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1. Introduction

In fluid dynamics, many authors have tried to explain wave motions on
a liquid layer over an inclined plane. To study this problem they have
proposed several models which seem to be very interesting also from the
mathematical point of view [1], [13]. One of the models is the following
partial differential equation derived by Topper and Kawahara [18]:

ut + uux + ccuxx + βuxxx + yuxxxx = 0. (1.1)

Here, the wave motion is assumed to depend only on the gradient direction
x of the plane. The variable u means the height of the wave at the point x
and time t. The physical parameters α, β and y are all positive. Let us
assume that the inclined plane is infinitely long toward the direction of x,
that is, xe(— oo, oo). Then (1.1) can be considered as a 1-parameter equation
by taking an appropriate scale transformation of u, x and t. For example,
(1.1) can be transformed to the following ε-family of equations:

ut + uux + uxxx + ε(uxx + uxxxx)= 0, t > 0, - oo < x < oo. (1.2)

Here ε is a positive parameter. The equation (1.2) is regarded as the
Korteweg-de Vries equation when the backward diffusion (uxx) and dissipation
(uxxχX) terms are absent [19]. On the other hand, when ε is large it is expected
to be close to the Kuramoto-Sivashinsky equation:

ut + uux + uxx + uxxxx = 0, t > 0, — oo < x < oo,

which describes chemical turbulence ([10], [11]) or instability of flame front
([17]) and exhibits very complicated patterns. Therefore, one find that ε is
a very important parameter, which determines the character of the solutions
of the equation. Numerical solutions to (1.2) are shown in Kawahara and
Toh [7] with different values of ε. In Figure 1 one of the same numerical
solutions to (1.2) with small ε is shown.

In this paper we are mainly concerned with the equation (1.2) when ε is
small. At first one might expect that they have similar solutions to those of
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the KdV equation. To answer this question is significant not only
mathematically but also in the application point of view. Because some
physical circumstances, for example the Reynolds number is large or surface
tension is small, correspond to the case when ε is small. It is also important
in the sense of understanding the role of dispersion, dissipation and instability
in nonlinear wave systems.

In Figure 1 a typical numerical simulation of the initial and boundary
value problem for (1.2) with small ε is shown, where the boundary condition
is periodic. Also there is the one for the KdV equation with multi soliton
initial data. For the soliton solution, see Zabusky and Kruskal [19] and Lax
[12]. It is a well-known fact that in the KdV equation there are permanent
waves of different amplitudes and each wave retains their form even after
joint interaction. On the other hand for the equation (1.2), it can be said
that at the first stage many pulses appear and each pulse moves to the same
direction interacting each other. In the next stage the amplitudes of them
become equal to each other and consequently they move at the same
speed. Kawahara and Toh's numerical results [8] show that this wave train
is very close to the KdV cnoidal wave solution, which are a well-known
periodic wave solution to the equation, for suitably determined amplitudes
and wave velocities. To analyze this second stage in detail, let us put specific
initial data and compare the result for the KdV equation with that for (1.2). In
Figure 2 we put a 2-soliton-like initial data. In the perturbed equation (1.2)
the two waves interact each other and vary their shapes and amplitudes to
become equal gradually. In Figure 3 two cnoidal waves of different amplitudes
are given for (1.2). In these cases the amplitudes of them are also modulatd
and converge to some value.

Figure 1. Numerical simulations of the initial and boundary value problem in the interval (0, L).

(a) KdV equation, α = 0, γ = 0 and β = 20 in (1.1). Multi soliton-like initial data

is given. L = 200.

(b) α = 1, γ = 1 and β = 20 in (1.1). It corresponds to the case ε = 1/20 in (1.2).

Some small amplitude initial data is given. L = 200.
Boundary conditions are all periodic.
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Figure 2. Numerical simulations of the initial and boundary value problem in the interval

(0, L). 2-soliton-like initial data are given in all cases. Also boundary conditions are

all periodic.

