Oscillatory properties of systems
 of neutral differential equations

Dedicated to Professor Takaŝi Kusano on his sixtieth birthday

Anatoli F. Ivanov and Pavol Marusiak
(Received November 16, 1992)

Abstract

We study oscillatory properties of solutions and existence of nonoscillatory solutions with a power growth at the infinity for the system of differential equations of neutral type

$$
\frac{d^{n_{i}}}{d t^{n_{i}}}\left[x_{i}(t)-a_{i}(t) x_{i}\left(h_{i}(t)\right)\right]=p_{i}(t) f_{i}\left(x_{3-i}\left(g_{i}(t)\right)\right), \quad n_{i} \in \mathbb{N}, i=1,2
$$

1. Introduction

In this paper we consider systems of neutral differential equations of the form

$$
\begin{equation*}
\frac{d^{n_{i}}}{d t^{n_{i}}}\left[x_{i}(t)-a_{i}(t) x_{i}\left(h_{i}(t)\right)\right]=p_{i}(t) f_{i}\left(x_{3-i}\left(g_{i}(t)\right)\right), \quad n_{i} \in \mathbb{N}, i=1,2 . \tag{S}
\end{equation*}
$$

The following conditions are assumed to hold without further mention:
(a) $a_{i}, h_{i}, g_{i}, p_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}, f_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are continuous functions;
(b) $h_{i}(t) \leq t$ for $t \in \mathbb{R}^{+}, \lim _{t \rightarrow \infty} h_{i}(t)=\infty, \lim _{t \rightarrow \infty} g_{i}(t)=\infty, i=1 ; 2$;
(c) $z f_{i}(z)>0$ for $z \neq 0$.

We put

$$
x_{i}(t)-a_{i}(t) x_{i}\left(h_{i}(t)\right)=u_{i}(t), \quad i=1,2 .
$$

For $t_{0} \geq 0$ denote

$$
t_{1}=\min \left\{\inf _{t \geq t_{0}} h_{i}(t), \inf _{t \geq t_{0}} g_{i}(t), i=1,2\right\} .
$$

A vector function $X=\left(x_{1}, x_{2}\right)$ is defined to be a solution of system (S) if there exists a $t_{0} \geq 0$ such that X is continuous on [$\left.t_{1}, \infty\right), u_{i}$ is n_{i} times

[^0]continuously differentiable in $\left[t_{0}, \infty\right), i=1,2$, and X satisfies system (S) on $\left[t_{0}, \infty\right)$.

Solution $X=\left(x_{1}, x_{2}\right)$ is called a proper solution if $\sup \left\{\left|x_{1}(t)\right|+\left|x_{2}(t)\right|\right.$, $t \geq T\}>0$ for any $T \geq 0$.

A proper solution X of (\mathbf{S}) is defined to be nonoscillatory if there exists a $t_{0} \geq 0$ such that every its component is different from zero for all $t \geq t_{0}$. A proper solution X is defined as oscillatory otherwise.

Present paper consists of two parts. In the first part we prove the existence of nonoscillatory solutions of system (S) with a polynomial growth at the infinity. An additional assumption is made that

$$
a_{i}(t)=\lambda_{i}=\text { const }, \quad t-h_{i}(t)=\tau_{i}=\text { const }>0 .
$$

A solution $X=\left(x_{1}, x_{2}\right)$ is said to have a polynomial growth at the infinity if there exist nonnegative numbers β_{1}, β_{2} such that

$$
\lim _{t \rightarrow \infty} \frac{x_{1}(t)}{t^{\beta_{1}}}=\text { const } \neq 0, \quad \lim _{t \rightarrow \infty} \frac{x_{2}(t)}{t^{\beta_{2}}}=\text { const } \neq 0
$$

Existence of nonoscillatory solutions of scalar equations or systems of equations of neutral type with certain asymptotic properties, including the polynomial growth solutions, has been studied in, e.g. [1-5, 7, 8].

The second part deals with the oscillatory behavior of solutions of (S). Sufficient conditions for the oscillation of all solutions of linear systems have been obtained by V. N. Shevelo et. al. [8], Györi and Ladas [1].

The results of this paper generalize those obtained in a previous paper by the authors [3].

2. Existence of nonoscillatory solutions

Throughout this section we assume the following additional to (a)-(c) conditions to hold:

$$
\begin{gather*}
a_{i}(t)=\lambda_{i}=\text { const } \neq \pm 1, h_{i}(t)=t-\tau_{i}, \tau_{i}>0, i=1,2 \tag{2.1}\\
\quad \lim \sup _{t \rightarrow \infty} \frac{g_{i}(t)}{t} \leq \sigma_{i}<\infty, \sigma_{i}>0, i=1,2 \tag{2.2}
\end{gather*}
$$

$\left|f_{i}(z)\right| \leq \delta_{i}|z|^{\alpha_{i}}$ for large $|z|$ and some positive constants $\alpha_{i}, \delta_{i}, i=1,2$.

2.1. Auxiliary transformations and Lemmas

Let $C[T, \infty)$ be the Fréchet space of continuous functions in $[T, \infty)$ with
the topologyof the uniform convergence on compact subintervals.
A. Let $|\lambda|>1$ and let $C_{\lambda, \tau}[T, \infty)$ stand for a subset of $C[T, \infty)$ consisiting of all functions $u(t)$ such that the series $\sum_{k=1}^{\infty} \lambda^{-k} u(t+k \tau)$ are uniformly convergent on every compact subinterval of $[T, \infty)$.

