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1. The aim of this paper is to prove the existence of nonoscillatory
solutions with the prescribed asymptotic behaviour of the differential inclusion

L,x(t)e F(t, x(o(t))), n>1, (E)

where L,x(t) is the n-th quasiderivative of x(t) with respect to the continuous
functions a;(t): J = [to, ©)— (0, ), i =0, 1,---,n, Lyx(t) = ao(t)x(t), L;x(t) =

a;(t)(L;—x@®)), i=1,2,---,n, j a7 '(t)dt =00, i=0,1,---,n—1, F(t, x):
to

J x R > {nonempty convex compact subsets of R}, R =(—o0, ) and
¢(t): J >R is a continuous function such that lim,_ , ¢(t) = oco.

We will use the following notation: F(t, x)x > (<)0 means that yx > (<)0
for each yeF(t, x);if h:J xR >R, then F(t, x) = (Z)h(t, x) means that
y 2 (2)h(, x) for each yeF(t x);if B<R, then |B|=sup{|x|:xeB},
|B| = inf {|x|: xeB}. If C is a set, then ¢f(C) is the set of all convex closed
subsets of C.

The basic assumptions on F(t, x) are as follows:

1° F(t, x) is upper semicontinuous on J x R.

2° F(t, 0) = {0} for each teJ.

3° F(t, x)x <0 for each (t, x)eJ xR, x #0;

or

4° F(t, x)x > 0 for each (¢, x)eJ x R, x # 0.

Let to < b <t<o. Then we denote

t

PO(ts b)= la Pi(ta b)=J

b

al_l(sl)J‘ az_l(sz)"' j - a; '(s)dw,,
b

b
dw; =ds;---ds;, i=1,2,---,n—1,

t Sn-1 Sj+1
Qn(t, b) = 19 Qj(t: b) = J an——ll(sn—l)j‘ a;—IZ(Sn—Z)"'j aj_l(sj)dzjs
b b b
dz;=ds;---ds,_y, j=1,2,---,n— 1.

J

It is easy to see that
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tlim P,(t, b) = o0, ,llm Qt,b)=o00,i=12,---,n—1,
tlim Py(t, b)P,-_l(t, b)=0,0<i<j=<n-—1,

lim Q;(t, D) (1, D) =0, 0<i<j<n—1.

Moreover, let us denote
p(t) =sup{s=ty: @(s) £t} for all t=t,.

In this paper we will state the conditions which guarantee the existence
of nonoscillatory solutions of (E) which are asymptotic to the solutions of
L,y(t) = 0, more precisely, the existence of such solution x(t) of (E) that

L
LoXO1_ 50, kefo, 1, — 1), )

lim
t-w P (t, b)

On the other side we will state the conditions which guarantee the
existence of nonoscillatory solution x(t) of (E) which is asymptotic to none of
the solutions of L,y(t) =0, more precisely, we will prove the existence of
nonoscillatory solution x(t) of (E) such that

Lox(t)_o li M—

im =0, lim = 00, ke{l,2,---,n— 1}. 2
t— oo Pk(t, b) t— o Pk—l(t’ b) * e{ " } ( )

Such problems were discussed, in the case of a differential equation, by
Hale and Onuchic [1], Kitamura [2], Kusano and Svec [3], Svec [4].

2. In this part we will prove the existence of the positive and also negative
solution x(t) of (E) which satisfies (1).

Taking into consideration the properties of ¢(t) we can find Ty = y(t,)
such that y(t) = t, for each t = Tj,.

THEOREM 1. Let the assumptions 1°—4° be sadisfied. Suppose that:

(H,) To each measurable function z(t): J — R there exists a measurable
selector v(t): J - R such that v(t)e F(t, z(t)) a.e. on J.
Denote Mz(t) = {the set of all measurable selectors belonging to z(t)}.

(H,;) There exists a continuous function G(t, u): J x [0, c0) = [0, c0) such
that

a) G(t, u) is nondecreasing in u for each fixed telJ;

b) |F(t, z)| £ G(t, |z]) for each (t, z)eJ x R;

e o)

c) J ay 1 (5)Qx+1(5, o) G(s, cag ' (@(9)) Pyl (s), to))ds < oo
To
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for some ¢ >0 and ke {0, 1,---,n — 1}.
Then the differential inclusion (E) has infinitely many solutions x(t) satisfying

(1).