(a) KdV equation, α = 0, y = 0 and β = 15 in (1.1). L= 37.

(b) α = 1, γ = 1 and β = 15 in (1.1). L= 37.

L 0
(b)

(c) L ° (d) t
Figure 3. Numerical simulations of the initial and boundary value problem in the interval (0, L).

(a), (c) (1.1) with α = 1, γ = 1 and β = 20. Two cnoidal waves which have different

amplitudes are given for the initial data. L = 50. Boundary conditions are all periodic,

(b), (d) Evolutions of corresponding amplitudes are shown.
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Motivated by the above, we address the following questions:

(PI) Can KdV pulse and cnoidal wave solutions persist when ε is small

in the equation (1.2) as is shown in the numerical examples?

And if so,

(P2) is there any amplitude or speed selection principle in (1.2)?

Kawahara and Toh performed formal perturbation analysis for these

problems to equation (1.1) in [7] and determine the amplitudes and the shapes

of travelling wave solutions to (1.2). Here we consider this problem from a

mathematically rigorous point of view, by using bifurcation methods in

Hamiltonian system, so that the structures of solutions can be understood

clearly together with the roles of instability and dissipation terms.

For this purpose let us first investigate travelling wave solutions to the

equation (1.2). By using the travelling coordinate z = x — ct, where c is speed,

we get the following equation for travelling wave solution to (1.2):

- cu' + uuf + u"' + φ " + u"") = 0. (1.3)

Here ' denotes the derivative by z. After integration and suitable scale

transformation, the problem is reduced to finding the homoclinic and periodic

solutions of

- £/+-L/2 + ϋ + ε( — Γ/ + y/cϋ) = 0. (1.4)
2 /

Here U = u/c and denotes the derivative by τ = y/cz.

At a glance, this problem looks like a singular perturbation problem

because ε is small. However, it can be reduced to a regular perturbation

problem. It is convenient to rewrite (1.4) as a system of first order differential

equations as follows.

(1.5)

cW=U --U2 -W- — V.
2

Then, by putting ε = 0 formally, one can expect that there exists a

2-dimensional invariant manifold near the surface {U — U2/2 — W= 0} when

ε is small. Fenichel [6] has studied such kind of singular perturbation problem

and his theorem assures the existence of the invariant manifold in this case.

Therefore the problem can be reduced to a regular perturbation on this
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2-dimensional manifold. Moreover, the unperturbed system of this perturba-
tion equation is the following Hamiltonian system which is equivalent to the
travelling wave equation for KdV, in other words, it can be get from the
lowest order approximation of the invariant manifold.

ύ = K
(1.6)

V= U --U2.

And by using higher approximation of the invariant manifold we can conclude
that the regular perturbation equation takes the form:

( L 7 )

V = U - - U2 + εί J~c{U - 1) V- — V) + O(ε2).

This reduction is the first step.
Next, to study the regular perturbation problem (1.7), we have only to

calculate the following integral (See Carr [2]).

-ί-Φ{c, ε) = I H(U9 V)dτ

Here, H = V2/2 + U2/2 - U3/6 is a Hamiltonian function for the unperturbed
system (1.6), and the integral is performed along the orbit of (1.7). Φ(c, ε) = 0
implies that there exists a homoclinic or periodic ordit for (1.7). Simple
calculation shows that

Φ(c, ε) = ε^/c l \ U 2 d τ - c \ U2dτ I + O(ε 2).
\ J J /

And by taking the limit ε tends to zero in Φ/ε = 0, we can conclude that
the limit speed c0 must satisfy the following condition.

U2dτ-c0 U2dτ = 0. (1.8)

Here, in this case, the integration is performed along the orbit of unperturbed
system (1.6). And if one can show that c0 is positive then the inplicit function
theorem would give us the solution, i.e., there exists a smooth function
c(ε) such that Φ(c(ε), ε) = 0.

