\int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right], v(t) \in M u(\varphi(t))\right\}, t \geqq T \tag{5}\\
A u(t)= & \beta_{k} a_{0}^{-1}(t) P_{k}\left(t, t_{0}\right), t_{0} \leqq t \leqq T .
\end{align*}
$$

The operator A is well defined on Y_{1}. In fact, from $\left(\mathrm{H}_{2}\right)$ respecting the fact that Q_{k+1} and G are monotone we get

$$
\begin{aligned}
& \left|\int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s\right| \leqq \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right)|F(s, u(\varphi(s)))| d s \\
& \quad \leqq \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G(s,|u(\varphi(s))|) d s \\
& \left.\quad \leqq \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right)\right) d s<\infty
\end{aligned}
$$

From the assumption 3° we have $v(t)<0$. Therefore, we get $A u(t) \leqq \beta_{k} a_{0}^{-1}(t)$ $P_{k}\left(t, t_{0}\right)$ for $t \geqq t_{0}$.

Furthermore, taking (3) into consideration, we get for $t \geqq T$

$$
\begin{aligned}
\beta_{k} & P_{k}\left(t, t_{0}\right)-a_{0}(t) A u(t) \\
= & -\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k} \\
\leqq & \int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) d w_{k} \int_{T}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) \\
& \cdot G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq\left(\beta_{k}-\alpha_{k}\right) P_{k}\left(t, t_{0}\right)
\end{aligned}
$$

and finally $\alpha_{k} P_{k}\left(t, t_{0}\right) \leqq a_{0}(t) A u(t)$. Thus, we have $A u(t) \subset Y_{1}$. It is easy to see that the set $A u(t)$ is nonempty and convex.

Now, we will prove that: $A: Y_{1} \rightarrow c f\left(Y_{1}\right) ; A$ is upper semicontinuous on $Y_{1} ; \overline{A Y_{1}}$ is compact.

Let $\xi(t) \in A u(t), u(t) \in Y_{1}$. Then for $t \geqq T$ we have

$$
\begin{aligned}
& {\left[a_{0}(t) \xi(t)\right]^{\prime} \leqq \beta_{k} P_{k}^{\prime}\left(t, t_{0}\right)+a_{1}^{-1}(t) \int_{T}^{t} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k}-1} a_{k}^{-1}\left(s_{k}\right) d s_{k} \cdots d s_{2}} \\
& \quad \cdot \int_{T}^{\infty} a_{T}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s
\end{aligned}
$$

From this we conclude that $\left[a_{0}(t) \xi(t)\right]^{\prime}, \xi(t) \in A Y_{1}$ are uniformly bounded on each compact subinterval of J. Therefore, $a_{0}(t) \xi(t), \xi(t) \in A Y_{1}$ are equicontinuous on each compact subinterval of J. The uniform boundedness of the functions $a_{0}(t) \xi(t), \xi(t) \in A Y_{1}$, on each compact subinterval of J is clear. From all this we conclude that the sets $A u(t), u(t) \in Y_{1}$ as well as the set $A Y_{1}$, are relatively compact in the topology of $C\left[t_{0}, \infty\right)$.

Let $u_{i}(t) \in Y_{1}, i=1,2, \cdots$, and let the sequence $\left\{u_{i}(t)\right\}$ converge to $u(t)$ in $C\left[t_{0}, \infty\right)$. Furthermore, let $z_{i}(t) \in A u_{i}(t), i=1,2, \cdots$. The set $A Y_{1}$ being relatively compact, there exists a subsequence $\left\{z_{i_{j}}(t)\right\}$ of $\left\{z_{i}(t)\right\}$ which converges to a function $z(t) \in \overline{A Y_{1}} \subset Y_{1}$ in the topology of $C\left[t_{0}, \infty\right)$. We have

$$
\begin{aligned}
z_{i}(t)= & a_{0}^{-1}(t)\left\{\beta_{k} P_{k}\left(t, t_{0}\right)\right. \\
& \left.+\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) Q_{k+1}\left(s, s_{k}\right) v_{i}(s) d s d w\right\}, t \geqq T, \\
z_{i}(t)= & a_{0}^{-1}(t) \beta_{k} P_{k}\left(t, t_{0}\right), t_{0} \leqq t \leqq T
\end{aligned}
$$

where $v_{i}(t) \in M u_{i}(\varphi(t))$. From (H_{2}) and (3) we get

$$
\int_{T}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right)\left|v_{i}(s)\right| d s
$$

$$
\leqq \int_{T}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq \beta_{k}-\alpha_{k} .
$$

Let $L_{1}(T, \infty)$ denote the set of all measurable functions f on $[T, \infty)$ such that

$$
\|f(t)\|_{1}=\int_{T}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right)|f(s)| d s<\infty .
$$

Thus, we see that the sequence $\left\{v_{i}(t)\right\}$ is bounded in the space $L_{1}(T, \infty)$. Furthermore, if $\left\{E_{m}\right\}, E_{m} \subset[T, \cdot \infty)$, is a decreasing sequence of sets such that $\bigcap_{m=1}^{\infty} E_{m}=\emptyset$, then

$$
\begin{aligned}
& \lim _{m \rightarrow \infty}\left|\int_{E_{m}} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) v_{i}(s) d s\right| \leqq \lim _{m \rightarrow \infty} \int_{E_{m}} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right)\left|v_{i}(s)\right| d s \\
& \quad \leqq \lim _{m \rightarrow \infty} \int_{E_{m}} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s=0 .
\end{aligned}
$$

Then (see [2, Th. IV. 8.9]) it is possible to choose a subsequence $\left\{v_{i_{j}}(t)\right\}$ of $\left\{v_{i}(t)\right\}$ which weakly converges to some $v(t) \in L_{1}(T, \infty)$.