Proor. Let 0 <o <|Bel Z¢, B, >0. Because of (H,—c) we can
choose T= T, = y(t,) such that

f ay () Qi+ 1(s, o) G(s, cag ' ((s)) Pel@(s), to))ds < | Bl — louel. ©)
T

Let C[to, o0) = C(J) be the locally convex space of all continuous functions
on J with the topology of uniform convergence on compact subintervals of
J. We will seek the desired solution x(t) of (E) in the set

Y= {u(t)e C(J): law| Pi(t, to) < ao®)|u(t)|l < 1Bl Pilt, to)}- )

To prove our theorem we have to consider various situations.

o) Let 1°,2°, 3° be satisfied and let n —k be even.

o;) We will first seek a positive solution of (E) satisfying (1). Thus, let
0<o < By =c In this case we have

Y =1, = {u(t)e C[ty, 00): a, Py(t, to) < ao(t)u(t) < B Pilt, to)}.

We will seek the desired solution of (E) in the set Y; as a fixed point of the
multivalued operator A defined on Y, as follows: for u(t)eY;

Au(t) = {aal(r) LB P, to) + J ay'(sy) f a5 (s) f A s

T T T

r) ay () Qi+ 1 (s, Sk)v(s)deWk]’ U(t)GMu(w(t))}, t2T 5)

Sk

Au(t) = Beag () Py(t, to), to St < T.

The operator 4 is well defined on Y;. In fact, from (H,) respecting the fact
that Q,,, and G are monotone we get

j " 47 1(9) Qi1 (5, s)0()ds

Sk

éj a, () Qu+1(s, L) | F (s, u(e(s)))lds

k

= '[ ay ' ()Qu+1(s, to) G(s, |u(e(s)))ds

Sk

S J ay 1 (5)Qi+1(s, 1) G(s, cag ' (@(5)) Pe(@(s), to)))ds < 0.
From the assumption 3° we have v(t) < 0. Therefore, we get Au(t) < Braq *(t)
P (t, to) for t = t,.
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Furthermore, taking (3) into consideration, we get for t > T
BiPi(t, to) — ao(t) Au(r)

- f a;'(s,) f a5 (s) f s J a5 1(5) Qs 15, sOV(S)dsdw,

T K

T T
fa;‘(sl)f'a;I(sz)---Jk_‘a,:l(sk)dwkf a7 (5) Qe 15 o)
T T

T T

IIA

~G(s, cag ' (@(5) Pu(@(s), to))ds < (B — ) Pilt, to)

and finally oy Pi(t, to) < ao(t)Au(t). Thus, we have Au(t) = Y;. It is easy to
see that the set Au(t) is nonempty and convex.

Now, we will prove that: A: Y, - ¢f(Y,); 4 is upper semicontinuous on
Y,; AY, is compact.

Let &(t)e Au(t), u(t)eY,. Then for t = T we have

[ao()E@)] = BiPi(t, to) + afl(t)f az_l(sz)'“rk_l a ' (s)dsy-ds; -

T

f ar ' (9)Qu+1(s, L) G(s, cag (9 (5)) Pl (s), to))ds.
T

From this we conclude that [ay(t)&(t)], &(t)e AY, are uniformly bounded on
each compact subinterval of J. Therefore, a,(t)é(t), é(t)e AY, are equicon-
tinuous on each compact subinterval of J. The uniform boundedness of the
functions a,(t)&(t), E(t)e AY;, on each compact subinterval of J is clear. From
all this we conclude that the sets Au(t), u(t)e Y; as well as the set AY,, are
relatively compact in the topology of C[t,, o).

Let u;(t)e Y;, i=1,2,---, and let the sequence {u,(t)} converge to u(t) in
C[ty, ©). Furthermore, let z;(t)e Au,(t), i=1,2,---. The set AY, being
relatively compact, there exists a subsequence {z; (t)} of {z;(t)} which converges
to a function z(t)e A_Y1 c Y, in the topology of C[t,, ). We have

zi(t) = a5 ' (t) {ﬁkpk(ta to)

t S1 Sk-1
+ f al_l(sl)f afl(sz)“'J a; 1) Qi1 (5, Sk)Ui(S)deW}’ t2T,
T T T
T,

zi(t) = ag " P Pi(t, to), to St <

where v;(t)e Mu;(o(t)). From (H,) and (3) we get

f " 47 Qe (5. to) 091 ds

T
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< f a; 1 (5) Qi+ 1(5, to)G(s, cag H(@(s)) Pe(@(s), to))ds < B — .