We can obtain the same condition as (1.8) in another way. By multiplying
U to equation (1.4) and integrating it, we get the equation (1.8) as the necessary
condition for the existence of travelling wave solutions to (1.2).
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Therefore, for the third step, it is necessary to calculate these integrals of

U2 and U2 in the condition (1.8). The speed of travelling wave solution is

described as the ratio of these Abelian integrals. We can analyze these

functions by using the theory of analytic functions and algebraic geometry,

which is clearly reported by Carr, Chow and Hale [3] and Cushman and

Sanders [4]. As a result, we will get monotonicity properties for the speed

of travelling waves, by which the selection principle can be understood.

Recently Derks and Gils [5] have studied the similar problem to ours, however,

their interest lies only in the necessary condition such as (1.8) and other points

still remain unclear. They have not discussed the relation between the

amplitude and the wavelength which we will study in the last section.

These are summarized into three steps: i) reduction into an regular

perturbation problem, ii) the regular perturbation analysis for a Hamiltonian

system and iii) calculation of Abelian integrals. We will study the third step

first in Section 3 and later, the former two steps will be considered in Section 4.

In this paper we restrict ourselves to the existence and the structure of

travelling wave solutions to the perturbed system (1.2). However as is stated

in Kawahara and Toh [8] and [9], the solution structure has very rich

character when ε is globally varied. Therefore this work is only a first step

for studying this kind of nonlinear wave equations. These are attractive

problems for further study.

ACKNOWLEDGMENTS. The author expresses his sincere gratitude to

Professor Masayasu Mimura for his insightful suggestions and continued

encouragement. He is also greatly indebted to Professors Takuji Kawahara

and Sadayoshi Toh for helpful discussions and numerical simulation

technique. Finally, he would like to thank Professor Takaaki Nishida who

introduced him this problem, and Professor Yasumasa Nishiura for valuable

advice and beneficial discussions.

2. Some notations and the main result

Our purpose is to find travelling wave solutions to the equation

(1.2). Therefore, as was mentioned in Section 1, it can be translated to the

following by the travelling coordinate of the speed c, z = x - ct:

- cvί + uuf + u'" + ε(u" + u"") = 0. (2.1)

Here ' denotes the derivative by z. On the other hand, these equations have

an integral:
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u2

- cu + — + u" + ε(u' + u'") = C, (2.2)

for some integral constant C. In (2.2), without loss of generality, we can put

C equal to zero, because (2.1) is invariant under Galilei transformation:

ύ = u — /c, c = c — k.

Moreover if we perform the scalings u = cU and z = τ/y/c to the equation

(2.2), the final equation is given as

- U + - £ / 2 + U + ε( -^~U + v^L/) = 0. (2.3)

2 V ^ /

Here, denotes the derivative by τ. If we find a bounded solution (I/, ε, c)

to (2.3) then the corresponding (w, ε, c) is our travelling wave solution to the

equation (2.1) and, therefore, to the original equation (1.2).

Now the unperturbed system of (2.3) is the following, whose solutions are

travelling wave solutions to the KdV equation.

- £ / + - l / 2 + l/ = 0. (2.4)

It has an equialent form:

l) = V,

i ( 2 5 )

V = U--U2,-
2

which is a Hamiltonian system with the Hamiltonia n function:

JJ= --V2 +-U2 --U3. (2.6)
2 2 6

Consider a level curve of the form H = κ in the region { l / > 0 } . It

corresponds to a periodic orbit of (2.5) if K satisfies 0 < K < 2/3, and when

K = 0 it includes a homoclinic orbit. By homoclinic we mean the solution

whose ω-limit and α-limit set are the same point. These are a well-known

cnoidal wave solution and a 1-solition solution to the KdV equation,

respectively. Therefore we can parameterize all travelling wave solutions to

(2.4) by K. By using this parametrization, we can describe the existence result

of travelling wave solutions. The proof will be dene in the following two

sections.