Because $\left\{u_{i_{j}}(t)\right\}$ converges to $u(t)$ in $C\left[t_{0}, \infty\right)$ and $v_{i_{j}}(t) \in F\left(t, u_{i_{j}}(\varphi(t))\right)$, $j=1,2, \cdots$, using the assumption 1^{0}, to given $\varepsilon>0$ and $t \in J$ there exists $N=N(t, \varepsilon)$ such that for any $i_{j} \geqq N$ we have $F\left(t, u_{i_{j}}(\varphi(t))\right) \subset O_{\varepsilon}(F(t, u(\varphi(t)))$, where $O_{\varepsilon}(F(t, u(\varphi(t))))$ is the ε-neighbourhood of the set $F(t, u(\varphi(t)))$.

Consider the sequence $\left\{v_{i_{j}}(t)\right\}, i_{j} \geqq N$. Then (see [2, Corollary V. 3.14]) it is possible to construct such convex combinations from $v_{i_{j}}(t), i_{j} \geqq N$, denoted by $g_{m}(t) ; m=1,2, \cdots$, that the sequence $\left\{g_{m}(t)\right\}$ converges to $v(t)$ in $L_{1}(T, \infty)$. Then by the Riesz theorem there exists a subsequence $\left\{g_{m_{i}}(t)\right\}$ of $\left\{g_{m}(t)\right\}$ which converges to $v(t)$ a.e. on $[T, \infty)$. From the convexity of $O_{\varepsilon}(F(t, u(\varphi(t))))$ and from the fact that $v_{i_{j}}(t) \in O_{\varepsilon}(F(t, u(\varphi(t))))$ it follows that $g_{m_{i}}(t) \in O_{\varepsilon}(F(t, u(\varphi(t)))), i=1,2, \cdots$ and, therefore, $\left.v(t) \in \bar{O}_{\varepsilon}(F(t, u(\varphi)))\right)$. In the limit as $\varepsilon \rightarrow 0$ we see that $v(t) \in F(t, u(\varphi(t)))$. We note that in our considerations t was a fixed point and that $F(t, u(\varphi(t)))$ is a compact convex subset of \mathbf{R}.

Thus, the function

$$
\begin{aligned}
z(t)= & a_{0}^{-1}(t)\left\{\beta_{k} P_{k}\left(t, t_{0}\right)\right. \\
& \left.+\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k}-1} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w\right\} \\
& \text { for } t \geqq T, \\
z(t)= & a_{0}^{-1}(t) \beta_{k} P_{k}\left(t, t_{0}\right) \quad \text { for } t_{0} \leqq t \leqq T
\end{aligned}
$$

is well defined and $z(t) \in A u(t)$ for $t \in J$.
Now, it follows from the weak convergence of $\left\{v_{i_{j}}(t)\right\}$ to $v(t)$ in $L_{1}(T, \infty)$ that the subsequence $\left\{z_{i_{j}}(t)\right\}$ of $\left\{z_{i}(t)\right\}$ converges to $z(t)$ a.e. on J. However, the functions $z_{i_{j}}(t)$ belong to the compact set $\overline{A Y_{1}}$. Therefore, there exists a subsequence of the sequence $\left\{z_{i_{j}}(t)\right\}$ which converges to a function $\bar{z}(t)$ in the topology of $C\left[t_{0}, \infty\right)$. This means that $\bar{z}(t)=z(t) \in A u(t)$ a.e. on J. With this the upper semicountinuity of the operator A on Y_{1} is proved.

The similar considerations as in the proof of upper semicontinuity of A on Y_{1}, made for case that $z_{i}(t) \in A u(t)$ and $\left\{z_{i}(t)\right\}$ converges to $z(t)$ in $C\left[t_{0}, \infty\right)$ give us that $z(t) \in A u(t)$. This means that the set $A u(t)$ is closed. Thus, we have proved that $A u(t)$ is compact and A maps Y_{1} into $c f\left(Y_{1}\right)$.

From all this we conclude by Ky Fan's theorem that the operator A has a fixed point in Y_{1}, i.e. there exists $u(t) \in Y_{1}$ such that $u(t) \in A u(t)$.

