The max-MSE's of minimax estimators of variance in nonparametric regression

Teruo Fujioka
(Received May 7, 1993)

1. Introduction and notations

Consider the nonparametric regression model

$$
Y_{i}=g\left(t_{i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n,
$$

where observations are taken at design points t_{i} for $1 \leq i \leq n$, and the errors ε_{i} are independent and identically distributed as normal distribution with mean zero and variance σ^{2}. The response function g is assumed to belong to the space $W=\left\{g: g\right.$ and g^{\prime} are absolutely continuous, and $\left.\int_{0}^{1}\left|g^{\prime \prime}(t)\right|^{2} d t<\infty\right\}$.

We deal with minimax estimators of σ^{2} defined in Buckley, Eagleson and Silverman [1]. They are based on a restricted class of the response functions $W_{C}=\left\{g \in W: \int_{0}^{1} \mid g^{\prime \prime}(t)^{2} d t \leq C\right\}$. Define the max-MSE criterion as

$$
M\left(\hat{\sigma}^{2} ; \sigma^{2}, C\right)=\max _{g \in W_{c}} \frac{1}{\sigma^{4}} E\left(\hat{\sigma}^{2}-\sigma^{2}\right)^{2}
$$

for any given estimator $\hat{\sigma}^{2}$ of σ^{2}. To simplify the minimax problem, we shall use a natural coordinate system. Demmler and Reinsch [2] showed that there is a basis for the natural cubic splines, $\phi_{1}(\cdot), \ldots, \phi_{n}(\cdot)$, determined essentially uniquely by

$$
\sum_{i=1}^{n} \phi_{j}\left(t_{i}\right) \phi_{k}\left(t_{i}\right)=\delta_{j k}, \quad \int_{0}^{1} \phi_{j}^{\prime \prime}(t) \phi_{k}^{\prime \prime}(t) d t=\delta_{j k} \omega_{k}
$$

with $0=\omega_{1}=\omega_{2}<\cdots<\omega_{n}$. Here $\delta_{j k}=1$ if $j=k$ and 0 otherwise. Let $\tilde{y}=$ $\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ and $\tilde{g}=\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)^{T}$ be the vectors expressed with respect to a natural basis of $R^{n},\left\{\left(\phi_{j}\left(t_{i}\right)\right)\right\}$. Our attention is restricted to a class of estimators of σ^{2} whose form is $\hat{\sigma}^{2}(D)=\tilde{y}^{T} D \tilde{y} / \operatorname{tr} D, D \in \Delta$. Here Δ is the class of $n \times n$ symmetric non-negative definite matrices D for which $\hat{\sigma}^{2}(D)$ is unbiased when g is a straight line. Buckley, Eagleson and Silverman [1] proposed minimax estimators defined as the estimator which minimizes $M\left(\hat{\sigma}^{2}(D) ; \sigma^{2}, C\right)$ over $D \in \Delta$. Their minimax estimators depend on σ^{2} and C through C / σ^{2}. The explicit expressions of them were obtained in Fujioka [3] as follows. Putting $\omega_{i}^{+}(r)=\omega_{i}\left(1+4 \omega_{i} / r\right)^{-1 / 2}$ for $3 \leq i \leq n$, we set for $3 \leq k \leq n-1$

$$
R_{k}=\left\{r>0: 2 \sum_{i=3}^{k} \omega_{i}^{+}(r)\left(\omega_{k}^{+}(r)-\omega_{i}^{+}(r)\right)<r^{2} \leq 2 \sum_{i=3}^{k+1} \omega_{i}^{+}(r)\left(\omega_{k+1}^{+}(r)-\omega_{i}^{+}(r)\right)\right\}
$$

and

$$
R_{n}=\left\{r>0: 2 \sum_{i=3}^{k} \omega_{i}^{+}(r)\left(\omega_{k}^{+}(r)-\omega_{i}^{+}(r)\right)<r^{2}\right\} .
$$

We also set for $3 \leq k \leq n$

$$
d_{i}^{+}(r)=\min \left\{\alpha_{k}^{+}(r) \omega_{i}^{+}(r), 1\right\}, \quad 3 \leq i \leq n, \quad r \in R_{k},
$$

where

$$
\alpha_{k}^{+}(r)=\frac{2 \sum_{i=3}^{k} \omega_{i}^{+}(r)}{r^{2}+2 \sum_{i=3}^{k} \omega_{i}^{+}(r)^{2}}
$$

Then, the minimax estimators of σ^{2} are expressed as $\hat{\sigma}^{2}\left(D^{+}\right)$with

$$
D^{+}=\operatorname{diag}\left(0,0, d_{3}^{+}(r), \ldots, d_{n}^{+}(r)\right)
$$

Rewrite $\hat{\sigma}^{2}\left(D^{+}\right)=\hat{\sigma}^{2}(r)$ as a function of $r>0$. In this paper, we investigate the behavior of $M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)$ for any fixed value of C / σ^{2}.