T

Let L, (T, o) denote the set of all measurable functions f on [T, co) such that

(AGI =J ay ' (5)Qi+1 (s, to)l f(s) ds < o0.
T
Thus, we see that the sequence {v;(¢)} is bounded in the space L,(T, o0).

Furthermore, if {E,}, E, = [T,-00), is a decreasing sequence of sets such that
Nx_, E, =9, then

lim

m— oo

f a; () Q1 (s, to)vi(s)ds

< lim J an—l(s)Qk+x(5, to)|vi(s)|ds
m— oo Em

< lim J a, () Qx+1(5, L) G(s, cag ' (¢(s)) Pul(s), to))ds = 0.
Em

Then (see [2, Th. IV. 8.9]) it is possible to choose a subsequence {vij(t)} of
{vi(t)} which weakly converges to some v(t)e L,(T, ).

Because {u,.j(t)} converges to u(t) in C[t,, 00) and v; (t)e F(t, u; (o(t))),
j=1,2,---, using the assumption 1°, to given ¢ >0 and teJ there exists
N = N(t, ¢) such that for any i; = N we have F(t, u;(¢(t))) = O,(F(t, u(o(t))),
where O,(F(t, u(p(t)))) is the e-neighbourhood of the set F(t, u(¢(t))).

Consider the sequence {vij(t)}, i;=2 N. Then (see [2, Corollary V. 3.14])
it is possible to construct such convex combinations from v; (¢), i; 2 N, denoted
by g,.(t);m=1,2,---, that the sequence {g,(¢)} converges to v(t) in
L{(T, ). Then by the Riesz theorem there exists a subsequence {g,,(t)} of
{gm(t)} which converges to v(t) a.e. on [T, «). From the convexity of
O,(F(t, u(¢(t)))) and from the fact that v, (t)e O,(F(t, u(¢(t)))) it follows that
Im (D)€ O, (F(t, u(@(t)))), i = 1, 2,--- and, therefore, v(t)e O,(F(t, u(¢)))). In the
limit as e—>0 we see that v(t)eF(t, u(e(t))). We note that in our
considerations ¢ was a fixed point and that F(t, u(¢(t))) is a compact convex
subset of R.

Thus, the function

z(t) = a5 ' (1) {kak(ta to)

+ Jl ar(sy) rl a; t(s,y)-- rk_l a; 1(sy) Jm a, 1(5)Qp+ 1 (s, s,‘)v(s)dsdw}
T T S|

T K

for t =T,

z(t) = ag 1 (t) By Pi(t, to) for t,<t<T
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is well defined and z(t)e Au(t) for teJ.

Now, it follows from the weak convergence of {v; (t)} to v(t) in L,(T, o)
that the subsequence {z;(t)} of {z;(t)} converges to z(t) a.e. on J. However,
the functions z; (¢) belong to the compact set AY,. Therefore, there exists a

subsequence of the sequence {z;(t)} which converges to a function Z(t) in the
topology of C[t,, o). This means that z(t) = z(t)e Au(t) a.e. on J. With
this the upper semicountinuity of the operator 4 on Y; is proved.

The similar considerations as in the proof of upper semicontinuity of A4
on Y;, made for case that z,(t)e Au(t) and {z;(t)} converges to z(¢) in C[t,, )
give us that z(t)e Au(t). This means that the set Au(t) is closed. Thus, we
have proved that Au(t) is compact and A maps Y, into ¢f(Y;).

From all this we conclude by Ky Fan’s theorem that the operator 4 has
a fixed point in Y, i.e. there exists u(t)e Y; such that u(t)e Au(z).

It is easy to see that u(t) is the desired positive solution of (E) satisfying
(1). In fact, from the positiveness of u(t) on [t,y, o) and from the assumption
32 it follows that L,u(t) has a constant sign on some interval [T, o) and all
quasiderivatives L;u(t), i=0, 1,---,n — 1 are monotone on some ray [T}, o),
T, 2 T,. By I’Hospital’s rule we get

Lou
S g ey~

From the construction of the operator A it is evident that there exist infinitely
many solutions of (E) satisfying (1).

a,) Now, we will seek a negative solution x(t) of (E) satisfying (1). In
this case we put f, <o, <0, 0 <|a]| <|Bi| < c and

Y, = {u(t)e Clto, 00): BiPil(t, to) < ao(t)u(t) < a Pilt, to)}.