It is easy to see that $u(t)$ is the desired positive solution of (E) satisfying (1). In fact, from the positiveness of $u(t)$ on $\left[t_{0}, \infty\right)$ and from the assumption 3° it follows that $L_{n} u(t)$ has a constant sign on some interval $\left[T_{u}, \infty\right)$ and all quasiderivatives $L_{i} u(t), i=0,1, \cdots, n-1$ are monotone on some ray [$\left.T_{1}, \infty\right)$, $T_{1} \geqq T_{u}$. By l'Hospital's rule we get

$$
0<\alpha_{k} \leqq \lim _{t \rightarrow \infty} \frac{L_{0} u(t)}{P_{k}\left(t, t_{0}\right)}=\lim _{t \rightarrow \infty} L_{k} u(t)=c_{k} \leqq \beta_{k} .
$$

From the construction of the operator A it is evident that there exist infinitely many solutions of (E) satisfying (1).
α_{2}) Now, we will seek a negative solution $x(t)$ of (E) satisfying (1). In this case we put $\beta_{k}<\alpha_{k}<0,0<\left|\alpha_{k}\right|<\left|\beta_{k}\right| \leqq c$ and

$$
Y_{2}=\left\{u(t) \in C\left[t_{0}, \infty\right): \beta_{k} P_{k}\left(t, t_{0}\right) \leqq a_{0}(t) u(t) \leqq \alpha_{k} P_{k}\left(t, t_{0}\right)\right\} .
$$

The desired solution will be obtained a fixed point of the operator A in Y_{2}.
If $u(t) \in Y_{2}$ and $v(t) \in M u(\varphi(t))$, then from assumption 3° we see that $v(t)>0$ and from (5) we have $a_{0}(t) A u(t) \geqq \beta_{k} P_{k}\left(t, t_{0}\right)$ for $t \geqq t_{0}$ and

$$
\begin{aligned}
& a_{0}(t) A u(t)-\beta_{k} P_{k}\left(t, t_{0}\right) \\
& \leqq \int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) d w_{k} \cdot \int_{T}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) \cdot \\
& \quad \cdot G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq\left(-\beta_{k}+\alpha_{k}\right) P_{k}\left(t, t_{0}\right),
\end{aligned}
$$

where we have used the fact that Q_{k+1} and G are monotone and the fact that $v(s) \leqq G(s,|u(\varphi(s))|) \leqq G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right)$. From this we have $a_{0}(t) A u(t) \leqq \alpha_{k} P_{k}\left(t, t_{0}\right)<0$. Thus, we have $A u \subset Y_{2}$.

The proof that: $A: Y_{2} \rightarrow c f\left(Y_{2}\right), \mathrm{A}$ is upper semicontinuous on $Y_{2}, \overline{A Y_{2}}$
is compact can be made in the same way as it was done for Y_{1}. The end of the proof is similar to that in case α_{1}).
β) Let $1^{\circ}, 2^{\circ}, 3^{\circ}$ be satisfied and let $n-k$ be odd.
β_{1}) We shall investigate the existence of a positive solution $x(t)$ of (E) satisfying (1). We seek this solution in the set Y_{1} as a fixed point of the operator $B: u(t) \in Y_{1}$,

$$
\begin{aligned}
B u(t)= & \left\{a _ { 0 } ^ { - 1 } (t) \left[\alpha_{k} P_{k}\left(t, t_{0}\right)\right.\right. \\
& \left.-\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right] \\
& v(s) \in M u(\varphi(s))\}, \quad t \geqq T \\
B u(t)= & \alpha_{k} a_{0}^{-1}(t) P_{k}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T
\end{aligned}
$$

Applying similar arguments as in the preceeding cases, we obtain a fixed point $u(t)$ of B in the set Y_{1} which is the desired positive solution of (E) with the asymptotic behavior (1).
β_{2}) We get the existence of negative solution of (E) satisfying (1) as a fixed point of the operator B in the set Y_{2} using similar procedure as in the previous cases.
γ) Let $1^{\circ}, 2^{\circ}, 4^{\circ}$ be satisfied let $n-k$ be even.
γ_{1}) We seek a positive solution $x(t)$ of (E) satisfying (1). In this case we use the set Y_{1} and the operator $C: u(t) \in Y_{1}$,

$$
\begin{aligned}
C u(t)= & \left\{a _ { 0 } ^ { - 1 } (t) \left[\alpha_{k} P_{k}\left(t, t_{0}\right)\right.\right. \\
& \left.+\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right], \\
& v(s) \in M u(\varphi(s))\}, \quad t \geqq T \\
C u(t)= & \alpha_{k} a_{0}^{-1}(t) P_{k}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T .
\end{aligned}
$$

As in the previous cases it is easy to prove that this operator C is well defined on Y_{1} and maps Y_{1} into Y_{1}. The rest of the proof can be made in the same way as in the previous cases.
γ_{2}) We seek a negative solution of (E) satisfying (1) as a fixed point of the operator C defined on Y_{2}. The considerations are similar as in the previous cases.
$\delta)$ Let $1^{\circ}, 2^{\circ}, 4^{o}$ be satisfied and let $n-k$ be odd.
δ_{1}) A positive solution of (E) satisfying (1) can be found as a fixed point of the operator D defined on Y_{1} as follows: $u(t) \in Y_{1}$,

$$
\begin{aligned}
D u(t)= & \left\{a _ { 0 } ^ { - 1 } (t) \left[\alpha_{k} P_{k}\left(t, t_{0}\right)\right.\right. \\
& \left.-\int_{T}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T}^{s_{k}-1} a_{n}^{-1}\left(s_{k}\right) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right] \\
& v(s) \in M u(\varphi(s))\}, \quad t \geqq T \\
D u(t)= & \alpha_{k} a_{0}^{-1}(t) P_{k}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T
\end{aligned}
$$

The proof is similar to those in the previous cases.
δ_{2}) The desired negative solution of (E) satisfying (1) can be found as a fixed point of the operator D defined on Y_{2} using similar arguments as in the previous cases.
3. In this part we will deal with the existence of positive (negative) solutions of (E) which have the asymptotic behaviour (2).