2. Theorems

Each component of \tilde{y} corresponds to the basis function ϕ_{j} and $\hat{\sigma}^{2}(r)$ is a weighted sum of squared components of \tilde{y}. Now, for $r>0$ we define

$$
x_{j}(r)=\frac{d_{j}^{+}(r)}{d_{j-1}^{+}(r)}, \quad 4 \leq i \leq n
$$

We have the following property of the ratios of the weights.
Theorem 1. $\lim _{r \rightarrow+0} x_{4}(r)=1$ and for $5 \leq j \leq n, x_{4}(r)=1$ on $\bigcup_{i<j-1} R_{i}$. Furthermore, for $4 \leq j \leq n, x_{j}(r)$ is strictly monotone increasing function of r on $\bigcup_{i \geq j-1} R_{i}$.

If $C / \sigma^{2}=s$, then $\hat{\sigma}^{2}(s)$ minimizes $M\left(\hat{\sigma}^{2}(D) ; \sigma^{2}, C\right)$ over $D \in \Delta$. Hence, $\hat{\sigma}^{2}(s)$ minimizes $M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)$ over $r>0$. We have prominent properties of the class of minimax estimators $\hat{\sigma}^{2}(r): r>0$.

Theorem 2. For any fixed value of C / σ^{2}, say $s, M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)$ is strictly monotone decreasing function of r on $(0, s)$ and strictly monotone increasing function of r on (s, ∞).

Theorem 3. For any fixed value of C / σ^{2}, say s,

$$
\begin{equation*}
M\left(\hat{\sigma}^{2}(+0) ; \sigma^{2}, C\right)=\frac{s^{2}+4 \omega_{3} s+2(n-2) \omega_{3}^{2}}{(n-2)^{2} \omega_{3}^{2}}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(\hat{\sigma}^{2}(+\infty) ; \sigma^{2}, C\right)=\frac{s^{2}+4 \omega_{n} s+2 \sum_{i=3}^{n} \omega_{i}^{2}}{\left(\sum_{i=3}^{n} \omega_{i}\right)^{2}} \tag{2.2}
\end{equation*}
$$

Furthermore, there exists an $s_{0}>0$ such that

$$
\begin{equation*}
M\left(\hat{\sigma}^{2}(+0) ; \sigma^{2}, C\right) \lesseqgtr M\left(\hat{\sigma}^{2}(+\infty) ; \sigma^{2}, C\right) \Leftrightarrow s \lesseqgtr s_{0} . \tag{2.3}
\end{equation*}
$$

Corollary. If $s \leq s_{0}$, then we have the inequality:

$$
M\left(\hat{\sigma}^{2}(s) ; \sigma^{2}, C\right)<\frac{s^{2}+4 \omega_{3} s+2(n-2) \omega_{3}^{2}}{(n-2)^{2} \omega_{3}^{2}}
$$

If $s \geq s_{0}$, then we have the inequality:

$$
M\left(\hat{\sigma}^{2}(s) ; \sigma^{2}, C\right)<\frac{s^{2}+4 \omega_{n} s+2 \sum_{i=3}^{n} \omega_{i}^{2}}{\left(\sum_{i=3}^{n} \omega_{i}\right)^{2}}
$$

Note that $\hat{\sigma}^{2}(+0)$ is the ordinary least squared estimator in linear regression:

$$
\hat{\sigma}^{2}(+0)=\sum_{i=3}^{n} \tilde{y}_{i}^{2} /(n-2) .
$$

Also note that $\hat{\sigma}^{2}(+\infty)$ is the estimator which minimizes $\max _{g \in W} \frac{1}{\sigma^{4}} E\left(\hat{\sigma}^{2}(D)-\right.$ $\left.\sigma^{2}\right)^{2}$ over $D \in \Delta$:

$$
\hat{\sigma}^{2}(+\infty)=\sum_{i=3}^{n} \omega_{i} \tilde{y}_{i}^{2} /\left(\sum_{i=3}^{n} \omega_{i}\right) .
$$

A comparison of three estimators, $\hat{\sigma}^{2}(+0), \hat{\sigma}^{2}(+\infty), \hat{\sigma}^{3}(s)$, is given in Theorem 3 and Corollary.