Define the operator $\Psi_{T, \lambda, \tau}: C_{\lambda, \tau}[T, \infty) \rightarrow C[T-\tau, \infty)$ as follows:

$$
\begin{equation*}
\Psi_{T, \lambda, \tau} u(t)=\sum_{k=1}^{\infty} \lambda^{-k} u(t+k \tau), \quad t \geq T-\tau . \tag{2.4}
\end{equation*}
$$

B. Let $|\lambda|<1$. Define the operator $\Phi_{T, \lambda, \tau}: C[T, \infty) \rightarrow C[T-\tau, \infty)$ as follows:

$$
\begin{align*}
& \Phi_{T, \lambda, \tau} u(t)=\sum_{k=0}^{n(t)-1}|\lambda|^{k} u(t-k \tau)+\frac{|\lambda|^{n(t)} u(T)}{1-|\lambda|}, \quad t \geq T, \\
& \Phi_{T, \lambda, \tau} u(t)=\frac{u(T)}{1-|\lambda|}, \quad T-\tau \leq t \leq T, \tag{2.5}
\end{align*}
$$

where $n(t)$ stands for the smallest integer such that $t-n(t) \tau \leq T$.
Lemma 2.1. If $u \in C_{\lambda, \tau}[T, \infty)$ then $x=\Psi_{T, \lambda, \tau} u$ satisfies the difference equation

$$
x(t)-\lambda x(t-\tau)=-u(t), \quad t \geq T .
$$

Lemma 2.2. If $u \in C[T, \infty)$ then $x=\Phi_{T, \lambda, \tau} u$ satisfies the difference equation

$$
x(t)-\lambda x(t-\tau)=u(t), \quad t \geq T .
$$

Proof of Lemmas follows immediately from (2.4) and (2.5) respectively.
Lemma 2.3 ([4, Lemma 1.3]). Let $u \in C[T, \infty)$ be positive and nonincreasing. Then for every constant $\rho \in(0,1)$ there exist positive constants c_{1}, c_{2} and c_{3} depending on λ and τ only and such that

$$
\begin{equation*}
\Phi_{T, \lambda, \tau} u(t) \leq c_{1} u(\rho t)+c_{2} u(T) \lambda^{(1-\rho) t / \tau}+c_{3} u(T) \lambda^{(t-T) / t a u} . \tag{2.6}
\end{equation*}
$$

Corollary 2.1. Let $u(t)$ be as in Lemma 2.3 and m be a nonnegative real number. If

$$
\int_{T}^{\infty} t^{m} u(t) d t<\infty
$$

then

$$
\int_{T}^{\infty} t^{m} \Phi_{T, \lambda, \tau} u(t) d t<\infty
$$

Proof of Corollary 2.1 follows from (2.6).

2.2. Solutions with a power growth

Theorem 2.1. Let the assumptions (2.1)-(2.3) hold and $l_{i} \in\left\{0,1, \ldots, n_{i}-1\right\}$, $i=1,2$, be given. Suppose there exist continuous nonincreasing functions $q_{i}:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}, i=1,2$, such that $\mid p_{i}(t) \leq q_{i}(t)$ for $t \geq t_{0}$ and

$$
\int_{t_{0}}^{\infty} t^{n_{i}-l_{i}-1+\alpha_{i} l_{3-i}} q_{i}(t) d t<\infty, \quad i=1,2
$$

Then for arbitrary $\left(b_{1}, b_{2}\right)\left(b_{1} b_{2}>0\right)$ system (S) has a nonoscillatory solution $\left(x_{1}, x_{2}\right)$ with the property

$$
\lim _{t \rightarrow \infty} \frac{x_{i}(t)}{t^{l_{i}}}=b_{i}, \quad i=1,2
$$

Proof. A). Let $\quad\left|\lambda_{i}\right|>1, \quad i=1,2 . \quad$ Set $\quad T_{*}=\min \left\{\inf _{t \geq r} g_{i}(t), T-\tau_{i}\right.$, $i=1,2\}$. For $x_{i}(t) \in C\left[T_{*}, \infty\right), i=1,2$, define the mapping $F(X)=F\left(\left(x_{1}, x_{2}\right)\right)$ $=\left(F_{1} X, F_{2} X\right)$ given by

$$
\begin{align*}
F_{i} X(t)= & c_{i}+\frac{d_{i}(t-T)^{l_{i}}}{l_{i}!}+(-1)^{n_{i}-l_{i}-1} \int_{T}^{\infty} \frac{(t-s)^{l_{i}-1}}{\left(l_{i}-1\right)!} \\
& \times \int_{s}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} \Psi_{T, \lambda_{i}, \tau_{i}}\left(p_{i}(r) f_{i}\left(x_{3-i}\left(g_{i}(r)\right)\right) d r d s, \quad t \geq T,\right. \\
F_{i} X(t)= & c_{i}, T_{*} \leq t \leq T, i=1,2, \tag{2.8}
\end{align*}
$$

where $c_{i} \neq 0, d_{i}>0, i=1,2$.
Assume that the mapping F has a fixed point $X^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)$, i.e. $X^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)=\left(F_{1} X^{0}(t), F_{2} X^{0}(t)\right)$. Differentiation of (2.8) shows that

$$
\left(x_{i}^{0}(t)\right)^{\left(n_{i}\right)}=-\Psi_{T, \lambda_{i}, \tau_{i}}\left(p_{i}(t) f_{i}\left(x_{3-i}^{0}\left(g_{i}(t)\right)\right), \quad i=1,2,\right.
$$

and therefore, in view of Lemma 2.1, $\left(x_{1}^{0}(t), x_{2}^{0}(t)\right)$ is a solution of system (S). From (2.8) it follows that $\lim _{t \rightarrow \infty} x_{i}^{\left(l_{i}\right)}(t)=d_{i}$, implying $\lim _{t \rightarrow \infty} x_{i}(t) / t^{l_{i}}=$ const $>0, i=1,2$.

