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1. Introduction and notations

Consider the nonparametric regression model

Yt = g(tt) + ε,, 1 < i < n ,

where observations are taken at design points tt for 1 < ί < n, and the errors

8f are independent and identically distributed as normal distribution with mean

zero and variance σ2. The response function g is assumed to belong to the

space W ={g\g and g' are absolutely continuous, and jo\g"(t)\2dt < oo}.

We deal with minimax estimators of σ2 defined in Buckley, Eagleson

and Silverman [1]. They are based on a restricted class of the response

functions Wc = {g e W:\l\g"{t)2dt < C). Define the max-MSE criterion as

2 ; σ2 C) = max \E(&2 - σ2)2M(σ2; σ2, C) = max \E(&2 - σ2)
gewcσ

for any given estimator σ2 of σ2. To simplify the minimax problem, we shall

use a natural coordinate system. Demmler and Reinsch [2] showed that

there is a basis for the natural cubic splines, φχ(m)9 . . ., φn{'\ determined

essentially uniquely by

Γ 1

I Φ'i
Jo

= δJkωk

with 0 = ωγ = ω2 < * * < con. Here δjk = 1 if j = k and 0 otherwise. Let y =

(Yί9...9Yn)
τ and g = ( ^ ( ί j , . . . , g(tn))τ be the vectors expressed with respect

to a natural basis of Rn, {(^(ί/))}. Our attention is restricted to a class of

estimators of σ2 whose form is ά2(D) = yΊDy;/tr D, D e A. Here zf is the class

of n x n symmetric non-negative definite matrices D for which σ2(D) is unbi-

ased when g is a straight line. Buckley, Eagleson and Silverman [1] proposed

minimax estimators defined as the estimator which minimizes M(σ2(D); σ2

9 C)

over D e Δ. Their minimax estimators depend on σ2 and C through C/σ2.

The explicit expressions of them were obtained in Fujioka [3] as follows.

Putting ωϊ{r) = ω f(l + 4ω f/r)"1 / 2 for 3 < i < n, we set for 3 < k < n - 1
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# f c = ^r > 0: 2 X| ω^(r)(ω^(r) - ω^(r)) < r 2 < 2 ^ ω^(r)(ω^+1(r) - ωΐ(r))\ ,
I t = 3 i = 3

Rπ = | r > 0: 2 £ ωΓ(r)(ωί(r) - ω,+ (r)) < r 2 j .

and

We also set for 3 < k < n

at (r) = min {o£ (r)ω^ (r), 1} , 3 < i < n , r e Rk ,

where

Then, the minimax estimators of σ2 are expressed as σ2(D+) with

Rewrite (t2(D+) = σ2(r) as a function of r > 0. In this paper, we investigate

the behavior of M(ά2(r); σ2, C) for any fixed value of C/σ2.

2. Theorems

Each component of y corresponds to the basis function φj and ά2(r) is

a weighted sum of squared components of y. Now, for r > 0 we define

We have the following property of the ratios of the weights.

THEOREM 1. limΓ_*+0x4(r) = 1 and for 5 <j < n, x4(r) = 1 on \Ji<j-iRi.

Furthermore, for 4 < j < n, Xj(r) is strictly monotone increasing function of r
o n [ji>j-iRi-

If C/σ2 = s, then ά2(s) minimizes M(ά2(D); σ2

9 C) over DeΔ. Hence, ά2(s)

minimizes M(σ2(r); σ2, C) over r > 0. We have prominent properties of the

class of minimax estimators d2{r):r > 0.

THEOREM 2. For any fixed value of C/σ2, say s, M(ά2(r); σ2, C) is strictly

monotone decreasing function of r on (0, s) and strictly monotone increasing

function of r on (s, oo).

THEOREM 3. For any fixed value of C/σ2, say s,
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o ^ s2 + 4ω3s + 2(n — 2)ω?
'; ̂ 2, c) = - 5 — ^ - 2 — ^ - ^ , (2.1)

(n - 2)2ωJ

+ oo); σ», C) = ^

Furthermore, there exists an s0 > 0 sucΛ

M(σ2( + 0); σ2, C) | M((ί2(+ oo); σ2, C ) o S | s0 . (2.3)

COROLLARY. // s < s0, ί/ien we ftαi e ί/ie inequality:

If s> s0, ί/ien we ftαi e ί/te inequality:

Note that σ2( + 0) is the ordinary least squared estimator in linear

regression:

; = 3
( « - 2 ) .

Also note that σ 2(+oo) is the estimator which minimizes msixgeW—iE(σ2(D) —

σ2)2 over D s Δ:

A comparison of three estimators, ά2( + 0), ά2(-\-co\ ά3(s), is given in Theorem

3 and Corollary.