THEOREM 2.1. Let Iv be any bounded interval in R. Then there are some
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ε* such that the family of solutions to (2.3):

Uκ,εMε,κ)(τ): 0 < K < ? , 0 < ε < ε*, UKtetCiBtK)(0) = 0, Uκ,β i C ( β i K )(0) < 0

exists, where each UKtEtC satisfies (2.3) for ε and c. And UKtBtC (τ) is a homoclίnic

or periodic solution when κ = 0or0<κ< 2/3, respectively. On the contrary,

if we find a homoclinic or periodic solution U(τ) of (2.3) which satisfies U(τ)elv

for all τ when ε is in (0, ε*), then there are some Θ and K such that

U(τ) = t/ κ , ε , c ( ε , κ ) (t - θ).

Moreover c(ε, K) is a smooth function of ε and K and when ε tends to zero

c(ε, K) converges to co(/c), where co(κ) is a smooth decreasing function on

κe[0, 2/3], co(0) = 7/5 and co(2/3) = 1. And also Uκ^c{τ) converges to Uκ(τ)

uniformly in τ, wher Uκ(τ) is a homoclinic or periodic solution of (2.4) on the

level curve {H = K) with Uκ(0) = 0 and Uκ(0) < 0.

REMARK 2.2. The simple pictures of these limits when e tends to zero,

i.e. the bifurcating points, are shown in Figure 4.

REMARK 2.3. Although there exist travelling wave solutions to the KdV

equation for any positive sped, in the perturbed systems some appropriate

speed c(ε, K) and consequently amplitude are selected by the balance between

the instability and dissipation effects.

REMARK 2.4. In this theorem only the relation between the speed and

K (the level of the Hamiltonian) is treated, however, the relation between the

speed and wavelength is also a matter of significance. It will be discussed in

Section 5.
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3. Analysis by the Abelian integral theory

It is already mentioned in Section 1 that there is a necessary condition
(1.8) for the existence of travelling wave solutions to (2.3). In this section we
assume U is a solution to (2.4) in (1.8). Because U is expected to be close
to the solution to (2.4). Rigorous treatment of the perturbation procedure
will be mentioned in the next section. And there, (1.8) is given quite naturally
in the perturbation procedure. Here we concentrate ourselves on calculating
the limit speed, when ε tends to zero, of the travelling wave solutions from (1.8).

First, let Q and R be

= - Γ(7 2 r fτ a n d R = -\U2dτ.

And let the two non-negative roots of U2 - l/3/3 = 2κ = K be (x(K) and
β{K)9 where α(X) < β{K). Here, as in Section 2, 0 < K < 2/3 and 0 < K < 4/3.
As mentioned above, the orbit {(t/(τ), K(τ))} is on the level curve
{H = K = K/2}, where V — dU/dτ, therefore we have

1 λ 2

U--U2

Cβ\ 2 J Γ
—dU, R =

L E(U) a

Q=\ „„» dU, R=\ E{U)dU,

by using equations (2.5). Here, E(U) = Jϋ2 - U3/3- K.
Now Q and R are the functions of only K. The purpose of this section is
to prove the following proposition which will assert the monotonicity of the
speed with K.

PROPOSITION 3.1. Let X(K) = -. We have X'{K) > 0 for 0 < K < 4/3.

Moreover

lim X(K) = - and lim X(K) = 1.
fc|0 V 7 KT4/3

To prove the proposition, it is convenient to represent Q and R by the

following integrals:

Jn(K)=\ UnE(U)dU,n = 0,h2, . (3.1)

Then it holds
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Un

ί dU = 2Jί(K). (3.2)
E(U)

Therefore Q and R are represented as follows:

Q = - 2J'2{K) + 2J^(K) - -Ji{K) and

At first, let us study the basic properties of J o and J x by the following four

lemmas.

12 144
LEMMA 3.2. lim J o = — , lim J x = .

κιo υ 5 mo A 35

PROOF. Direct calculations of J o and J x with X = 0.