Define subsets $W_{i} \subset C\left[T_{*}, \infty\right), i=1,2$, as follows:

$$
\begin{gathered}
W_{i}=\left\{w \in C[T, \infty): c_{i} \leq w(t) \leq c_{i}+\frac{2 d_{i}(t-T)^{l_{i}}}{l_{i}!}, t \geq T,\right. \text { and } \\
\left.w(t)=c_{i}, \quad T_{*} \leq t \leq T\right\}, \quad i=1,2
\end{gathered}
$$

It is easy to see that $W_{i}, i=1,2$, are convex subsets of $C\left[T_{*}, \infty\right)$. We shall
show next that for arbitrary constants $d_{i}>0, c_{i} \neq 0, i=1,2, T$ can be chosen in such a way that F maps $W_{1} \times W_{2}$ into itself. The standard arguments show that $F\left(W_{1} \times W_{2}\right)$ is relatively compact in the topology of $C\left[T_{*}, \infty\right) \times$ $C\left[T_{*}, \infty\right)$. Therefore, the Schauder-Tychonoff theorem is applied to derive the existence of a fixed point of F.

Take $x_{i} \in W_{i}, i=1,2$. Then in view of (2.2), (2.3) we obtain

$$
\begin{aligned}
& \mid \Psi_{T, \lambda_{i}, \tau_{i}}\left(\left.p_{i}(t) f_{i}\left(x_{3-i}^{0}\left(g_{i}(t)\right)\right)\left|\leq \sum_{k=1}^{\infty}\right| \lambda_{i}\right|^{-k} q_{i}\left(t+k \tau_{i}\right) f_{i}\left(k_{3-i}\left(g_{i}\left(t+k \tau_{i}\right)\right)\right)\right. \\
& \quad \leq q_{i}(t) \sum_{k=1}^{\infty}\left|\lambda_{i}\right|^{-k} f_{i}\left(k_{3-i}\left(g_{i}\left(t+k \tau_{i}\right)\right)\right) \leq \delta_{i} q_{i}(t) \sum_{k=q}^{\infty}\left|\lambda_{i}\right|^{-k} g_{i}^{\alpha_{i} l_{3-i}}\left(t+k \tau_{i}\right) \\
& \quad \leq \delta_{i} \sigma_{i}^{\alpha_{i} l_{3-i}} q_{i}(t) \sum_{k=1}^{\infty}\left|\lambda_{i}\right|^{-k}\left(t+k \tau_{i}\right)^{\alpha_{i} l_{3-i}} \leq \gamma_{i} q_{i}(t) t^{\alpha_{i} l_{3-i}}, \quad i=1,2,
\end{aligned}
$$

where

$$
\gamma_{i}=\delta_{i} \sigma_{i}^{\alpha_{i} l_{3-i}} \sum_{k=1}^{\infty}\left|\alpha_{i}\right|^{-k}(1+k)^{\lambda_{i} l_{3-i}}, \quad i=1,2
$$

In view of (2.7) for every $d_{i}^{\prime}>0, i=1,2$, there exists a $T>0$ such that

$$
\begin{aligned}
& \left\lvert\,(-1)^{n_{i}-l_{i}-1} \int_{T}^{\infty} \frac{(t-s)^{l_{i}-1}}{\left(l_{i}-1\right)!} \int_{s}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} \Psi_{T, \lambda_{i}, \lambda_{i}, \tau_{i}}\left(p_{i}(r) f_{i}\left(x_{3-i}\left(g_{i}(r)\right)\right) d r d s \mid\right.\right. \\
& \quad \leq \gamma_{i} \int_{T}^{\infty} \frac{(t-s)^{l_{i}-1}}{\left(l_{i}-1\right)!} d s \int_{T}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} r^{\alpha_{i} l_{i-3}} q_{i}(r) d r \\
& \quad \leq \gamma_{i} \int_{T}^{\infty} \frac{(t-s)^{l_{i}-1}}{\left(l_{i}-1\right)!} d s \int_{T}^{\infty} r^{n_{i}-l_{i}-1+\alpha_{i} l_{3-i}} q_{i}(r) d r \leq d_{i}^{\prime}(t-T)^{l_{i}}, t \geq T, i=1,2 .
\end{aligned}
$$

It follows that $F_{i} X_{i} \subset W_{i}(i=1,2)$ provided $x_{i} \in W_{i}(i=1,2)$. This shows that $F\left(W_{1} \times W_{2}\right) \subset W_{1} \times W_{2}$. Therefore, F has a fixed point.
B). Case $\left|\lambda_{i}\right|<1, i=1,2$. Let T_{*} be defined as above and $x_{i} \in C\left[T_{*}, \infty\right)$, $i=1,2$. Define the mapping $F(X)=F\left(\left(x_{1}, x_{2}\right)\right)=\left(F_{1} X, F_{2} X\right)$ as follows:

$$
\begin{align*}
F_{i}(X(t)= & c_{i}+\frac{d_{i}(t-T)^{l_{i}}}{l_{i}!}+(-1)^{n_{i}-l_{i}} \int_{T}^{\infty} \frac{(t-s)^{l_{i}-1}}{\left(l_{i}-1\right)!} \\
& \times \int_{s}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} \Phi_{T, \lambda_{i}, \tau_{i}}\left(p_{i}(r) f_{i}\left(x_{3-i}\left(g_{i}(r)\right)\right) d r d s, \quad t \geq T\right. \tag{2.9}\\
F_{i} X(t)= & c_{i}, T_{*} \leq t \leq T, i=1,2
\end{align*}
$$

where $c_{i} \neq 0, d_{i}>0, i=1,2$. If the mapping F has a fixed point $\left(x_{1}^{0}, x_{2}^{0}\right)$
then differentiation of (2.9) shows that

$$
\left(x_{i}^{0}(t)\right)^{\left(n_{i}\right)}=\Phi_{T, \lambda_{i}, \tau_{i}}\left(p_{i}(t) f_{i}\left(x_{3-i}^{0}\left(g_{i}(t)\right)\right), \quad i=1,2\right.
$$

and Lemma 2.1 shows that $\left(x_{1}^{0}(t), x_{2}^{0}(t)\right)$ is a solution of (S). From equation (2.9) it follows that $\lim _{t \rightarrow \infty} x_{i}(t) / t^{l_{i}}=$ const $>0, i=1,2$.