The desired solution will be obtained a fixed point of the operator 4 in Y,.
If u(t)e Y, and v(t)e Mu(ep(t)), then from assumption 3° we see that v(t) > 0
and from (5) we have ay(t) Au(t) = B Pi(t, to) for ¢t = t, and

ao(t) Au(t) — B Pi(t, to)

=f a; 1(%)J Y(sy) - Jk-‘ a ' (s)dwy - f‘” a, 1 (5)Qur 1 (5, 1) -
T

- G(s, cag ' (@(5)) Pu(@(5), to))ds < (= B + w) Pilt, to),

where we have used the fact that Q,,,; and G are monotone and the fact
that v(s) < G(s, |u(@(s))]) £ G(s, cag *(@(s)) Pu(@(s), to)). From this we have
ao(t)Au(t) < o, Pi(t, to) < 0. Thus, we have Auc Y,.

The proof that: 4: Y, - ¢f(Y,), A is upper semicontinuous on Y,, AY,
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is compact can be made in the same way as it was done for Y;. The end
of the proof is similar to that in case a,).

B) Let 1°, 2°, 3° be satisfied and let n —k be odd.

fB1) We shall investigate the existence of a positive solution x(t) of (E)
satisfying (1). We seek this solution in the set Y, as a fixed point of the
operator B: u(t)eY,,

Bu(t) = {ao"(t) [akpk(t’ to)

- f ai ' (sy) f 'a;I(s2)~~-fHa;1(sk) f 07(5)Qes 1 (. sk)v(s)dsdwk}

T T k

U(S)GMM((P(S))}, t2T,

Bu(t) = oy.ag (t) Py (t, to), tc<t<T

Applying similar arguments as in the preceeding cases, we obtain a fixed point
u(t) of B in the set Y; which is the desired positive solution of (E) with the
asymptotic behavior (1).

B,) We get the existence of negative solution of (E) satisfying (1) as a
fixed point of the operator B in the set Y, using similar procedure as in the
previous cases.

y) Let 1°,2°, 4° be satisfied let n — k be even.

y.) We seek a positive solution x(t) of (E) satisfying (1). In this case
we use the set Y; and the operator C: u(t)eY;,

Cu(t) = {aal(t) [akpk(t’ to)

+ J al—l(sl)j l‘12—1(52)‘“ f k_lafl(sk)j an_l(S)Qk+1(S’ Sk)U(S)deWk],

T T T Sk

v(S)eMu(fp(S))}, t=T,

Cu(t) = aka(;l(t)Pk(ta tO)a tO § t é T.

As in the previous cases it is easy to prove that this operator C is well
defined on Y, and maps Y; into Y;. The rest of the proof can be made in
the same way as in the previous cases.

y,) We seek a negative solution of (E) satisfying (1) as a fixed point of
the operator C defined on Y,. The considerations are similar as in the
previous cases.

0) Let 1°,2° 4° be satisfied and let n —k be odd.
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0,) A positive solution of (E) satisfying (1) can be found as a fixed point
of the operator D defined on Y; as follows: u(t)e Y,

Du(t) = {agl(t) l:akPk(ta to)

T

—f af‘(sl)fxaz‘l(sz)n-fk-la"_l(sk)Qk+l(s, sk)v(s)dsdwk],
T T

v(s)eMu(p(s)}, t=T,
Du(t) = akao_l(t)Pk(t’ to), to é t é T.

The proof is similar to those in the previous cases.

0,) The desired negative solution of (E) satisfying (1) can be found as
a fixed point of the operator D defined on Y, using similar arguments as in
the previous cases.

3. In this part we will deal with the existence of positive (negative)
solutions of (E) which have the asymptotic behaviour (2).