LEMMA 3.3. lim ^ — ' = 2 .
()

•Ί _ , _ J.

T
UE(U)dU

PROOF, lim — = lim ^— = lim U = 2.l m
0 ' £(t/)d£7

LEMMA 3.4. ( ° J = Λ(K)( °), (3.3)

where Λ(K) =

3 5 " 7V~" 5 7/

PROOF. From the relation

E2 = U2- — -K and hence 2E— = 2U-U\
3 dU

Jo can be calculated as follows.
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E dU

Q — -• J ί — - J o .

This implies the first equation in the lemma. On the other hand, Jx is

calculated almost simply as J o .

_ 4

5

This proves the lemma.

LEMMA 3.5.

where Δ = K(3K

\ 1 /

- 4 ) .

1

~~A

\

1
--K

2

- K

_
3

1
-K
2 /

PROOF. By the previous lemma, J" = A 1(I — Λ')J' holds, where /

denotes the identity matrix. We have

1- A' =
12 1

35 7

and
\2Δ

A 5 / 5

-γlκ 6-K

hence,
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\-U ι-\
(I — Λ)J = —

A - K -K

2 I
This implies the lemma.

We note that all JM's can be represented only by Jo and Jx. For example

the following lemma holds:

6 48
LEMMA 3.6. J2 = 2Jί9 J3 = KJ0 + — J1 and

11-13 13V 11

PROOF. J2> ̂ 3 a n d J* are calculated similarly to the proof of LEMMA 3.4.

r
J2 = U2EdU

= 6JX -2J2.

J3 = I U3EdU = ••••ί
= -2KJ0

= ί l / 4 £ ί / ί / = I U2(2U -2E— )EdU

= -4KJX + I O J 3 - — J 4 .

Therefore we get

1 3

11 11
4K )J1.

This completes the proof.

To analyze Q and R, let us represent them by Jo and J l β Applying

lemmas 3.4, 3.5 and 3.6,
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= - J 0 + J i . (3-4)

R = J0, R' = J^ (3.5)

We can now show the monotonicity of X = Q/R. By the above relation

(3.4) and (3.5) we have

y Q Λ 1 n t t
X = - = - - l (3.6)

K Jo

therefore we consider Λ/Jo instead of X. Let X = J1/J0 and Z = J[/JQ.

Then by LEMMA 3.5

= - — {3K - 3KZ + Z 2 } . (3.7)
3A

LEMMA 3.7. Z' = —{3K - 3XZ + Z2} > 0, /or 0 < K < 4/3.

3Δ

PROOF. 3X - 3XZ + Z 2

2 y 4

And zί < 0 from LEMMA 3.5, we get the lemma.

Equation (3.7) corresponds to the Ricatti equation in Carr, Chow and

Hale [3] and Cushman and Sanders [4].

LEMMA 3.8. If X'(K0) = 0 for some 0 < Ko < 4/3, then X"(K0) < 0.

PROOF. By the definitions of X and Z, we have

JQX -\- JQX = J l 5

J'^X + 2J'0X' + J0X" = J'i,
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Since X'(K0) = 0, we have X"(K0) = J ° ( X ° ) Z ( X Q ) . By (3.1) and (3.2),

J0(K) > 0 and Jό(K) < 0. Therefore by LEMMA 3.7, we can conclude

X"(K0) < 0.

LEMMA 3.9. // X'(K0) = 0 for some 0<K0< 4/3, then 12/7 < X(K0) < 2.

PROOF. By the equations (3.3), i.e.

6 4 12
J0 = -KJQ J[ and J1=—K<

5 5 35

we get

12JO — I Jγ = ΌK(2J0

Λ _ 1 2 = 6X (JA_2

Jo 7 7J 0 "\J0

If X'{K0) = 0, then X(K0) = ̂  and

X = — —(^-2).
7 7 Jo

Hence

and we have the lemma.

Moreover, from lemmas 3.2 and 3.3, we have

h m — = — , lim — = 2.