Let subsets W_{i} be given as above. Take $x_{i} \in W_{i}, i=1,2$. Then in view of (2.2), (2.3), (2.7) and Corrolary 2.1 we obtain

$$
\begin{aligned}
& \left\lvert\, \int_{s}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} \Phi_{T, \lambda_{i}, \tau_{i}}\left(p_{i}(r) f_{i}\left(x_{3-i}\left(g_{i}(r)\right)\right) d r \mid\right.\right. \\
& \left.\quad \leq \gamma_{i} \int_{s}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} \Phi_{T, \lambda_{i}, \tau_{i}}\left(q_{i}(r)\left|x_{3-i}^{\alpha_{i}}\left(g_{i}(r)\right)\right|\right) d r \right\rvert\, \\
& \quad \leq \gamma_{i} \int_{T}^{\infty} r^{n_{i}-l_{i}-1+\alpha_{i} l_{3-i}} \Phi_{T, \lambda_{i}, \tau_{i}}\left(g_{i}(r)\right) d r<\infty, \quad i=1,2 .
\end{aligned}
$$

The last inequality shows that for arbitrary $d_{i}^{\prime}>0, i=1,2$, there exists a $T>0$ such that for all $s \geq T$

$$
\left\lvert\, \int_{s}^{\infty} \frac{(r-s)^{n_{i}-l_{i}-1}}{\left(n_{i}-l_{i}-1\right)!} \Phi_{T, \lambda_{i}, \tau_{i}}\left(p_{i}(r) f_{i}\left(x_{3-i}\left(g_{i}(r)\right)\right) d r \mid \leq d_{i}^{\prime}, \quad i=1,2\right.\right.
$$

As for the case A) this implies $F\left(W_{1} \times W_{2}\right) \subset W_{1} \times W_{2}$ provided $x_{i} \in W_{i}$ and $T>0$ is sufficiently large. As before, F is continuous and $F\left(W_{1} \times W_{2}\right)$ is relatively compact in the topology $C\left[T_{*}, \infty\right) \times C\left[T_{*}, \infty\right)$. Therefore, F has a fixed point, which gives a nonoscillatory solution of (S). This completes the proof of the theorem.

3. Oscillation criteria

In addition to the assumptions (a)-(c) we suppose

$$
\begin{gather*}
\left|a_{i}(t)\right| \leq \lambda_{i}<1, a_{i}(t) a_{i}\left(h_{i}(t)\right) \geq 0, \quad i=1,2 \tag{3.1}\\
p_{1}(t)=\bar{p}_{1}(t), p_{2}(t)=\sigma \bar{p}_{2}(t), \bar{p}_{2}(t)>0, \quad t \geq 0, \sigma \in\{-1,+1\} \tag{3.2}
\end{gather*}
$$

For every $d>0$ there exist $\delta_{i}>0, i=1,2$,

$$
\begin{equation*}
\text { such that } \inf \left\{\left|f_{i}(z)\right|:|z|>d\right\}>\delta_{i}, \quad i=1,2 . \tag{3.3}
\end{equation*}
$$

Remark 3.1. System (S) whose coefficients $p_{i}, i=1,2$, satisfy (3.2) will be denoted (S_{σ}).

In the sequel the following Lemma (called Kiguradze's Lemma) will be used.

Lemma 3.1 ([6]). Let $z \in C^{m}\left[t_{0}, \infty\right)$ be such that $z(t) \neq 0, v z(t) \cdot z^{m}(t) \geq 0$ for $t \geq t_{0}, v \in\{-1,+1\}$. Then there exists an integer $l \in\{0,1, \ldots, m\}$ with $v(-1)^{l+m}=1$ and $T_{0} \geq t_{0}$ such that for $t \geq T_{0}$ one has

$$
\begin{aligned}
& z(t) z^{(k)}(t)>0 \quad \text { for } \quad k=0,1, \ldots, l \\
& (-1)^{l+k} z(t) z^{(k)}(t) \geq 0 \quad \text { for } k=l+1, \ldots, m .
\end{aligned}
$$

Corollary 3.1. If under assumptions of Lemma $3.1 \lim _{t \rightarrow \infty} z(t)=0$ then $z^{(k)}(t)(k=0,1, \ldots, m)$ tend monotonically to zero as $t \rightarrow \infty$.

Denote

$$
\gamma(h)=\sup \left\{s: h_{i}(s) \leq t, g_{i}(t) \leq t, i=1,2, t \geq 0\right\} .
$$

Let $\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of system $\left(S_{\sigma}\right)$. Let (3.1)-(3.3) and (1.1) hold. Then in view of Lemma 3.1 from $\left(\mathbf{S}_{\sigma}\right)$ we get for all sufficiently large t either

$$
\begin{equation*}
x_{i}(t) u_{i}(t)>0, \quad i \in\{1,2\}, \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{i}(t) u_{i}(t)<0, \quad i \in\{1,2\} . \tag{3.5}
\end{equation*}
$$

Denote by N^{+}(respectively N^{-}) the set of components of all nonoscillatory solutions (x_{1}, x_{2}) of system $\left(\mathrm{S}_{\sigma}\right)$ such that (3.4) (respectively (3.5)) is satisfied.