Theorem 2. Let all assumptions of the Theorem 1 be satisfied. Moreover, let the following assumption be satisfied:
$\left(\mathrm{H}_{3}\right)$ There exists a continuous function $G_{1}(t, u): J \times[0, \infty) \rightarrow[0, \infty)$ nondecreasing in u for each fixed $t \in J$ such that

$$
\begin{equation*}
G_{1}(t,|x|) \leqq\|F(t, x)\|, \quad x \in R \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{T_{0}}^{\infty} a_{n}^{-1}(s) \int_{T_{0}}^{s} Q_{k+1}(s, z) a_{k}^{-1}(z) d z G_{1}\left(s, \frac{a}{2} a_{0}^{-1}(\varphi(s)) P_{k-1}\left(\varphi(s), t_{0}\right)\right) d s=\infty \tag{7}
\end{equation*}
$$

where $k \in\{1,2, \cdots, n-1\}, 0<2 a<c$ where c is from $\left(\mathrm{H}_{2}\right)-(\mathrm{c})$.
i) If the assumption 3° is satisfied and if $n-k$ is odd, then the inclusion (E) has infinitely many positive as well as negative solutions satisfying (2).
ii) If the assumption 4° is satisfied and if $n-k$ is even, then the inclusion (E) has infinitely many positive as well as negative solutions satisfying (2).
iii) If the assumption 3° is satisfied and if $n-k$ is even or if the assumption 4° is satisfied and if $n-k$ is odd, then there is no positive (negative) solution of (E) satisfying (2).

Proof. i) Let the assumption 3° be satisfied and let $n-k$ be odd. First, we will prove the existence of a positive solution $x(t)$ of (E) satisfying (2). Let

$$
Y_{3}=\left\{u(t) \in C(J): \frac{1}{2} a P_{k-1}\left(t, t_{0}\right) \leqq a_{0}(t) u(t) \leqq a\left[P_{k-1}\left(t, t_{0}\right)+P_{k}\left(t, t_{0}\right)\right]\right\} .
$$

We define the operator B_{1} on Y_{3} as follows: $u(t) \in Y_{3}$,

$$
\begin{aligned}
B_{1} u(t)= & \left\{a _ { 0 } ^ { - 1 } (t) \left[a P_{k-1}\left(t, t_{0}\right)-\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) .\right.\right. \\
& \left.\left.\cdot \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k-1}\left(s, s_{k}\right) v(s) d s d w_{k}\right], v(s) \in M u(\varphi(s))\right\}, \quad t \geqq T^{\prime} . \\
B_{1} u(t)= & a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T^{\prime},
\end{aligned}
$$

where $a>0$ and $T^{\prime} \geqq T_{0}$ are such that $P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right) \leqq 2 P_{k}(\varphi(s)$, t_{0}) for $s \geqq T^{\prime}$ and

$$
\begin{equation*}
\int_{T^{\prime}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, 2 a a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq a . \tag{8}
\end{equation*}
$$

The existence of such T^{\prime} follows from $\left(\mathrm{H}_{2}\right)-(\mathrm{c})$. As in the proof of Theorem 1 it is easy to prove that B_{1} is well defined on Y_{3}. It follows from the assumption 3° that $u(t) \in Y_{3}$ implies $v(t)<0$ for $t \geqq T^{\prime}$. Therefore, we have $B_{1} u(t) \geqq a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right) \geqq \frac{1}{2} a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right)$ for $t \geqq t_{0}$. On the other side, respecting $\left(\mathrm{H}_{2}\right)$ and (8), we obtain

$$
\begin{aligned}
B_{1} u(t) \leqq & a_{0}^{-1}(t)\left\{a P_{k-1}\left(t, t_{0}\right)\right. \\
& +\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) d s_{k} . \\
& \left.\cdot \int_{T^{\prime}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, 2 a a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s\right\} \\
\leqq & a_{0}^{-1}(t)\left\{a P_{k-1}\left(t, t_{0}\right)+a P_{k}\left(t, t_{0}\right)\right\}, \quad t \geqq T^{\prime} .
\end{aligned}
$$

Thus, we get $B_{1} Y_{3} \subset Y_{3}$. It is easy to see that $B_{1} u(t)$ is nonempty and convex.
The proof that $B_{1}: Y_{3} \rightarrow c f\left(Y_{3}\right), B_{1}$ is upper semicontinuous on $Y_{3}, \overline{B_{1} Y_{3}}$ is compact can be made in the same way as it was done for A_{1} in the proof of Theorem 1. Therefore, Ky Fan's theorem can be applied. It gives the existence of a fixed point of B_{1} in Y_{3}. Denote it by $x(t)$. To finish the proof we have to prove that $x(t)$ satisfies (2). We have
$x(t)=a_{0}^{-1}(t)\left\{a P_{k-1}\left(t, t_{0}\right)\right.$

$$
\left.-\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right\}
$$

for $t \geqq T^{\prime}$, where $v(s)$ is an appropriate element from $M x(\varphi(s))$. Then