THEOREM 2. Let all assumptions of the Theorem 1 be satisfied. Moreover,
let the following assumption be satisfied:

(Hs;) There exists a continuous function G(t, u): J x [0, o0) — [0, o0)
nondecreasing in u for each fixed teJ such that

Gt |xl) = IF@t x|, xeR (6)

and

f an‘l(s)f Qi +1(s, Z)ak—l(z)dZG1 (s, ga(;l((P(S))Pkﬂ((P(s), to)>d5 = (7)
To To

where ke{l,2,---,n — 1}, 0 < 2a < ¢ where c is from (H,)—(c).

i) If the assumption 3° is satisfied and if n — k is odd, then the inclusion
(E) has infinitely many positive as well as negative solutions satisfying (2).

ii) If the assumption 4° is satisfied and if n—k is even, then the inclusion
(E) has infinitely many positive as well as negative solutions satisfying (2).

iii) If the assumption 3° is satisfied and if n — k is even or if the assumption
4° is satisfied and if n—k is odd, then there is no positive (negative) solution

of (E) satisfying (2).

Proor. i) Let the assumption 3° be satisfied and let n — k be odd. First,
we will prove the existence of a positive solution x(¢) of (E) satisfying (2). Let
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Y, = {u(t)eC(J): %aPk_l(t, to) = ao(t)u(t) < a[Pp_1(t, ty) + Pylt, to)]}.

We define the operator B; on Y; as follows: u(t)e Y,

Byu(t) = {agl(t)liapk—l(t’ to) — f ’0;1(51)J l 051(52)"'Jk_1 ag (s

T T T

'Jw a7 1 (8) Qi1 (s, Sk)v(s)dewk:l’ U(S)GMu(q)(S))}, t2T.

k

B, u(t) = aag *(t) Py 1 (¢, to), thst=T,

where a > 0 and T’ = T are such that P,_(¢(s), to) + P(@(5), to) = 2P (e(s),
to) for s= T’ and

f ay () Q.+ 1(5, to)G(s, 2aaq ' (9(s)) Pu(@(s), to))ds < a. ®)

T

The existence of such T’ follows from (H,) —(c). As in the proof of Theorem
1 it is easy to prove that B; is well defined on Y;. It follows from the
assumption 3° that u(t)e Y; implies v(t) <O for t = T'. Therefore, we have

1
Byu(t) = aag *(t)Pp_ (¢, to) = 5aao‘l(t)Pk_l(t, to) for t = t,. On the other side,

respecting (H,) and (8), we obtain

Bju(t) < a(;l(t) {aPk—l(t, to)

+J arl(soffa;l(sz)--f“a;l(sndsk-

: J 4y 1 (9)Qura (5 1) G5, 2aa0 " (@ (5) Pl (), to))ds}
éaal(t){aPk—l(t’ t0)+aPk(t’ tO)}7 t g T

Thus, we get B, Y; = Y;. It is easy to see that B, u(t) is nonempty and convex.

The proof that B, : Y; — ¢f(Ys), B, is upper semicontinuous on Y3, B, Ys
is compact can be made in the same way as it was done for A, in the proof
of Theorem 1. Therefore, Ky Fan’s theorem can be applied. It gives the
existence of a fixed point of B, in Y;. Denote it by x(¢f). To finish the
proof we have to prove that x(t) satisfies (2). We have

x(t) = ag '(t) {apk—l(t’ to)
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—f a; S1)j a; (52 J Sk)J~ S)Qk+15 Sk)”(s)deWk}

for t = T’, where v(s) is an appropriate element from Mx(¢(s)). Then

t

Ly 1x(t)=a —f ay ' (sy) ’ ay () Qi+ 1 (s sYv(s)dsds,,

Lix(t) = — jw ay 1) Qer s (s, ho(s)ds,  t2 T

and

0= Lyx(t) éJ ay () Qi+ 1(5, 1) G5, ag (@(s))2aPy(¢(s), to))ds
t
respecting (H,) and (8). From this we obtain lim,_, , L,x(t) = 0.
For L,_,x(t), using Fubini’s theorem, we get

t

Ly yx(t)=a —f H(s)v(s) f ay ' (2) Qe+ 1 (s, 2)dzds
-

T
- f ag '(s) F a, 1(2) Qi+ 1(2, s)v(2)dzds.
T t

From this, respecting (6) and (7), we obtain

Li-yx(t) 2 a

f ’I(S)J (@) Qe (s, Z)dZG1<S, %aaal(w(S))Pk—lﬁﬂ(S), to)>d5

where the function on the right hand side tends to infinity for t — co.
Thus, the solution x(t) satisfies lim,,, L,x(¢) =0, lim,, , L,_,x(t) = o©
which is equivalent to (2) by 1’ Hospital’s rule.
From the fact that G,(t, u) is nondecreasing in u it follows that if (7) is
satisfied for some a, 0 < 2a < ¢, then (7) will be satisfied also if instead of a
we put arbitrary a’, 2a <2da’ <c¢. From this we conclude that there exist
infinitely many positive solutions x(t) of (E) satisfying (2).
Now, we will prove the existence of a negative solution of (E) satisfying
(2) assuming that 3° is satisfied and n—k is odd. Let