Therefore combining these facts with lemmas 3.8 and 3.9 we get the following:

LEMMA 3.10. For 0 < K < 4/3, X'(K) > 0.

By noting the relation (3.6), this proves the monotonicity of X in the

PROPOSITION 3.1.

4. Perturbation analysis

Our purpose here is to find a homoclinic and periodic solutions to the
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equation (2.3):

It is a singular perturbation problem when ε is small as was mentioned in
Section 1.

In contrast, if we did not have the perturbation term of uxxxx in (1.2)
then the equation corresponding to (2.3) would be the following regular
perturbation problem:

-u + -u2 + ϋ + -^ύ = o, (4.i)
2 v c

which is equivalent to

U = K
(4.2)

V = U --U2 - — V.
2 ^

Along the orbit of (4.2) the derivative of the Hamiltonian is

H = 4= V2 > 0.

Therefore neither homoclinic nor periodic solution can exists in this case.
Let us go back to (2.3). The equivalent first order ODE system is

v= w

&J~cW= U --U2 -W- — V.
2 Γc

Assume c is in some bounded interval [c1 ? c2] with cx > 0. Because of the
small parameter ε the dynamics of (4.3) is very fast at the points apart from
the surface {U — U2/2- W=0} and these points will be absorbed toward
the surface. Therefore the essential part of the dynamics lies on this surface,
more accurately, on the invariant manifold close to this surface. Our first
aim is to show the existence of sucha invariant manifold and extract the
reduced dynamics on it from (4.3).

By putting Z = W- U + U2/2, (4.3) is equivalent to
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u = v,

V = U --U2 + Z,

Z = - _ L z + UV-
Ey/C

8 = 0.

i + l
C

(4.4)

Here, for convenience we consider the parameter ε as a variable so that we can

study the flow in (U, V, Z, ε)eR 3 x R. And we mean the original dynamics

of ([/, V, Z ) e R 3 by the words 3-D dynamics, 3-D flow or 3-D equations of

(4.4) to distinguish it from the full dynamics of (4.4). The set {([/, V, Z, ε):

ε = constant.} is invariant under the full dynamics (4.4). Moreover by the

slow time scaling σ = τ/ε, (4.4) takes the form

U' = εV,

V = ε[ L / - -

Z' = -Z + εWV-

ε' =0.

i+l
c

(4.5)

Consider the plane Ξ = {(U, V, Z ) e R 3 : Z = 0}. S* is consisting entirely of

equilibrium points of the 3-D flow of (4.5). Linearized equation of this 3-D

equations around each point in Ξ has exactly one negative eigenvalue and

two zero eigenvalues whose eigenspace corresponds to the tangent space of

Ξ. In this situation, we can apply the theorem on normally hyperbolic vector

field by Fenichel (refer to Theorem 9.1 in Fenichel [6].). Consequently, we

have 3-dimensional center manifold M in the full dynamics of (4.5) near 5,

that is a locally invariant manifold, M D S x {0} for fixed compact set S in

Ξ and M is tangent to Ξ at all the points in S x {0}. Moreover it can be

represented as the graph of

(U,V)eS, eel. (4.6)

Here, / is some neighborhood of zero in R and Γ(U, V9 0) = 0, DΓ{U, V, 0) = 0

for all (U, V)eS. Because of a local invariant property of a center manifold,

by differentiating (4.6) along the orbit of (4.5) we get

V, ε) \ V \ = O(ε2)
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And it gives us the first order approximation of the center manifold:

Γ(U, V9ε) = εy/cluV-(l + i ϊ Λ l + O(ε2). (4.7)

LEMMA 4.1. Let us. fix any compact subset S in R2 and integer k. Then

there exists some neighborhood I of zero such that we have a Ck manifold M

which has the following four properties.

i) ΓeC\ Γ(U, V, 0) = 0 and DΓ{U9 V, 0) = 0 for all (17, V)eS.

ii) M is locally invariant, i.e., if Po = (Uθ9 Vθ9 Z o , ε o ) e M and let P(σ) be the

solution of (4.5) with P(0) = Po then P(σ)eM when \σ\ is small enough.

iii) // (U(σ),V(σ),Z(σ),ε) is a solution to (4.5) for all σeR and (U(σ)9

V{σ))eM for all σ, then (U(σ)9 V(σ),Z(σ), ε)eM for all σ.

iv) Γ satisfies (4.7).