$$
\begin{aligned}
& L_{k-1} x(t)=a-\int_{T^{\prime}}^{t} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d s_{k} \\
& L_{k} x(t)=-\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) v(s) d s, \quad t \geqq T^{\prime}
\end{aligned}
$$

and

$$
0 \leqq L_{k} x(t) \leqq \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, a_{0}^{-1}(\varphi(s)) 2 a P_{k}\left(\varphi(s), t_{0}\right)\right) d s
$$

respecting $\left(\mathrm{H}_{2}\right)$ and (8). From this we obtain $\lim _{t \rightarrow \infty} L_{k} x(t)=0$.
For $L_{k-1} x(t)$, using Fubini's theorem, we get

$$
\begin{aligned}
L_{k-1} x(t)= & a-\int_{T^{\prime}}^{t} a_{n}^{-1}(s) v(s) \int_{T^{\prime}}^{s} a_{k}^{-1}(z) Q_{k+1}(s, z) d z d s \\
& -\int_{T^{\prime}}^{t} a_{k}^{-1}(s) \int_{t}^{\infty} a_{n}^{-1}(z) Q_{k+1}(z, s) v(z) d z d s
\end{aligned}
$$

From this, respecting (6) and (7), we obtain

$$
\begin{aligned}
& L_{k-1} x(t) \geqq a \\
& \quad+\int_{T^{\prime}}^{t} a_{n}^{-1}(s) \int_{T^{\prime}}^{s} a_{k}^{-1}(z) Q_{k+1}(s, z) d z G_{1}\left(s, \frac{1}{2} a a_{0}^{-1}(\varphi(s)) P_{k-1}\left(\varphi(s), t_{0}\right)\right) d s
\end{aligned}
$$

where the function on the right hand side tends to infinity for $t \rightarrow \infty$.
Thus, the solution $x(t)$ satisfies $\lim _{t \rightarrow \infty} L_{k} x(t)=0, \lim _{t \rightarrow \infty} L_{k-1} x(t)=\infty$ which is equivalent to (2) by 1 ' Hospital's rule.

From the fact that $G_{1}(t, u)$ is nondecreasing in u it follows that if (7) is satisfied for some $a, 0<2 a<c$, then (7) will be satisfied also if instead of a we put arbitrary $a^{\prime}, 2 a<2 a^{\prime}<c$. From this we conclude that there exist infinitely many positive solutions $x(t)$ of (E) satisfying (2).

Now, we will prove the existence of a negative solution of (E) satisfying (2) assuming that 3° is satisfied and $n-k$ is odd. Let

$$
Y_{4}=\left\{u(t) \in C(J):-a\left[P_{k-1}\left(t, t_{0}\right)+P_{k}\left(t, t_{0}\right)\right] \leqq a_{0}(t) u(t) \leqq-\frac{1}{2} a P_{k-1}\left(t, t_{0}\right)\right\} .
$$

We use the operator B_{2} defined on Y_{4} as follows: $u(t) \in Y_{4}$,

$$
\begin{aligned}
& B_{2} u(t)=\left\{a _ { 0 } ^ { - 1 } (t) \left[-a P_{k-1}\left(t, t_{0}\right)\right.\right. \\
&\left.-\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right], \\
&v(s) \in M u(\varphi(s))\}, \quad t \geqq T^{\prime} \\
& B_{2} u(t)=-a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T^{\prime}
\end{aligned}
$$

where $a>0$ and T^{\prime} are such that (8) is satisfied.
It is easy to see that B_{2} is well defined on Y_{4}. If $u(t) \in Y_{4}$, then from 3^{o} we see that $v(t)>0, v(t) \in M u(\varphi(t))$. Therefore, $B_{2} u(t) \leqq-a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right)$ $\leqq-\frac{1}{2} a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right), t \geqq t_{0}$. Respecting $\left(\mathrm{H}_{2}\right)$ and (8), we obtain $B_{2} u(t) \geqq$ $-a_{0}^{-1}(t) a\left[P_{k-1}\left(t, t_{0}\right)+P_{k}\left(t, t_{0}\right)\right]$. Thus, $B_{2} Y_{4} \subset Y_{4}$.

Then, applying the same arguments as in the proof of Theorem 1, we see that $B_{2}: Y_{4} \rightarrow c f\left(Y_{4}\right), B_{2}$ is upper semicontinuous on $Y_{4}, \overline{B_{2} Y_{4}}$ is compact. Therefore, application of Ky Fan's theorem gives the existence of a fixed point of B_{2} in Y_{4}. Denote it by $y(t)$. Then

$$
\begin{aligned}
y(t)= & a_{0}^{-1}(t)\left\{-a P_{k-1}\left(t, t_{0}\right)\right. \\
& \left.-\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right\}
\end{aligned}
$$

for $t \geqq T^{\prime}$, where $v(t)$ is an appropriate element from $M y(\varphi(t))$ and

$$
\begin{aligned}
& L_{k-1} y(t)=-a-\int_{T^{\prime}}^{t} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d s_{k}, \\
& L_{k} y(t)=-\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) v(s) d s, \quad t \geqq T^{\prime} .
\end{aligned}
$$