3. Proofs of Theorems

Proof of Theorem 1: If $r \in R_{k}(3 \leq k \leq n-1)$, then

$$
\begin{gathered}
x_{j}(r)=\frac{\omega_{j}^{+}(r)}{\omega_{j-1}^{+}(r)}, \quad 4 \leq j \leq k, \\
x_{k+1}(r)=\frac{r^{2}+2 \sum_{i=3}^{k} \omega_{i}^{+}(r)^{2}}{2 \omega_{k}^{+}(r) \sum_{i=3}^{k} \omega_{i}^{+}(r)}
\end{gathered}
$$

$$
x_{j}=1, \quad k+1<j \leq n .
$$

If $r \in R_{n}$, then

$$
x_{j}(r)=\frac{\omega_{j}^{+}(r)}{\omega_{j-1}^{+}(r)}, \quad 4 \leq j \leq n .
$$

We have $\lim _{r \rightarrow+0} x_{4}(r)=\lim _{r \rightarrow+0}\left(r^{2}+2 \omega_{3}^{+}(r)^{2}\right) / 2 \omega_{3}^{+}(r)^{2}=1$. If $r>s>0$, then for $4 \leq j \leq n$

$$
\begin{equation*}
\frac{\omega_{j}^{+}(r)}{\omega_{j-1}^{+}(r)} \frac{\omega_{j-1}^{+}(s)}{\omega_{j}^{+}(s)}=\left\{1+\frac{4(r-s)\left(\omega_{j}-\omega_{j-1}\right)}{\left(r+4 \omega_{j}\right)\left(s+4 \omega_{j-1}\right)}\right\}^{1 / 2}>1 \tag{3.1}
\end{equation*}
$$

Thus, for $4 \leq j \leq n, \omega_{j}^{+}(r) / \omega_{j-1}^{+}(r)$ is strictly monotone increasing function of r. Now, it suffices to prove that if $2 \sum_{i=3}^{k} \omega_{i}^{+}(r)\left(\omega_{k}^{+}(r)-\omega_{i}^{+}(r)\right)<r^{2}$,

$$
F_{k}(r)=\frac{r^{2}+2 \sum_{i=3}^{k} \omega_{i}^{+}(r)^{2}}{2 \omega_{k}^{+}(r) \sum_{i=3}^{k} \omega_{i}^{+}(r)}
$$

is strictly monotone increasing function of r for $3 \leq k \leq n$. Putting $z_{i}=\omega_{i}^{+}(r) / r$ ($3 \leq k \leq n$), we have

$$
F_{k}(r)=\frac{1+2 \sum_{i=3}^{k} z_{i}^{2}}{2 z_{k} \sum_{i=3}^{k} z_{i}},
$$

and

$$
1-2 z_{k} \sum_{i=3}^{k} z_{i}+2 \sum_{i=3}^{k} z_{i}^{2}>0
$$

We can get

$$
\begin{aligned}
& \frac{\partial F_{k}}{\partial z_{i}}=\frac{4 z_{i} \sum_{i=3}^{k} z_{i}-\left(1+2 \sum_{i=3}^{k} z_{i}^{2}\right)}{2 z_{k}\left(\sum_{i=3}^{k} z_{i}\right)^{2}}, \quad 3 \leq i \leq k-1, \\
& \frac{\partial F_{k}}{\partial z_{k}}=\frac{4 z_{k}^{2} \sum_{i=3}^{k} z_{i}-\left(1+2 \sum_{i=3}^{k} z_{i}^{2}\right)\left(z_{k}+\sum_{i=3}^{k} z_{i}\right)}{2 z_{k}^{2}\left(\sum_{i=3}^{k} z_{i}\right)^{2}},
\end{aligned}
$$

and

$$
\frac{d z_{i}}{d r}=-\frac{z_{i}\left(r+2 \omega_{i}\right)}{r\left(r+4 \omega_{i}\right)}, \quad 3 \leq i \leq k
$$