Now we can reduce the 3-D dynamics onto a 2-dimensional manifold

M ε i = Mn{(f7, V9Z9ε):ε = ε j . From the previous lemma we have only to

consider the dynamics on M ε for small ε to find a homoclinic or periodic

solution. By substituting (4.7) into (4.4) we eventually get the reduced

dynamics on M ε :

U = V9

1 r\ / 1 \ ) ( 4 ' 8 )

V = U - -U2 + εy/c<UV-ί 1 + - J V\ + O(ε2).

It is a regular perturbation problem.

If we once get a regular perturbation problem like (4.8) in (U, K)-plane,

we can easily check if a periodic orbit persists or not as follows. First,

remember the dynamics of the unperturbed system (2.5), which can be

understood by the level curve of H. Fix an initial data (α, 0) with

0 < α < 2. Now let (l/(τ), V(τ)) be the solutio of (4.8) with (17, V){0) = (α, 0).

Then there exists τx > 0 and τ 2 < 0 such that

V{τ) > 0 for 0 < τ < τ 1 ? K ^ ) = 0, V(τ) < 0 for 0 > τ > τ 2 and V(τ2) = 0.

(4.9)

Let us define a function Φ as follows. (See chapter 4 of Carr [2] in detail.)

fτ2

Φ(α, c, ε ) = H(U, V)dτ. (4.10)

Here,
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1H = εJcWV2 - M + 1 j V2\ + 0(ε2).

Φ(α, c, ε) denotes difference of the level between the two points on the (7-axis:

Φ(α, c, ε) = Hίl/ίrJ, V{τx)) - H(U(τ2), V(τ2)).

Therefore, Φ(α, c, ε) = 0 if and only if it is a periodic solution. And our aim

is to solve Φ = 0. Let Φ(α, c, ε) = Φ(α, c, ε)/ε, then Φ(α, c, ε) has a limit when

ε tends to zero:

Φ0(α, c) = Hm Φ(α, c, ε) = J

Here, by noting (4.9), (C/o, ^ ) is a solution of (2.5) and this integral is performed

on a level curve {H = H(α, 0)}, where if(α, 0) = κe(0, 2/3). Therefore,

Φ0(α, c) = Jc ί | ( l / 0 - l)L/0

2 " ^ l>0

2Jdτ

[ύoUϋodτ-^- [ϊlZ
J ^/c J

Thus we have to determine the limit speed c 0 by

C/o

2 - c0 \ϋl = 0. (4.11)

We can define the similar function for a homoclinic solution as

Ψ(c, e) = I H(U, V)dτ - ί°° H(U, V)dτ.
J -oo J o

Here the former part is integrated along a solution (C/(τ), V{τ)) on the one

dimensional unstable manifold of the origin with V(τ) > O f o r - o o < τ < 0

and F(0) = 0. The latter is similar. Ψ(c, ε) and Ψ0{c) are also defined

similarly :

Ψ(c, ε) = - ψ(c, ε) and Ψ0(c) = lim Ψ(c, ε).
ε εi°

Consequently, we get
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where Uo is a solution of (2.4) and the integration is on the curve {H = 0},

more precisely, on the homoclinic solution of (2.5) in this case. Therefore the

condition for the limit speed is the same as (4.11).