Respecting the assumption $\left(\mathrm{H}_{2}\right)$, we get $\lim _{t \rightarrow \infty} L_{k} y(t)=0$. Use of Fubini's theorem and of (6) gives

$$
\begin{aligned}
& L_{k-1} y(t) \leqq-a \\
& \quad-\int_{T^{\prime}}^{t} a_{n}^{-1}(s) \int_{T^{\prime}}^{s} a_{k}^{-1}(z) Q_{k+1}(s, z) d z G_{1}\left(s, \frac{1}{2} a a_{0}^{-1}(\varphi(s)) P_{k-1}\left(\varphi(s), t_{0}\right)\right) d s,
\end{aligned}
$$

which combined with (7) implies that $L_{k-1} y(t) \rightarrow-\infty$ as $t \rightarrow \infty$. The same arguments as in the case of positive solutions of (E) satisfying (2) give us the
existence of infinitely many negative solutions of (E) satisfying (2).
ii) Let 4^{0} be satisfied and let $k, 1 \leqq k \leqq n-1$, be an integer such that $n-k$ is even.

First, we will prove the existence of a positive solution $x(t)$ of (E) satisfying (2). In this case we take the set Y_{3} and we define the operator B_{3} on Y_{3} as follows: $u(t) \in Y_{3}$,

$$
\begin{aligned}
& B_{3} u(t)=\left\{a _ { 0 } ^ { - 1 } (t) \left[a P_{k-1}\left(t, t_{0}\right)\right.\right. \\
& \left.+\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right] \\
& \\
& v(s) \in M u(\varphi(s))\}, \quad t \geqq T^{\prime}, \\
& B_{3} u(t)=a_{0}^{-1}(t) a P_{k-1}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T^{\prime}
\end{aligned}
$$

The assumption 4^{0} implies that for $u(t) \in Y_{3}$ we have $v(t)>0$ for $t \geqq T^{\prime}$. Therefore, $a_{0}(t) B_{3} u(t) \geqq a P_{k-1}\left(t, t_{0}\right) \geqq \frac{1}{2} a P_{k-1}\left(t, t_{0}\right), t \geqq t_{0}$, and, respecting $\left(\mathrm{H}_{2}\right)$ and (8), we get $a_{0}(t) B_{3} u(t) \leqq a\left[P_{k-1}\left(t, t_{0}\right)+P_{k}\left(t, t_{0}\right)\right]$ for $t \geqq t_{0}$. Thus, $B_{3} Y_{3} \subset Y_{3}$. Applying the similar arguments as in the proof of Theorem 1, we obtain a fixed point $x(t)$ of B_{3} in Y_{3} which gives rise to a positive solution $x(t)$ of (E) existing in $\left[T^{\prime}, \infty\right)$. Then

$$
\begin{aligned}
x(t)= & a_{0}^{-1}(t)\left\{a P_{k-1}\left(t, t_{0}\right)\right. \\
& \left.+\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1} \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right\}
\end{aligned}
$$

for $t \geqq T^{\prime}$, where $v(s)$ is an appropriate element from $M x(\varphi(s))$ and

$$
\begin{aligned}
& 0 \leqq L_{k-1} x(t)=a+\int_{T^{\prime}}^{t} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d s_{k} \\
& 0 \leqq L_{k} x(t)=\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) v(s) d s, \quad t \geqq T^{\prime}
\end{aligned}
$$

Use of $\left(\mathrm{H}_{2}\right)$ leads to the conclusion that $\lim _{t \rightarrow \infty} L_{k} x(t)=0$ and use of Fubini's theorem, (6) and (7) give $\lim _{t \rightarrow \infty} L_{k-1} x(t)=\infty$. This is equivalent to (2) by l'Hospital's rule. Similar arguments as in the preceeding case i) give the existence of infinitely many positive solutions of (E) existing on [T^{\prime}, ∞) and satisfying (2).

We obtain the existence of a negative solution $y(t)$ of (E) satisfying (2) as a fixed point of the operator

$$
\begin{aligned}
& B_{4} u(t)=\left\{a _ { 0 } ^ { - 1 } (t) \left[-a P_{k-1}\left(t, t_{0}\right)\right.\right. \\
&\left.-\int_{T^{\prime}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T^{\prime}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T^{\prime}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right] \\
&v(s) \in M u(\varphi(s))\}, \quad t \geqq T^{\prime}, \\
& B_{4} u(t)=-a a_{0}^{-1}(t) P_{k-1}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T^{\prime}
\end{aligned}
$$

in the set Y_{4} by use of the similar procedurre as in the preceding cases. The same arguments as before give also the existence of infinitely many negative solutions of (E) existing on [T^{\prime}, ∞) and satisfying (2).
iii) Let 3° be satisfied and let $n-k$ be even. Let $x(t)$ be a solution of (E) such that $|x(t)|>0$ on some interval [$\left.T_{x}, \infty\right)$ and satisfies (2). Then the assumption 3° implies that $x(t) L_{n} x(t)<0$ for all $t \geqq T_{x}$ and this implies (see [5, Lemma 4]) that $\left|L_{k} x(t)\right|$ is increasing on some interval [$\left.T_{1}, \infty\right), T_{1} \geqq T_{x}$, which leads to the contradiction with the assumption $\lim _{t \rightarrow \infty} L_{k} x(t)=0$.