By substituting these equations to the relation

$$
\frac{d F_{k}}{d r}=\sum_{i=3}^{k} \frac{\partial F_{k}}{\partial z_{i}} \frac{d z_{i}}{d r}
$$

we can obtain

$$
\begin{aligned}
& 2 r z_{k}\left(\sum_{i=3}^{k} z_{i}\right)^{2} \frac{d F_{k}}{d r}=\left(1-2 z_{k} \sum_{i=3}^{k} z_{i}+2 \sum_{i=3}^{k} z_{i}^{2}\right) \sum_{i=3}^{k}\left(\frac{r+2 \omega_{i}}{r+4 \omega_{i}}+\frac{r+2 \omega_{k}}{r+4 \omega_{k}}\right) z_{i} \\
& \quad+2\left(\sum_{i=3}^{k} z_{i}\right) \sum_{i=3}^{k}\left\{\frac{r+2 \omega_{i}}{r+4 \omega_{i}}\left(z_{k}-z_{i}\right) z_{i}+\left(\frac{r+2 \omega_{k}}{r+4 \omega_{k}} z_{k}-\frac{r+2 \omega_{i}}{r+4 \omega_{i}} z_{i}\right) z_{i}\right\} .
\end{aligned}
$$

By using the fact that both $\left\{z_{i}\right\}$ and $\left\{\frac{r+2 \omega_{i}}{r+4 \omega_{i}} z_{i}\right\}$ are increasing sequences, we can show $d F_{k} / d r>0$.

Proof of Theorem 2: For any fixed value of C / σ^{2}, say s, we have

$$
M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)=\left\{s^{2} \max _{3 \leq i \leq n}\left(\frac{d_{i}^{+}(r)}{\omega_{i}^{+}(s)}\right)^{2}+2 \sum_{i=3}^{n} d_{i}^{+}(r)^{2}\right\} /\left(\sum_{i=3}^{n} d_{i}^{+}(r)\right)^{2}
$$

as is shown in Buckley, Eagleson and Silverman [1]. Let $l(r, s)$ denote

$$
\min \left\{l: \max _{3 \leq i \leq n} \frac{d_{i}^{+}(r)}{\omega_{i}^{+}(s)}=\frac{d_{l}^{+}(r)}{\omega_{l}^{+}(s)}\right\} .
$$

The inequality (3.1) ensures that $\left\{\omega_{i}^{+}(r) / \omega_{i}^{+}(s)\right\}$ is a monotone sequence. We evaluate the value of $l(r, s)$. Assume that $r \in R_{k}(3 \leq k \leq n-1)$. If $r \leq s$, then

$$
\frac{\alpha_{k}^{+}(r) \omega_{3}^{+}(r)}{\omega_{3}^{+}(s)} \geq \cdots \geq \frac{\alpha_{k}^{+}(r) \omega_{k}^{+}(r)}{\omega_{k}^{+}(s)} \geq \frac{1}{\omega_{k+1}^{+}(s)}>\cdots>\frac{1}{\omega_{n}^{+}(s)}
$$

Thus, $l(r, s)=3$. If $r>s$ and $r^{2} \leq 2 \sum_{i=3}^{k} \omega_{i}^{+}(r)\left(\frac{\omega_{k+1}^{+}(s)}{\omega_{k}^{+}(s)} \omega_{k}^{+}(r)-\omega_{i}^{+}(r)\right)$, then

$$
\frac{\alpha_{k}^{+}(r) \omega_{3}^{+}(r)}{\omega_{3}^{+}(s)}<\cdots<\frac{\alpha_{k}^{+}(r) \omega_{k}^{+}(r)}{\omega_{k}^{+}(s)} \geq \frac{1}{\omega_{k+1}^{+}(s)}>\cdots>\frac{1}{\omega_{n}^{+}(s)} .
$$

Thus, $l(r, s)=k$. If $r>s$ and $r^{2}>2 \sum_{i=3}^{k} \omega_{i}^{+}(r)\left(\frac{\omega_{k+1}^{+}(s)}{\omega_{k}^{+}(s)} \omega_{k}^{+}(r)-\omega_{i}^{+}(r)\right)$, then

$$
\frac{\alpha_{k}^{+}(r) \omega_{3}^{+}(r)}{\omega_{3}^{+}(s)}<\cdots<\frac{\alpha_{k}^{+}(r) \omega_{k}^{+}(r)}{\omega_{k}^{+}(s)}<\frac{1}{\omega_{k+1}^{+}(s)}>\cdots>\frac{1}{\omega_{n}^{+}(s)} .
$$