Let c0 be

co = X(Ky1. (4.12)

Then from PROPOSITION 3.1 in the previous section, we have

LEMMA 4.2. For 0 < K < 4/3, the pairs (Uo, c0) satisfies the limit speed

condition (4.11) for periodic and homoclnic solutions with α = α(X), where oc(K)

is defined in Section 3. Moreover, dco/dK < 0

lim cn = - and lim c 0 = 1.
K[0 υ 5 KT4/3

Let us calculate

^ ( α ( K ) , Co, 0) = — ί — ίL/0

2 + l— [ύ>>0
d c 2^/co J 2coy/co J

and similarly dΨ/dc > 0 so that we can solve the equations Φ = 0 and Ψ = 0

by the implicit function theorem. More precisely, there exists a unique smooth

function cκ(ε) = c(ε, K) for each K such that

), c(ε, X), β) = 0 for 0 < K < 4/3 and 0 < ε < ε* and

Ψ(c(ε, K), ε) = 0 for 0 < ε < ε*.

Therefore we get THEOREM 2.1.

5. Wavelength and speed

Through Sections 1 to 4, we concentrate only on the relation between

the speed of the travelling wave solutions and their level K or K. However,

from a practical view point, the relation between the speed and the wavelength

is more important. Because K is not a practical parameter for the equation

(1.2) but it is used in convenience of parametrizing the travelling waves. If

we fix the interval [0, L] and assume that the boundary condition is periodic

as in the numerical simulation Figure 1, then there are at most countable

number of possibilities in wave-length, i.e. L/n for n = 1, 2, .
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Noting a scale transformation z = τ/y/c to get the equation (2.3), the

wavelength ξ0 for the original equation (1.2) is ξ0 = T/^/CQ. Here, T is a

period of the travelling wave solution U in THEOREM 2.1. Let us consider

the limit of ε J,0, then T is now a period of Uκ(τ), i.e.,

dU CT/2

 J Γ
— = dτ = -,

V Jo 2 '

LEMMA 5.1. lim T= + oo, lim T= 2π.
KiO XT4/3

PROOF. The first one is easy to calculate. For the second one, it follows

from lemmas 3.4 and 3.3 that

lim T= - lim — {3(10K - 16)Jo + 2 8 J j
JCT4/3 KT4/3 3 J

= - lim
3 3

^ J3(10X — 16) + 28 — 1

! K - 4 ) Γ Jo)

= 12 lim

= 2π.

LEMMA 5.2. For 0 < K < 4/3, Γ'(X) < 0.

PROOF. From lemmas 3.5 and 3.4, we have

LEMMA 5.3. For 0 < K < 4/3, ξ'0(K) < 0. Moreover

lim £0(X) = + oo and lim £0(K) = 2π.
KiO υ V 7 KΪ4/3 U V 7

PROOF. Let ξ = <*o/16, then using (4.12), (3.4) and (3.5), we obtain

We can prove the monotonicity of £ by the technique almost similar to the

argument in Section 3. Let m = JQ2{— JO + Jγ) and n = Jo. And let p = — .
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What we have to show is that p is positive. By simple calculation,

p = 2J'0'(- J o + Ji) + Jό(- J'o + JΊ)

Here, J'ό = - 5J0/l2A and also - Jo + J x = β are positive. While J£ =

- - — and also - Jή + J[ ='- dU are negative. Therefore we have

2j E 2J £
p(K) > 0 and the remainder part of the proof is similar.

Combining lemmas 4.2 and 5.3, we can conclude the following.

THEOREM 5.4. In the limit ε tends to zero, the speed c 0 and the wavelength

ξ0 of travelling wave solutions to (1.2) have the relation:

Co = co(ξo), 2π < ξ0 < + oo, c'0> 0.

REMARK 5.5. Especially, there is a unique travelling wave solution which

has a fixed wavelength, and moreover there is no travelling wave solution

which has wavelength less that 2π to equation (1.2). It is also interesting to

note that if we fix the interval [0, L] then there are only a finite number of

travelling wave solutions under periodic boundary condition, because L/n must

be larger than 2π.
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