Lemma 3.2. Let $x_{i} \in N^{+}, i \in\{1,2\}$, and (1.1), (3.1) hold.
(a) If $x_{i}(t) u_{i}^{\prime}(t)>0$ for $t \geq t_{0}$, then there exist constants b_{i} and $T_{0}>t_{0}$ such that $x_{i} b_{i}>0$ and

$$
\begin{equation*}
\left|x_{i}(t)\right| \geq\left|u_{i}(t)\right|\left(1-\lambda_{i}\right) \geq\left|b_{i}\right|\left(1-\lambda_{i}\right)>0, \quad i=1,2, t \geq T_{0} . \tag{3.6}
\end{equation*}
$$

(b) Let $x_{i}(t) u_{i}^{\prime}(t)<0$ and $\left|u_{i}(t)\right| \geq \delta>0$ for $t \geq t_{0}$. Then there exist $\varepsilon>0$ and $T_{1} \geq t_{0}$ such that

$$
\begin{equation*}
x_{i}(t) \geq \varepsilon_{1}\left|u_{i}(t)\right| \geq \varepsilon_{1} \delta=\varepsilon>0 \quad \text { for } t \geq T_{1}, \quad i=1,2 . \tag{3.7}
\end{equation*}
$$

Proof. (a) Without loss of generality we assume that $x_{1}(t)>0, u_{1}(t)>0$ and $u_{1}^{\prime}(t)>0$ for $t \geq t_{0}$. The last two inequalities imply that there exist b_{1} and $t_{1} \geq t_{0}$ such that $u_{1} \geq b_{1}$ for $t \geq t_{1}$. Then (1.1) together with (3.1) gives $x_{1}(t) \geq u_{1}(t)+a_{1}(t) u_{1}\left(h_{1}(t)\right) \geq u_{1}(t)\left(1-\lambda_{1}\right) \geq b_{1}\left(1-\lambda_{1}\right)>0$ for $t \geq \gamma\left(\gamma\left(t_{1}\right)\right)=$ T_{0}.
(b) Let $x_{1}(t)>0, u_{1}^{\prime}(t)<0$ and $u_{1}(t) \geq \delta>0$ for $t \geq t_{0}$. Choose δ_{1} : $1<\delta_{1} \leq 1 / \lambda_{1}$. Then there exists $t_{2} \geq t_{1}$ such that $0<\delta \leq u_{1}(t) \leq u_{1}\left(h_{1}(t)\right) \leq$ $\delta \delta_{1}$. The last inequality, in view of (1.1) and(3.1), implies $x_{1}(t) \geq u_{1}(t)+$ $a_{1}(t) u_{1}\left(h_{1}(t)\right) \geq u_{1}(t)\left(1-\lambda_{1} \delta_{1}\right) \geq \delta\left(1-\lambda_{1} \delta_{1}\right)=\varepsilon>0$ for $t \geq \gamma\left(\gamma\left(t_{2}\right)\right)=T_{1}$.

Lemma 3.3. Let $x_{i} \in N^{-}, i=1,2$, and (1.1), (3.1) hold. Then $\lim _{t \rightarrow \infty} u_{i}(t)$ $=0, \lim _{t \rightarrow-\infty} x_{i}(t)=0, i=1,2$.

Proof. Without loss of generality we assume that $x_{1}(t)>0, u_{1}(t)<0$ for $t \geq t_{0}$. Then (1.1) in view of (3.1) implies $0<x_{1}(t)<a_{1}(t) x_{1}\left(h_{1}(t)\right) \leq$ $x_{1}\left(h_{1}(t)\right)$ for $t \geq t_{0}$. Function $x_{1}(t)$ is nonincreasing and therefore, $\lim _{t \rightarrow \infty} x_{1}(t)$ $=c \geq 0$. Then with regard to $0<x_{1}(t)<\lambda_{1} x_{1}\left(h_{1}(t)\right)$ we have $c \leq \lambda_{1} c$, a contradiction to $0<\lambda_{1}<1$. Therefore $c=0$. Then (1.1) together with (3.1) implies $\lim _{t \rightarrow \infty} u_{2}(t)=0$.

Remark 3.4. The case $x_{i} \in N^{-}$can occur only if $a_{i}(t)>0$ and $v(-1)^{n_{i}}=1$, $i=1,2$.

Lemma 3.4. Let a_{i}, \bar{p}_{i} and $f_{i}, i=1,2$, satisfy the assumptions (3.1)-(3.3) and let

$$
w_{i}(t)=z(t)-a_{i}(t) z\left(h_{i}(t)\right), \quad i=1,2,
$$

where $z(t)$ is a solution of the equation

$$
\begin{equation*}
v w^{(m)}(t)=\bar{p}_{i}(t) f_{i}\left(z\left(g_{i}(t)\right)\right), \quad i=1,2, t \geq t_{0} \tag{E}
\end{equation*}
$$

where $m \in \mathbb{N}, v \in\{-1,+1\}$. If $z(t) \geq d>0(z(t) \leq d<0)$ for $t \geq t_{0}$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} p_{i}(t) d t=\infty, \quad i=1,2 \tag{3.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} w_{i}^{(k)}(t)=v \infty\left(\lim _{t \rightarrow \infty} w_{i}^{(k)}(t)=-v \infty\right), \quad k=0,1, \ldots, m-1, i=1,2 . \tag{3.9}
\end{equation*}
$$

Proof. Assume $z(t) \geq d>0$. Then with regard to (3.3) there exist $\delta>0$ and $T_{1} \geq t_{0}$ such that $f_{i}\left(z\left(g_{i}(t)\right)\right) \geq \delta$ for $t \geq T_{1}, i=1$, 2. Integrating equation (E) from T_{1} to t and using the last inequality we obtain

$$
v\left[w_{i}^{(m-1)}(t)-w_{i}^{(m-1)}\left(T_{1}\right)\right] \geq \delta \int_{T}^{t} p_{i}(s) d s, \quad i=1,2 .
$$

This last inequality together with (3.8) implies (3.9).
Theorem 3.1. Let $\sigma=-1$ and let the assumptions (3.1)-(3.3) and (3.8) hold. Then every proper solution $\left(x_{1}, x_{2}\right)$ of $\left(\mathrm{S}_{-1}\right)$ is either oscillaltory or $u_{i}^{k_{i}}(t)$ ($k_{i}=0,1, \ldots, n_{i}, i=1,2$) tend monotonically to zero as $t \rightarrow \infty$.