—

Y, = {u(t)e C(J): — a[Py_y(t, to) + Pu(t, t0)] = ao(t)u(t) = — 5 aPy_4 (2, to)}-

N

We use the operator B, defined on Y, as follows: u(t)e Y,,
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Byu(t) = {ao"(t)[— aPy_4(t, to)

~[Larn [Tartea [t [ 00 s svtoasan, |

T T T k

v(s)eMu(q)(S))}, t=2T'.

B,u(t) = — aag * () Py, (t, to), to St T,

where a > 0 and T’ are such that (8) is satisfied.
It is easy to see that B, is well defined on Y,. If u(¢)eY,, then from
3° we see that v(t) >0, v(t)e Mu(ep(t)). Therefore, B,u(t) < —aag *(t) Pe_ (¢, to)

1 . .
< - Eaagl(t)Pk_l(t, to), t = t,. Respecting (H,) and (8), we obtain B,u(t) =

—ag (t)a[Pe_(t, to) + Pi(t, to)]. Thus, B,Y, c Y,.

Then, applying the same arguments as in the proof of Theorem 1, we
see that B,:Y,—>cf(Y,), B, is upper semicontinuous on Y,, m is
compact. Therefore, application of Ky Fan’s theorem gives the existence of
a fixed point of B, in Y,. Denote it by y(t). Then

y(@) = a(;l(t){_ aPy_ (¢, to)

- j a:‘(sl)j Ca51(s) J a;l(sk)f a7 1 (5) 015, sk)v(s)dsdwk}
T T S|

T Kk

for t = T', where v(t) is an appropriate element from My(¢(t)) and

Li—yy(t)=—a —f ail(sk)j ay ' (8) Qi+ 1 (s, s)v(s)dsdsy,
T Sk

o)

Lyy(t) = _J‘ a; ' (8) Qi1 (s, )o(s)ds, t=T'.

t

Respecting the assumption (H,), we get lim,,, L,y(t) =0. Use of Fubini’s
theorem and of (6) gives

Ly y@®) = —a
t N 1
- j a;l(s)f ak-l(Z)QkH(Sa z)dzG, <S, Eaa()'l((p(s))Pk_l((p(s), to)>d5,
T T

which combined with (7) implies that L,_;y(t) > — oo as t > co. The same
arguments as in the case of positive solutions of (E) satisfying (2) give us the
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existence of infinitely many negative solutions of (E) satisfying (2).
ii) Let 4° be satisfied and let k, 1 £k <n — 1, be an integer such that

n—k is even.
First, we will prove the existence of a positive solution x(t) of (E) satisfying
(2). In this case we take the set Y; and we define the operator B; on Y; as

follows: u(t)e Ys,

Byu(t) = {agl(t) [aPk—l(ta to)

T

+ f ay(sy) f ' a;I(sz)---fk" a; (s,) f " (90 s s»v(s)dsdwk],
T T Sk

U(S)EMu(q)(S))}, t2T,

Biu(t) = ag '(t)aP,_,(t, to), to<t=T.

The assumption 4° implies that for u(t)eY; we have v(t) >0 for t = T'.
Therefore, ag(t)Bsu(t) = aP,_,(t, to) = LaP,_,(t, ty), t = t,, and, respecting (H,)
and (8), we get ao(t)B;u(t) < al[P._.(t, ty) + P(t, ty)] for t=t,. Thus,
B,Y; = Y;. Applying the similar arguments as in the proof of Theorem 1,
we obtain a fixed point x(t) of B; in Y; which gives rise to a positive solution
x(t) of (E) existing in [T’, o0). Then

x(t) = ag '(t) {aPk—l(t’ to)