Thus, $l(r, s)=k+1$. Assume that $r \in R_{n}$. If $r \leq s$, then

$$
\frac{\alpha_{n}^{+}(r) \omega_{3}^{+}(r)}{\omega_{3}^{+}(s)} \geq \cdots \geq \frac{\alpha_{n}^{+}(r) \omega_{n}^{+}(r)}{\omega_{n}^{+}(s)}
$$

Thus, $l(r, s)=3$. If $r>s$, then

$$
\frac{\alpha_{k}^{+}(r) \omega_{3}^{+}(r)}{\omega_{3}^{+}(s)}<\cdots<\frac{\alpha_{n}^{+}(r) \omega_{n}^{+}(r)}{\omega_{n}^{+}(s)}
$$

Thus, $l(r, s)=n$.

We express $M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)$ as a function of $x_{4}(r), \ldots, x_{n}(r)$ and proceed to prove Theorem 2. For notational convenience, put $x_{3}=1$. For $3 \leq k \leq n$, define

$$
H_{k}\left(x_{4}, \ldots, x_{n}\right)=\frac{A_{k} x_{3}^{2} \cdots x_{k}^{2}+\sum_{i=3}^{n} x_{3}^{2} \cdots x_{i}^{2}}{\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{2}}
$$

with $A_{k}=\frac{s^{2}}{2 \omega_{k}^{+}(s)^{2}}$. Then, we have $M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)=2 H_{k}\left(x_{4}, \ldots, x_{n}\right)$ if $l(r, s)=$ k.

Assume that $l(r, s)=3$. We have

$$
\begin{aligned}
\frac{\partial H_{3}}{\partial x_{j}}= & \frac{2}{x_{j}\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}\left\{\left(\sum_{i=3}^{j-1} x_{3} \cdots x_{i}\right)\left(\sum_{i=j}^{n} x_{3}^{2} \cdots x_{i}^{2}\right)\right. \\
& \left.-\left(A_{3}+\sum_{i=3}^{j-1} x_{3}^{2} \cdots x_{i}^{2}\right)\left(\sum_{i=j}^{n} x_{3} \cdots x_{i}\right)\right\} .
\end{aligned}
$$

Let U_{j}, V_{j} be functions defined by

$$
U_{j}\left(x_{4}, \ldots, x_{n}\right)=\frac{x_{j}\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}{2} \frac{\partial H_{3}}{\partial x_{j}}, \quad 4 \leq j \leq n
$$

and

$$
V_{j}\left(x_{4}, \ldots, x_{j}\right)=x_{3} \cdots x_{j} \sum_{i=3}^{j-1} x_{3} \cdots x_{i}-\sum_{i=3}^{j-1} x_{3}^{2} \cdots x_{i}^{2}, \quad 4 \leq j \leq n .
$$

We get
$U_{j}-U_{j+1}=x_{3} \cdots x_{j}\left\{V_{j}-A_{3}+x_{3} \cdots x_{j} \sum_{i=j+1}^{n} x_{3} \cdots x_{i}\left(1-x_{j+1} \cdots x_{i}\right)\right\}, 4 \leq j \leq n$, and

$$
U_{n}\left(x_{4}, \ldots, x_{n}\right)=x_{3} \cdots x_{n}\left(V_{n}\left(x_{4}, \ldots, x_{n}\right)-A_{3}\right) .
$$

Three cases: (i) $r \in R_{3}$ (ii) $s>r, r \in R_{k}(4 \leq k \leq n-1) \quad$ (iii) $s>r, r \in R_{n}$ are considered. (i) Substituting $x_{4}=\frac{1}{\alpha_{3}^{+}(r) \omega_{3}^{+}(r)}, x_{i}=1(5 \leq i \leq n)$ to U_{4} yields

$$
\begin{aligned}
U_{4}\left(x_{4}, \ldots, x_{n}\right) & =(n-3) x_{3} x_{4}\left(V_{4}\left(x_{4}\right)-A_{3}\right) \\
& =(n-3) x_{3} x_{4}\left(\frac{r^{2}}{2 \omega_{3}^{+}(r)^{2}}-\frac{s^{2}}{2 \omega_{3}^{+}(s)^{2}}\right) \lesseqgtr 0 \Leftrightarrow r \lesseqgtr s .
\end{aligned}
$$