3. Proofs of Theorems

Proof of Theorem 1: If r e Rk (3 < k < n - 1), then
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χ.= 1 , fc + 1 < ; < n.

If r e Rni then

We have limr_+ox4(r) = lim r^+0 (r2 + 2ωJ(r)2)/2ωJ(r)2 = 1. If r > s > 0, then
for 4 < j < n

ωf (r) CQj-^s) _ j t t 4(r - Λ A ^ - m ^ j ^

ω/Lilr) ωj(s) ( (r + 4cθj){s H- 4ωJ_1)J

Thus, for 4 < 7 < n , ωf(r)/ω~>'-1(r) is strictly monotone increasing function of
r. Now, it suffices to prove that if 2Yj=3ωf(r)(ω£(r) — ω*(r)) < r2,

is strictly monotone increasing function of r for 3 < k < n. Putting zf = ωj1" (r)/r
(3 < k < ή), we have

and

1 - 2z, t z« + 2 Σ «? > 0
ί=3 i=3

We can get

afi _ 4z, Σ?-a *«-(! + 2 Σ?-3*.2) 3

OΓir ^Zlr / i — 'k'Z i (A Λ Λ* / i—'lZl )\Zh- ~Γ / ί—'iZl)
K ^ _ IC / il — ό I V ' / Ί — ό I /V K ' s Ί—O 1/

k k \z i=3 ^i)

and

/IT rr ίn _ l_ O .̂-» ̂

3 < i < k.dr r(r + 4ωt )

By substituting these equations to the relation

dF±_ * 5^dZi

dr j^3 δzf dr '

we can obtain
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* VdFk Λ „ * Λ Λ Λ * /r + 2ω, r + 2ω2 < + 2 £ z <
r

By using the fact that both {zj and < —--zΛ are increasing sequences,

we can show dFJdr > 0.
Proof of Theorem 2: For any fixed value of C/σ2, say 5, we have

M(ά2(r); σ\ C) = is2 max ( ^ Y + 2 Σ #(r)2} / f t dt^

as is shown in Buckley, Eagleson and Silverman [1], Let l(r9 s) denote

mm\l\ max 4 _ - = = - i A l
( () +

The inequality (3.1) ensures that {ω^(r)/ω^(s)} is a monotone sequence. We
evaluate the value of /(r, s). Assume that r e Rk (3 < k < n — 1). If r < s, then

χ ι i χ at (r)ωt

+ (r) ^ 1 1

0)3(5) ω^(s) a>t+1(s) ω+(s)'

Thus, I(r, s) = 3. If r > s and r2 < 2 XJ= 3 ω,+ (r) | f t ) * + i ^ f t ) + ( r ) _ ω + ( r))> then
V ωk (s) /

*ΐ (r)ωt (r) «fc

+ ( r ) ω f c

+ ( r ) ^ 1 1

Thus, /(r, s) = k. If r > s and r2 > 2 Σ?-3 ω <"( r ) ( ω *+^fWw - ω,+(r)), then
V ωfc (s) /

ω$(s) ωϊ(s)

Thus, /(r, s) = k + 1. Assume that r e i ? n . If r < s, then

Thus, /(r, s) = 3. If r > s, then

Thus, /(r, s) = n.
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We express M(ά2(r); σ2, C) as a function of x4(r), ..., xn(r) and proceed

to prove Theorem 2. For notational convenience, put x 3 = 1. For 3 < fc < n,

define

" Xk +-2Ji=3 X3'"Xi

s2

with Ak = + 2 . Then, we have M(σ2(r); σ2, C) = 2Hk(x4,..., x j if l(r, s) =

k.

Assume that /(r, 5) = 3. We have

dH3

dXi

Let Uj9 Vj be functions defined by

X \
V Y2 Y2 ϊ
ZJ

 X 3 Xi J

and

j j

= x 3 Xj X x 3 xf - X X3 xf , 4 <./ < n .

We get

Γ
- A3

j X J

and

ί / n ( x 4 , . . . , x j = x 3 xn(Vn(x4, ...,xH)-A3).