Let 4° be satisfied and let $n-k$ be odd. Let $y(t)$ be a solution of (E) such that $|y(t)|>0$ on some interval $\left[T_{y}, \infty\right)$ and satisfies (2). Then the assumption 4^{0} implies that $y(t) L_{n} y(t)>0$ on $\left[T_{y}, \infty\right)$. From this we see (see [5, Lemma 6]) that $\left|L_{k} y(t)\right|$ is increaisng on some interval $\left[T_{2}, \infty\right), T_{2} \geqq T_{y}$. This leads to the contradiction with the assumption $\lim _{t \rightarrow \infty} L_{k} y(t)=0$.
4. The existence of the desired solutions in Theorem 1 was proved on the interval $[T, \infty), T \geqq T_{0} \geqq t_{0}$ and in Theorem 2 on the interval [T^{\prime}, ∞), $T^{\prime} \geqq T_{0} \geqq t_{0}$. The definition of T is given by the condition (3) and the definition of T^{\prime} by the condition (8). We will show that, under some hypotheses concerning the sublinearity of $G(t, u)$, we will be able to prove the existence of the desired solutions on the interval [T_{0}, ∞).

Theorem 3. Let all assumptions of Theorem 1 be satisfied. Moreover, suppose that:

$$
\begin{align*}
& u^{-1} G(t, u) \text { is nonincreasing in } u \text { for } u \geqq 0 \text { and each fixed } t \in J, \tag{9}\\
& \lim _{u \rightarrow \infty} u^{-1} G(t, u)=0 \text { for each fixed } t \in J . \tag{10}
\end{align*}
$$

Then the inclusion (E) has infinitely many positive as well as negative solutions $x(t)$ existing on $\left[T_{0}, \infty\right)$ and satisfying (1).

Proof. We sketch the proof for the case α_{1}) from Theorem 1. Similar
procedure can be used in the remaining cases. Thus, let the condition 3° be satisfied and let $n-k$ be even. From the assumption $\left(\mathrm{H}_{2}\right)-(\mathrm{c})$ we conclude that the function

$$
a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right)
$$

is integrable on $\left[T_{0}, \infty\right)$. Then, respecting (9), we get for $b>c$

$$
\begin{align*}
& a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) b^{-1} G\left(s, b a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) \tag{11}\\
& \quad \leqq a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) c^{-1} G\left(s, c a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right), \quad s \geqq T_{0}
\end{align*}
$$

and by (10)

$$
\begin{equation*}
\lim _{b \rightarrow \infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) b^{-1} G\left(s, b a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right)=0 \tag{12}
\end{equation*}
$$

pointwise on $\left[T_{0}, \infty\right)$. Use of the Lebesgue dominated convergence theorem gives

$$
\begin{equation*}
\lim _{b \rightarrow \infty} b^{-1} \int_{T_{0}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, b a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s=0 . \tag{13}
\end{equation*}
$$

Therefore, for $p>0$ there exists $b_{0}(p)>0$ such that

$$
\begin{equation*}
\int_{T_{0}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, b a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq p b \tag{14}
\end{equation*}
$$

for each $b>b_{0}>c$. Let $p=1 / 2, b_{k}>b_{0}(1 / 2), 0<a_{k}<b_{k} / 2$. We define

$$
Y_{1}=\left\{u(t) \in C(J): a_{k} P_{k}\left(t, t_{0}\right) \leqq a_{0}(t) u(t) \leqq b_{k} P_{k}\left(t, t_{0}\right)\right\}
$$

and the operator A on Y_{1} as follows: $u(t) \in Y_{1}$,

$$
\begin{aligned}
& A u(t)=\left\{a _ { 0 } ^ { - 1 } (t) \left[b_{k} P_{k}\left(t, t_{0}\right)\right.\right. \\
& \left.+\int_{T_{0}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T_{0}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T_{0}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right], \\
& \\
& \quad v(s) \in M u(\varphi(s))\}, \quad t \geqq T_{0}, \\
& A u(t)=a_{0}^{-1}(t) b_{k} P_{k}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T_{0} .
\end{aligned}
$$

By the assumption $3^{\circ}, u(t) \in Y_{1}$ implies $v(t)<0$. Therefore, $a_{0}(t) A u(t) \leqq$ $b_{k} P_{k}\left(t, t_{0}\right)$ for $t \geqq t_{0}$. Furthermore, taking (14) into consideration, we get for $t \geqq T_{0}$

$$
\begin{aligned}
& b_{k} P_{k}\left(t, t_{0}\right)-a_{0}(t) A u(t) \\
& \qquad \leqq \int_{T_{0}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T_{0}}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) \cdots \int_{T_{0}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) d w_{k} \int_{T_{0}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) . \\
& \left.\quad \cdot G\left(s, b_{k} a_{0}^{-1}(\varphi(s)) P_{k}\left(\varphi(s), t_{0}\right)\right) d s \leqq \frac{1}{2} b_{k} P_{k}\left(t, t_{0}\right)\right)
\end{aligned}
$$

and finally $0<a_{k} P_{k}\left(t, t_{0}\right)<\frac{1}{2} b_{k} P_{k}\left(t, t_{0}\right) \leqq a_{0}(t) A u(t)$. This all proves that $A Y_{1} \subset Y_{1}$. Proceeding as in the proof of Theorem 1 (for the case α_{1}), we can show that A has a fixed element $x(t)$ in Y_{1} and this element $x(t)$ is a positive solution of (E) which exists on [T_{0}, ∞) and satisfies (1). Since any number b_{k} greater than $b_{0}(1 / 2)$ can be taken in defining Y_{1} and A, it is clear that there exist infinitely many such solutions of (E).