From Theorem 1, it follows that $\frac{d x_{4}}{d r}>0, \frac{d x_{i}}{d r}=0(5 \leq i \leq n)$. Therefore, $\frac{d H_{3}}{d r}=\frac{\partial H_{3}}{\partial x_{4}} \frac{d x_{4}}{d r} \lesseqgtr 0 \Leftrightarrow r \lesseqgtr s$. (ii) Substituting $x_{i}=\frac{\omega_{i}^{+}(r)}{\omega_{i-1}^{+}(r)}(4 \leq i \leq k), \quad x_{k+1}=$ $\frac{1}{\alpha_{k}^{+}(r) \omega_{k}^{+}(r)}, x_{i}=1(k+2 \leq i \leq n)$ to $V_{j}(4 \leq j \leq k)$ yields

$$
V_{j}\left(x_{4}, \ldots, x_{j}\right)=\frac{1}{\omega_{3}^{+}(r)^{2}} \sum_{i=3}^{j} \omega_{i}^{+}(r)\left(\omega_{j}^{+}(r)-\omega_{i}^{+}(r)\right)
$$

Thus, we have $V_{4}<\cdots<V_{k}$. Furthermore, $V_{k}-A_{3}$ is a monotone decreasing function of s and if $s=r$

$$
V_{k}-A_{3}=\frac{-1}{\omega_{3}^{+}(r)^{2}}\left\{r^{2}-\sum_{i=3}^{k} \omega_{i}^{+}(r)\left(\omega_{j}^{+}(r)-\omega_{i}^{+}(r)\right)\right\}<0
$$

Hence, $V_{k}-A_{3}<0$. Consequently, for $3 \leq j \leq k, V_{j}-A_{3}<0$. In addition, from Theorem 1, $x_{i} \geq 1(3 \leq i \leq n)$. Thus, we have $U_{j}-U_{j+1}<0(4 \leq j \leq k)$, that is, $U_{4}<\cdots<U_{k+1}$. On the other hand, substituting $x_{i}=\frac{\omega_{i}^{+}(r)}{\omega_{i-1}^{+}(r)}$ $(4 \leq i \leq k), x_{k+1}=\frac{1}{\alpha_{k}^{+}(r) \omega_{k}^{+}(r)}, x_{i}=1(k+2 \leq i \leq n)$ to U_{k+1} yields

$$
\begin{aligned}
U_{k+1}\left(x_{4}, \ldots, x_{n}\right) & =(n-k) x_{3} \cdots x_{k+1}\left(V_{k+1}\left(x_{4}, \ldots, x_{n}\right)-A_{3}\right) \\
& =(n-k) x_{3} \cdots x_{k+1}\left(\frac{r^{2}}{2 \omega_{3}^{+}(r)^{2}}-\frac{s^{2}}{2 \omega_{3}^{+}(s)^{2}}\right)<0 .
\end{aligned}
$$

Hence, for $4 \leq j \leq k+1, U_{j}<0$. From Theorem 1, it follows that $\frac{d x_{j}}{d r}>0$ $(4 \leq j \leq k+1), \frac{d x_{j}}{d r}=0 \quad(k+2 \leq j \leq n)$. Therefore, $\frac{d H_{3}}{d r}=\sum_{j=4}^{k+1} \frac{\partial H_{3}}{\partial x_{j}} \frac{d x_{j}}{d r}<0$. (iii) By arguments similar to the case (ii), we have $V_{j}-A_{3}<0(3 \leq j \leq n)$, so that $U_{4}<\cdots<U_{n}<0$. From Theorem 1, it follows that $\frac{d x_{j}}{d r}>0(4 \leq j \leq n)$. Therefore, $\frac{d H_{3}}{d r}=\sum_{j=4}^{n} \frac{\partial H_{3}}{\partial x_{j}} \frac{d x_{j}}{d r}<0$.