; f ") f " a5t (s) - J " f 4190 s sk)v<s)dsdwk}
T T S,

T k

for ¢t = T’, where v(s) is an appropriate element from Mx(¢(s)) and

0sLi-yx(t)=a+ J ak_l(sk)J~ a, 1(8) Qi+ 1 (5, sp)v(s)dsdsy,
T Sk

0

0= Lyx(t)= J‘ ay ' (5)Qicr 1 (s, )0(s)ds, =T
t

Use of (H,) leads to the conclusion that lim,_ , L,x(t) = 0 and use of Fubini’s
theorem, (6) and (7) give lim,_, L,_,x(t) = co. This is equivalent to (2) by
I'Hospital’s rule. Similar arguments as in the preceeding case i) give the
existence of infinitely many positive solutions of (E) existing on [T’, oo) and
satisfying (2).

We obtain the existence of a negative solution y(t) of (E) satisfying (2)
as a fixed point of the operator
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B,u(t) = {agl(t)[_ aP,_(t, to)

~[Carten [Tater [ a0 [T 00 s spvsa |

T T T Sk

U(S)GMu(fp(S))}, 12T,

Bau(t) = — aag () Py, (1, to), tHLhSt=T

in the set Y, by use of the similar procedurre as in the preceding cases. The
same arguments as before give also the existence of infinitely many negative
solutions of (E) existing on [T’, o) and satisfying (2).

iii) Let 3° be satisfied and let n—k be even. Let x(t) be a solution of
(E) such that |x(¢)] > 0 on some interval [T,, oo) and satisfies (2). Then the
assumption 3° implies that x(t)L,x(¢) <O for all t = T, and this implies (see
[5, Lemma 4]) that |L,x(t)| is increasing on some interval [T}, o), Ty = T,
which leads to the contradiction with the assumption lim,_ , L,x(t) = 0.

Let 4° be satisfied and let n—k be odd. Let y(t) be a solution of (E)
such that |y(t)] >0 on some interval [T, co) and satisfies (2). Then the
assumption 4° implies that y(t)L,y(t) > 0 on [T, c©). From this we see (see
[5, Lemma 6]) that |L,y(t)| is increaisng on some interval [T,, ©), T, = T,.
This leads to the contradiction with the assumption lim,, , L,y(t) = 0.

4. The existence of the desired solutions in Theorem 1 was proved on
the interval [T, o), T= T, = t, and in Theorem 2 on the interval [T’, o0),
T 2T, =t,. The definition of T is given by the condition (3) and the
definition of T’ by the condition (8). We will show that, under some
hypotheses concerning the sublinearity of G(t, u), we will be able to prove the
existence of the desired solutions on the interval [Ty, o).

THEOREM 3. Let all assumptions of Theorem 1 be satisfied. Moreover,
suppose that:

u~'G(t, u) is nonincreasing in u for u =0 and each fixed telJ, 9)
ull_)n;) u™'G(t, u) =0 for each fixed telJ. (10)

Then the inclusion (E) has infinitely many positive as well as negative solutions
x(t) existing on [Ty, o) and satisfying (1).

Proor. We sketch the proof for the case «;) from Theorem 1. Similar
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procedure can be used in the remaining cases. Thus, let the condition 3° be
satisfied and let n—k be even. From the assumption (H,)—(c) we conclude
that the function

a, 1 (5)Qy+1 (5, to) G(s, cag H(9(5)) Pe(0(5), to))
is integrable on [Ty, o0). Then, respecting (9), we get for b > ¢

ay ' (9)Qi+ 1 (5, L)b ™ G(s, bag *(¢(s)) Pul(@(s), to))

(11)
< a, () Qi+ 1 (5, to)e 1 G(s, cag @) Pe(@(9), to)), 52 Ty
and by (10)
Jim a7 ()@ 1 (5, t)b ™1 G(s, bag *(9(s)) Pe(0(s), t5)) = 0 (12)

pointwise on [Ty, c0). Use of the Lebesgue dominated convergence theorem
gives

Jim b~ J Ay () Qx4 1(5; L) G(s, bag (@(s)) P(e(s), to))ds = 0. (13)
o0 TD
Therefore, for p > 0 there exists by(p) > 0 such that
f ay () Qi+ 1(5, L) G(s, bag ' (@(5) Pe((5), to))ds < pb (14)
To

for each b > by >c. Let p=1/2, b, > by(1/2), 0 < a, < b,/2. We define

Y, = {u(t)e C(J): a, Pil(t, to) < ao(t)u(t) < b, Py(t, to)}

and the operator A on Y, as follows: u(t)e Y,
Au(t) = {a(;l(t)l:bkpk(t, to)

+ J " ari(sy) f " ari(s)- f T f " 4 ()0 s, sk)v(s)dsdwk],

To To To Sk
v(S)GMu(q)(S))}, t2 To,

Au(t) = ag '(t)b Py(t, to), to =t =Tp.