Theorem 4. Let all assumptions of Theorem 2 be satisfied. Moreover, let (9) and (10) be satisfied. Then all statements of Theorem 2 hold and the solutions in i) as well as in ii) exist on $\left[T_{0}, \infty\right)$ and satisfy (2).

Proof. We only sketch the proof of i), since the proof of ii) is similar and the proof of iii) is the same as in Theorem 2. From the assumption $\left(\mathrm{H}_{2}\right)$ - (c) we conclude that

$$
a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, \frac{c}{2} a_{0}^{-1}(\varphi(s))\left[P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right)\right]\right)
$$

is integrable on $\left[T_{0}, \infty\right)$. Let $2 b>c$. Then, in view of (9), we obtain

$$
\begin{aligned}
& a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) b^{-1} G\left(s, b a_{0}^{-1}(\varphi(s))\left[P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right)\right]\right) \\
& \quad \leqq a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) 2 c^{-1} G\left(s, \frac{c}{2} a_{0}^{-1}(\varphi(s))\left[P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right)\right]\right)
\end{aligned}
$$

for $s \geqq T_{0}$ and, respecting (10),

$$
\lim _{b \rightarrow \infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) b^{-1} G\left(s, b a_{0}^{-1}(\varphi(s))\left[P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right)\right]\right)=0
$$

pointwise on $\left[T_{0}, \infty\right)$. Use of the Lebesgue dominated convergence theorem gives
$\lim _{b \rightarrow \infty} b^{-1} \int_{T_{0}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, b a_{0}^{-1}(\varphi(s))\left[P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right)\right]\right) d s=0$.
It means that for $p>0$ there exists $b_{0}(p)>0$ such that

$$
\int_{T_{0}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G\left(s, b a_{0}^{-1}(\varphi(s))\left[P_{k-1}\left(\varphi(s), t_{0}\right)+P_{k}\left(\varphi(s), t_{0}\right)\right]\right) d s \leqq p b
$$

for each $b \geqq b_{0}(p)$. Put $p=1$ and let $a=b>b_{0}(1)$ be fixed. Consider the set

$$
Y_{3}=\left\{u(t) \in C(J): \frac{1}{2} a P_{k-1}\left(t, t_{0}\right) \leqq a_{0}(t) u(t) \leqq a\left[P_{k-1}\left(t, t_{0}\right)+P_{k}\left(t, t_{0}\right)\right]\right\}
$$

and the operator B_{1} defined on Y_{3} as follows: $u(t) \in Y_{3}$,

$$
\begin{aligned}
& B_{1} u(t)=\left\{a _ { 0 } ^ { - 1 } (t) \left[a P_{k-1}\left(t, t_{0}\right)\right.\right. \\
& \left.-\int_{T_{0}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T_{0}}^{s_{1}} a_{k}^{-1}\left(s_{k}\right) \cdots \int_{T_{0}}^{s_{k-1}} a_{k}^{-1}\left(s_{k}\right) \int_{s_{k}}^{\infty} s_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(s) d s d w_{k}\right] \\
& \\
& \quad v(s) \in M u(\varphi(s))\}, \quad t \geqq T_{0} \\
& B_{1} u(t)=a_{0}^{-1}(t) a P_{k-1}\left(t, t_{0}\right), \quad t_{0} \leqq t \leqq T_{0}
\end{aligned}
$$

It is easy to prove that $B_{1} Y_{3} C Y_{3}$. If we proceed as in the proof of i) of Theorem 2, then we can prove that B_{1} has a fixed element $y(t) \in Y_{3}$ and that this element is a solution of (E) existing on $\left[T_{0}, \infty\right)$ and satisfying (2). Since any number a greater than $b_{0}(1)$ can be taken in defining Y_{3} and B_{1}, there exist infinitely many such solutions of (E).

The existence of infinitely many negative solutions of (E) existing on $\left[T_{0}, \infty\right)$ and satisfying (2) can be proved in the similar way.

References

[1] J. K. Hale and N. Onuchic, On the asymptotic behavior of solutions of a class of differential equations, Contributions to Differential equations 2 (1963), 61-75.
[2] Y. Kitamura, On nonoscillatory solutions of functional differential equations with a general deviating argument, Hiroshima Math. J. 8 (1978), 49-62.
[3] T. Kusano and M. Švec, On unbounded positive solutions of nonlinear differential equations with oscillating coefficients, Czechoslovak Math. J. 39 (1989), 113-141.
[4] M. Švec, Sur un problème anx limites, Czechoslovak Math. J. 19 (1969), 17-26.
[5] M. Švec, Behavior of nonoscillatory solutions of some nonlinear differential equations, Acta Mathenatica U.C. 39 (1980), 115-130.

Department of Mathematical Analysis
Faculty of Mathematics and Physics
Komensky University
Bratislava, Slovakia