Proof. Let $\sigma=-1$ and let $\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of $\left(\mathrm{S}_{-1}\right)$ defined in $\left[t_{0}, \infty\right)$.
A). Assume first that $x_{i} \in N^{+}$and $x_{i}(t)>0$ for $t \geq t_{0}, i=1,2$. (The proofs for cases $x_{i}(t)<0, t \geq t_{0}, i=1,2$, and $x_{1}(t) x_{2}(t)<0$ are similar.) Then in view of (3.1)-(3.3) we obtain from system (S): $u_{i}(t)>0, i=1,2, u_{1}^{\left(n_{1}\right)}(t)>0$, $u_{2}^{\left(n_{2}\right)}(t)<0$ for $t \geq t_{1}:=\gamma\left(t_{0}\right)$.
(i) Let n_{1} be odd and n_{2} be either odd or even. Then by Lemma 3.1 there exists $t_{2} \geq t_{1}$ such that $u_{1}^{\prime}>0$ for $t \geq t_{2}$. With regard to Lemma 3.2 there exist $a_{1}>0$ and $t_{3} \geq t_{2}$ such that $x_{1}(t) \geq a_{1}$ for $t \geq t_{3}$. Using Lemma 3.4 we obtain $\lim _{t \rightarrow \infty} u_{2}(t)=-\infty$, which contradicts $u_{2}(t)>0$ for $t \geq t_{2}$.
(ii) Let $n_{i}, i=1,2$, be even. By Lemma 3.1 there exists $t_{2} \geq t_{0}$ such that $u_{2}^{\prime}>0$ for $t \geq t_{2}$. Using Lemma 3.2 and Lemma 3.4 we get $\lim _{t \rightarrow \infty} u_{2}(t)=\infty$. Then, in view of Lemma 3.1, $u_{1}^{\prime}>0$ for large t. Then we can proceed the same way as for the case (i) to get a contradiction.
(iii) Let n_{1} be even and n_{2} be odd. Then by Lemma 3.1 either $u_{i}^{\prime}(t)>0$ or $u_{i}^{\prime}(t)<0$ for $t \geq t_{2}$. If $u_{1}^{\prime}(t)>0$ we have the case (i), and if $u_{2}^{\prime}(t)>0$ we have the case (ii), which lead to the same contradictions.

Let $u_{i}^{\prime}(t)<0, i=1,2$, for $t \geq t_{2}$. Then since $u_{i}(t)>0, i=1,2$, for $t \geq t_{0}$ there exist $\lim _{t \rightarrow \infty} u_{i}(t)=a_{i}, i=1,2$. Assume $a_{i}>0$. Then by Lemma 3.2 and Lemma 3.4 we get $\lim _{t \rightarrow \infty} u_{1}(t)=\infty, \lim _{t \rightarrow \infty} u_{2}(t)=-\infty$, which contradicts the fact that $u_{i}(t), i=1,2$, are bounded. Therefore $a_{i}=0, i=1,2$ and in view of Corollary $3.1\left(\mathrm{P}_{1}\right)$ holds ($n+m$ is odd for this case).
B). Let $x_{i}(t) \in N^{-}, \quad i=1,2 \quad\left(a_{i}(t)>0, \quad i=1,2\right.$, for $\left.t \geq t_{0}\right)$. Assume $x_{i}(t)<0$ for $t \geq t_{0}, i=1,2$ (the proofs for the cases $x_{i}<0, i=1,2$, and $x_{1}(t) x_{2}(t)<0$ for large t are similar). From system (S) with regard to (3.1)-(3.2) we obtain $u_{i}(t)<0, i=1,2, u_{1}^{\left(n_{1}\right)}(t)>0, u_{2}^{\left(n_{2}\right)}(t)<0$ for $t \geq t_{1}:=\gamma\left(t_{0}\right)$. Therefore, in view of Remark 3.2 and Lemma 3.3, n_{1} is odd, n_{2} is even and $\lim _{t \rightarrow \infty} u_{i}(t)=0, i=1,2$. Then by Corollary $3.1\left(\mathrm{P}_{1}\right)$ holds ($n_{1}+n_{2}$ is odd).
C). Let $x_{1} \in N^{+}, x_{2} \in N^{-}\left(a_{2}(t)>0\right.$ for $\left.t \geq t_{0}\right)$. Assume $x_{i}(t)>0, i=1,2$, for $t \geq t_{0}$. (The proofs in the cases $x_{i}(t)<0, i=1,2$, and $x_{1}(t) x_{2}(t)>0$ are analogous.)

From system (S) with regard to (3.1)-(3.3) we obtain $u_{1}(t)>0, u_{1}^{\left(n_{1}\right)}(t)>0$, $u_{2}(t)<0, u_{2}^{\left(n_{2}\right)}(t)<0$ for $t \geq t_{1}=\gamma\left(t_{0}\right)$. Using Lemma 3.3 and Remark 3.1 we get $\lim _{t \rightarrow \infty} u_{2}(t)=0$, where n_{2} is even. By virtue of Lemma 3.1 there exists $t_{2} \geq t_{1}$ such that for n_{1} odd $u_{2}^{\prime}(t)>0$ and for n_{1} even either $u_{2}^{\prime}(t)>0$ or $u_{2}^{\prime}(t)<0$ for $t \geq t_{2}$. If $u_{2}^{\prime}(t)>0$ or $u_{2}^{\prime}(t)<0$ and $\lim _{t \rightarrow \infty} u_{1}(t)=a_{1}>0$ then by Lemmas 3.2 and 3.4 we get $\lim _{t \rightarrow \infty} u_{2}(t)=-\infty$ which is a contradiction to $\lim _{t \rightarrow \infty} u_{2}(t)=0$. Therefore, $\lim _{t \rightarrow \infty} u_{1}(t)=0$. Using Corollary 3.1 we conclude that (P_{1}) holds ($n_{1}+n_{2}$ is even).