Three cases: (i) r € R3 (ii) s > r, r e i ? k (4 < k < n — 1) (iii) 5 > r, r e Λπ are

considered, (i) Substituting x 4 = + —q—-, xf = 1 (5 < i < ή) to t/4 yields

L/4(x4,..., xn) = (n - 3)x3x4(K4(x4) - A3)
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From Theorem 1, it follows that - ^ > 0, - ^ = 0 (5 < i < ή). Therefore,
dr dr

dH3 dE3dx4<^ < _ o L . . ωt(r) iA

= ^ 0 < > r s (11) S u b s ™ s *< = ̂ ^ M ( 4 - ' - k X Xk+ί =

α + ( r )

1

ω + ( r ) , x, = 1 (fe + 2 < i < n) to ΪJ (4 < j < fc) yields

fr* - > XJ) = -^i Σ ωf

+ (r)(ω/ (r) - ωf

+ (r)).
ω r) 3

Σ
»=3

Thus, we have F4 < ••• < Vk. Furthermore, Vk — A3 is a monotone decreasing

function of s and if s = r

Hence, Vk — A3 < 0. Consequently, for 3 <j < fc, Vj — A3 < 0. In addition,

from Theorem 1, xf > 1 (3 < i < ri). Thus, we have Uj - Uj+ί < 0 (4 <j < fc),

that is, ί/4 < < Uk+1. On the other hand, substituting xf = I
ωi-l\r)

(4 < i < fc), x f c + 1 = +() +,y Xf = 1 (fc + 2 < i < n) t o Uk+ί yields

Ϊ 7 f c + 1 ( x 4 , . . . , xn) = (n - k)x3 - - x f c + 1 ( K f c + 1 ( x 4 , . . . , x w ) - A3)

( r2 s2 \
= (n — k)x3 - - - xk+11 + 2 — + 2 j < 0 .

Hence, for 4 <j < k + 1, IΛ < 0. From Theorem 1, it follows that —-ί > 0

J dr

(4 < ; < fc + 1), - ^ = 0 (fc + 2 < j < n). Therefore, —— = £ * i * _ * —i < 0.

(iii) By arguments similar to the case (ii), we have Vj — A3 < 0 (3 <j < n\ so

that U4 < - < Un < 0. From Theorem 1, it follows that - ^ > 0 (4 < ; < ri).

dr
Therefore, — - = Yn

i=,—^--^ < 0.
dr dXj dr

Assume that /(r, s) = fc (4 < fc < n - 1). We have

2 2

Σ V 2 . . . V 2 / V . . . γ 1\l Δ. <: i <- h
X 3 X mV X m+l x i ~" AJ f » ^ S J S K ,

m=3
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and

vHk * J I v \ / χ-» i i
Λ y I X « . . _ _ _ - . . I I X -*.Δ . . . v ^

/ JC t JC
• V I I \ Y^ V^

^ μ z-. ̂ 3 x i II 2-. X 3 *i

fc
ί A v 2 Y2 -I- V γ 2 . . . ^— I /lβΛ.3 Λ^ ~t~ 7^ Λ3 ^

From Theorem 1, xf > 1 (3 < i < n), so that — - > 0 (4 <j < k). Two cases:

(i) s < r, rGRk_1 (ii) s < r, r e ixfc are considered, (i) From Theorem 1, it

follows that - ^ > 0 (4 <j < k\ -^ = 0 (k + 1 <j < n). Therefore, -—- =
dr dr dr

Σ ί = 4 - ^ -Γ- > ° (ϋ) Substituting xf = ̂ ~γτ (4 < i < fe),

x. = l (k 4- 2 < i < ή) to - — - yields

dHk 2(n-k)xl'-χl

2{n-k)x\'"xl
+ /Ό\2ί(r)2 2ωfc

+(s)

From Theorem 1, it follows that -^ > 0 (4 <j < k + 1), -7-• = 0 (k + 2 < ; < n).
αr αr

Therefore, - ^ = y*ϋ—-5 -3 > 0.
αr J dXj dr

Assume that /(r, s) = n. We have

+ Σ*3 VΣ *i * ϊ ( w *.-
t=j m=3

From Theorem 1, xf > 1 (3 < i < n), so that — ^ > 0 for 4 < ; < n. From

Theorem 1, it follows that if r e Rn_t or r e Rn9 then - p > 0 (4 <j<ή).

dH ^u A^
Therefore, — — = Yn

i=ί^ J dXj dr

In conclusion, we have
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Proof of Theorem 3: If r<s and r e R3, then /(r, s) = 3 and

M(σ2(r); σ2, C) =2H3(x4, 1,..., 1). From Theorem 1, we have limΓ_+ ox 4(r) = 1,

so that

lim M(σ2(r); σ\ C) = 2H 3 (1, . . . , 1).
r->+0

On the other hand, if r > s and r e Rn, then /(r, s) = n and M(σ2(r); σ2, C) =

2Hn(x4,..., x j . Since l im^^ x/r) = l im^^ ω^ir^ω^r) = ω^ /ω^i, we have

lim M(σ2(r); σ2, C) = 2HU(^,...9
, 9

ω3 ωn_
Thus, we obtain (2.1) and (2.2). Furthermore, M(σ2( + 0); σ2, C) -

M(σ2(oo); σ2, C) is a quadratic function of s with the positive coefficient of

s2 and the negative constant term. Hence there exists an s0 satisfying (2.3).
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