By the assumption 3°, u(t)eY, implies v(t) <O0. Therefore, ay(t)Au(t) <
b P.(t, to) for t = t,. Furthermore, taking (14) into consideration, we get for
t= Ty
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by Py(t, to) — ao(t) Au(t)

4 a:l(sl)f1az‘l(sz)---Jk’la,:l(sodwkj 07 (5) 0 1 (5. 1)

To To To To

1
- G(s, beag (@) Pi(e(s), to))ds < Ebkpk(t, to))

1
and finally 0 < a,P,(t, ty) < 3 b, P,(t, ty) < ao(t)Au(t). This all proves that

AY, < Y,. Proceeding as in the proof of Theorem 1 (for the case «,), we
can show that A has a fixed element x(t) in Y; and this element x(¢) is a
positive solution of (E) which exists on [T, oo0) and satisfies (1). Since any
number b, greater than by(1/2) can be taken in defining Y; and 4, it is clear
that there exist infinitely many such solutions of (E).

THEOREM 4. Let all assumptions of Theorem 2 be satisfied. Moreover,
let (9) and (10) be satisfied. Then all statements of Theorem 2 hold and the
solutions in i) as well as in ii) exist on [T, ) and satisfy (2).

Proor. We only sketch the proof of i), since the proof of ii) is similar
and the proof of iii) is the same as in Theorem 2. From the assumption
(H,) — (c) we conclude that

ay *(8) Qi+ 1 (s, to)G<S, %aa‘(q)(s)) [Pi-1(0(s), o) + Pilo(s), to)])

is integrable on [Ty, o). Let 2b >c. Then, in view of (9), we obtain

ay 1 () Qi+ 1(s, to)b ™1 G(s, bag H(@(s)) [Pi—1(9(5), to) + Pul@(s), to)])
< a, 1) Qi+ 1 (5, to)2¢” ‘G<S, %aalw(S)) [Py~ 1(9(5), to) + Pi(o(s), to)])
for s> T, and, respecting (10),
Jim a, () Qe s, to)b ™1 G(s, bag ' (¢(s)) [Py~ 1(0(5), to) + Pil(e(s), t)]) =0

pointwise on [Ty, o0). Use of the Lebesgue dominated convergence theorem
gives

lim 57! f " 071900105, 1G5, bag ' (9(6) [P 1 (0(5) t0)+ Pu(o(s), t0)])ds = .

To

It means that for p > 0 there exists by(p) > 0 such that
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f a, ' (8)Qi+1(S, to) G(s, bag H(@(5)) [P 1(9(5), to) + Pul(s), to)])ds < pb
To

for each b= by(p). Put p=1 and let a =b > by(1) be fixed. Consider the
set

1
Y, = {u(t)GC(J)! EaPk—1(t, to) S ao(t)u(t) < alPy- (1, to) + Pi(t, to)]}
and the operator B, defined on Y; as follows: u(t)e Y;,

Biu(t) = {ao_l(t)liapk-l(t, to)

- f ar'(s) f 'a,:l(sk)-«j“”a,:‘(sk) f s;‘(s)QHl(s,s»v(s)dsdwk},
To To To S|

k

U(S)GMu(w(S))}, t2 T,

Blu(t) = ao_l(t)aPk_l(t, to), to é t é 7’(‘).

It is easy to prove that B, Y;CY;. If we proceed as in the proof of i) of
Theorem 2, then we can prove that B, has a fixed element y(t)e Y; and that
this element is a solution of (E) existing on [T, o) and satisfying (2). Since
any number a greater than by(1) can be taken in defining Y; and B,, there
exist infinitely many such solutions of (E).

The existence of infinitely many negative solutions of (E) existing on
[Ty, 0) and satisfying (2) can be proved in the similar way.
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