The proof of Theorem 3.1 is complete.
Theorem 3.2. Let $\sigma=1$ and let the assumptions (3.1)-(3.3) and (3.8) hold. Then every proper solution $\left(x_{1}, x_{2}\right)$ of system (S) is either oscillatory or
(P_{1}) holds or

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u_{i}^{\left(k_{i}\right)}(t)=\left(\operatorname{sgn} u_{i}\right) \infty, \quad k_{i}=0,1, \ldots, n_{i}-1, i=1,2 \tag{2}
\end{equation*}
$$

holds.
Proof. Let $\sigma=1$ and $\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of (S) in $\left[t_{0}, \infty\right)$.
A). Assume first that $x_{i} \in N^{+}, i=1,2$.
(I) Let $x_{i}(t)>0, i=1,2$, for $t \geq t_{0}$ (the proof for the case $x_{i}(t)<0$, $i=1,2$, is similar). Then from system (S) in view of (3.1)-(3.2) we obtain $u_{i}(t)>0, u_{i}^{\left(n_{i}\right)}(t)>0, i=1,2$, for $t \geq t_{1}=\gamma\left(t_{0}\right)$.
(i) Let n_{1} be odd and n_{2} be either odd or even. Then by Lemma 3.1 there exists $t_{2} \geq t_{1}$ such that $u_{1}^{\prime}(t)>0$ for $t \geq t_{2}$. Using Lemma 3.2 and then Lemma 3.4 we get $\lim _{t \rightarrow \infty} u_{2}^{\left(k_{2}\right)}(t)=\infty, k_{2}=0,1, \ldots, n_{2}-1$. The last relation with regard to Lemmas 3.2 and 3.4 implies $\lim _{t \rightarrow \infty} u_{1}^{\left(k_{1}\right)}(t)=\infty, k_{1}=0,1, \ldots$, $n_{1}-1$. Therefore, $\left(\mathrm{P}_{2}\right)$ holds.
(ii) Let n_{2} be even and n_{1} be either odd or even. By Lemma $3.1 u_{1}^{\prime}(t)>0$ or $u_{1}^{\prime}(t)<0$ for $t \geq t_{1}$. If $u_{1}^{\prime}(t)>0$, then we proceed as in the case (i) and conclude that $\left(\mathrm{P}_{2}\right)$ holds. Therefore, the case $u_{1}^{\prime}(t)<0$ for $t \geq t_{0}$ is impossible.
(II) Let $x_{1}(t)>0, x_{2}(t)<0$ for $t \geq t_{0}$ (the proof of the case $x_{1}(t)<0$, $x_{2}(t)>0$ for $t \geq t_{0}$ is similar). Then from system (S) in view of (3.1)-(3.2) we get $u_{1}(t)>0, u_{1}^{\left(n_{1}\right)}(t)<0, u_{2}(t)<0, u_{2}^{\left(n_{2}\right)}(t)>0$ for $t \geq t_{1}=\gamma\left(t_{0}\right)$.
(i) Let n_{2} be even and n_{1} be either odd or even. By Lemma 3.1 there exists $t_{2} \geq t_{1}$ such that $u_{2}^{\prime}(t)<0$ for $t \geq t_{2}$. Using Lemma 3.3 and then Lemma 3.4 we get $\lim _{t \rightarrow \infty} u_{1}(t)=-\infty$, which contradicts $u_{1}(t)>0$ for $t \geq t_{0}$.
(ii) Let n_{1} be even and n_{2} be odd. By Lemma 3.1, $u_{1}^{\prime}(t)>0$ for $t \geq t_{2} \geq t_{1}$. Using Lemma 3.2 and then Lemma 3.4 we get $\lim _{t \rightarrow \infty} u_{2}(t)=\infty$, which contradicts $u_{2}(t)<0$ for $t \geq t_{0}$.
(iii) Let $n_{i}, i=1,2$, be odd. Then by Lemma 3.1 either $u_{i}^{\prime}(t)>0$ or $u_{i}^{\prime}(t)<0, i=1,2$, for $t \geq t_{2} \geq t_{1}$. If $u_{1}^{\prime}(t)>0$ or $u_{1}^{\prime}(t)<0$ and $\lim _{t \rightarrow \infty} u_{1}(t)=$ $a_{1}>0$ then using Lemma 3.2 and Lemma 3.4 we obtain $\lim _{t \rightarrow \infty} u_{2}(t)=\infty$, which contradicts $u_{2}^{\prime}(t)<0, t \geq t_{2}$. Therefore, $\lim _{t \rightarrow \infty} u_{2}(t)=0$. If $u_{2}^{\prime}(t)<0$ or $u_{2}^{\prime}(t)>0$ and $\lim _{t \rightarrow \infty} u_{2}(t)=a_{2}<0$, then with regard to Lemmas 3.2 and 3.4 we have $\lim _{t \rightarrow \infty} u_{1}(t)=-\infty$, which contradicts $u_{1}(t)>0, t \geq t_{1}$. Therefore, $\lim _{t \rightarrow \infty} u_{2}(t)=0$. Thus, in view of Corollary $3.1\left(\mathrm{P}_{1}\right)$ holds.
B). Assume $x_{i} \in N^{-}\left(a_{i}(t)>0\right.$ for $t \geq t_{0}, i=1,2$.)

Let $x_{1}(t)>0, x_{2}(t)<0$ for $t \geq t_{0}$ (the cases $x_{1}(t)<0, x_{2}(t)>0$ and $x_{1} x_{2}>0$ are similar). Then (S) together with (3.1)-(3.3) implies $u_{1}(t)<0$, $u_{1}^{\left(n_{1}\right)}(t)<0, \quad u_{2}(t)>0, \quad u_{2}^{\left(n_{2}\right)}(t)>0$ for $t \geq t_{1}=\gamma\left(t_{0}\right)$. Therefore, in view of Lemma 3.3 and Remark $3.2 \lim _{t \rightarrow \infty} u_{i}(t)=0, i=1,2$ and $n_{i}, i=1,2$, are
even. Then by Corollary $3.1\left(\mathrm{P}_{1}\right)$ holds ($n_{1}+n_{2}$ is even).
C). We suppose that $x_{1} \in N^{+}, x_{2} \in N^{-}\left(a_{2}(t)>0\right.$ for $\left.t \geq t_{0}\right)$. (The case $x_{1} \in N^{-}, x_{2} \in N^{+}$is treated similarly.) Let $x_{1}(t)>0, x_{2}(t)<0$ for $t \geq t_{0}$ (the proof in the cases $x_{1}(t)<0, x_{2}(t)>0$ and $x_{1}(t) x_{2}(t)>0$ is similar). Then from system (S) with regards to (3.1)-(3.3) we get $u_{i}(t)>0, i=1,2, u_{1}^{\left(n_{1}\right)}(t)<0$ and $u_{2}^{\left(n_{2}\right)}(t)>0$ for $t \geq t_{1}=\gamma\left(t_{0}\right)$. By virtue of Lemma 3.3 and Remark 3.2 we have $\lim _{t \rightarrow \infty} u_{2}(t)=0$ and n_{2} is even. By Lemma 3.1 there exists $t_{2} \geq t_{1}$ such that for n_{1} even $u_{1}^{\prime}(t)>0$ and for n_{1} odd either $u_{1}^{\prime}(t)>0$ or $u_{1}^{\prime}(t)<0$ for $t \geq t_{2}$. If $u_{1}^{\prime}(t)>0$ or $u_{1}^{\prime}(t)<0$ and $\lim _{t \rightarrow \infty} u_{1}(t)=a_{1}>0$, then by Lemmas 3.2 and 3.4 we conclude that $\lim _{t \rightarrow \infty} u_{2}(t)=\infty$, which contradicts $\lim _{t \rightarrow \infty} u_{2}(t)$ $=0$. Therefore, $\lim _{t \rightarrow \infty} u_{1}(t)=0$. Then, in view of Corollary 3.1, $\left(\mathrm{P}_{1}\right)$ holds ($n_{1}+n_{2}$ is odd).

This completes the proof of Theorem 3.2.
We suppose next that for $a_{i}(t)(i=1,2)$ one of the following conditions hold

$$
\begin{align*}
& a_{i}(t)>0 \text {, or } a_{i}(t) \leq 0 \text {, or } \\
& a_{i}(t) \leq 0 \text { and } a_{3-i}(t) \text { exchanges sign, } i=1,2, \tag{3.10}\\
& \text { or } a_{i}(t)(i=1,2) \text { exchanges sign. }
\end{align*}
$$

Theorem 3.3. Let the assumptions of Theorem 3.1 and (3.10) be fulfilled. Then every proper solution $\left(x_{1}, x_{2}\right)$ of system $\left(\mathrm{S}_{-1}\right)$ is oscillatory for $n_{1}+n_{2}$ even and is either oscillatory or satisfies $\left(\mathrm{P}_{1}\right)$ for $n_{1}+n_{2}$ odd.

Theorem 3.4. Let the assumptions of Theorem 3.2 and (3.10) be fulfilled. Then every proper solution $\left(x_{1}, x_{2}\right)$ of system $\left(\mathrm{S}_{1}\right)$ is either oscillatory or $\left(\mathrm{P}_{2}\right)$ holds for $n_{1}+n_{2}$ odd, or either $\left(\mathrm{P}_{1}\right)$ or $\left(\mathrm{P}_{2}\right)$ holds for $n_{1}+n_{2}$ even.

Proof of Theorems. If the assumptions of Theorem 3.3 and 3.4 hold then the case C) cannot occur. Therefore, proper solutions of $\left(\mathrm{S}_{-1}\right)$ (respectively $\left(\mathrm{S}_{1}\right)$) cannot have property $\left(\mathrm{P}_{1}\right)$ when $n_{1}+n_{2}$ is even (respectively $n_{1}+n_{2}$ is odd). This fact together with the proof of Theorems 3.1 and 3.2 yields conclusions of Theorems 3.3 and 3.4.

References

[1] D. D. Bainov and D. D. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, Philadelfia and New York, 1991.
[2] I. Györi and G. Ladas, Oscillation of systems of neutral differential equations, Differential and Integral Equations. (to appear)
[3] A. F. Ivanov and P. Marušiak, Oscillation and asymptotic properties of solutions of systems of neutral type functional differential equations., Ukrainian Math. J., 44 (1992),

1044-1049.
[4] A. F. Ivanov, J. Jaroš, and T. Kusano, Existence of nonoscillatory solutions for a class of neutral functional differential equations, (in preparation).
[5] J. Jaros and T. Kusano, Oscillation theory of higher order linear functional differential equations of neutral type, Hiroshima Math J., 18 (1988), 509-531.
[6] I. T. Kiguradze, On the oscillations of solutions of the equation $d^{m} u / d t^{m}+a(t)|u|^{m} \operatorname{sgn} u=0$, Math. Sb., 65 (1964). (Russian)
[7] P. Marusiak, On unbounded nonoscillatory solutions of systems of neutral differential equations, Czechoslovak Math. J., 42 (1992), 117-128.
[8] V. N. Shevelo, N. V. Varech, and A. G. Gritsai, Oscillatory properties of solutions of systems of differential equations with deviating arguments, Preprint no. 85.10, Institute of Mathematics of the Ukrainian Academy of Sciences (1985). (Russian)

Institute of Mathematics
Ukrainian Academy of Sciences
Kiev, Ukraine
and
Katedra Matematiky Vysokej Školy Dopravy a Spojov
Žilina, ट̌SFR

[^0]: The first author (A.F.I.) has been supported by the Alexander von Humboldt Stiftung during his stay at the Mathematisches Institut der Ludwig-Maximilians-Universität, München. He is grateful to both institutions for their support and hospitality.