Assume that $l(r, s)=k(4 \leq k \leq n-1)$. We have

$$
\begin{aligned}
\frac{\partial H_{k}}{\partial x_{j}}= & \frac{2}{x_{j}\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}\left\{A_{k} x_{3}^{2} \cdots x_{k}^{2} \sum_{i=3}^{j-1} x_{3} \cdots x_{i}\right. \\
& \left.+\sum_{i=j}^{n} x_{3} \cdots x_{i} \sum_{m=3}^{j-1} x_{3}^{2} \cdots x_{m}^{2}\left(x_{m+1} \cdots x_{i}-1\right)\right\}, \quad 4 \leq j \leq k
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial H_{k}}{\partial x_{k+1}}= & \frac{2}{x_{k+1}\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}\left\{\left(\sum_{i=3}^{k} x_{3} \cdots x_{i}\right)\left(\sum_{i=k+1}^{n} x_{3}^{2} \cdots x_{i}^{2}\right)\right. \\
& \left.-\left(A_{k} x_{3}^{2} \cdots x_{i}^{2}+\sum_{i=3}^{k} x_{3}^{2} \cdots x_{i}^{2}\right)\left(\sum_{i=k+1}^{n} x_{3} \cdots x_{i}\right)\right\} .
\end{aligned}
$$

From Theorem 1, $x_{i} \geq 1(3 \leq i \leq n)$, so that $\frac{\partial H_{k}}{\partial x_{j}}>0(4 \leq j \leq k)$. Two cases: (i) $s<r, r \in R_{k-1}$ (ii) $s<r, r \in R_{k}$ are considered. (i) From Theorem 1, it follows that $\frac{d x_{j}}{d r}>0(4 \leq j \leq k), \frac{d x_{j}}{d r}=0(k+1 \leq j \leq n)$. Therefore, $\frac{d H_{k}}{d r}=$ $\sum_{j=4}^{k} \frac{\partial H_{3}}{\partial x_{j}} \frac{d x_{j}}{d r}>0$. (ii) Substituting $x_{i}=\frac{\omega_{i}^{+}(r)}{\omega_{i-1}^{+}(r)}(4 \leq i \leq k), x_{k+1}=\frac{1}{\omega_{k}^{+}(r) \omega_{k}^{+}(r)}$, $x_{i}=1(k+2 \leq i \leq n)$ to $\frac{\partial H_{k}}{\partial x_{k+1}}$ yields

$$
\begin{aligned}
\frac{\partial H_{k}}{\partial x_{k+1}} & =\frac{2(n-k) x_{3}^{3} \cdots x_{k}^{3}}{\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}\left\{\frac{1}{x_{3}^{2} \cdots x_{k}^{2}} V_{k+1}\left(x_{4}, \ldots, x_{k+1}\right)-A_{k}\right\} \\
& =\frac{2(n-k) x_{3}^{3} \cdots x_{k}^{3}}{\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}\left\{\frac{r^{2}}{2 \omega_{k}^{+}(r)^{2}}-\frac{s^{2}}{2 \omega_{k}^{+}(s)^{2}}\right\}>0 .
\end{aligned}
$$

From Theorem 1, it follows that $\frac{d x_{j}}{d r}>0(4 \leq j \leq k+1), \frac{d x_{j}}{d r}=0(k+2 \leq j \leq n)$. Therefore, $\frac{d H_{k}}{d r}=\sum_{j=4}^{k+1} \frac{\partial H_{3}}{\partial x_{j}} \frac{d x_{j}}{d r}>0$.

Assume that $l(r, s)=n$. We have

$$
\begin{aligned}
\frac{\partial H_{n}}{\partial x_{j}}= & \frac{2}{x_{j}\left(\sum_{i=3}^{n} x_{3} \cdots x_{i}\right)^{3}}\left\{A_{k} x_{3}^{2} \cdots x_{n}^{2} \sum_{i=3}^{j-1} x_{3} \cdots x_{i}\right. \\
& \left.+\sum_{i=j}^{n} x_{3} \cdots x_{i} \sum_{m=3}^{j-1} x_{3}^{2} \cdots x_{m}^{2}\left(x_{m+1} \cdots x_{i}-1\right)\right\}, \quad 4 \leq j \leq n .
\end{aligned}
$$

From Theorem 1, $x_{i} \geq 1(3 \leq i \leq n)$, so that $\frac{\partial H_{n}}{\partial x_{j}}>0$ for $4 \leq j \leq n$. From Theorem 1, it follows that if $r \in R_{n-1}$ or $r \in R_{n}$, then $\frac{d x_{j}}{d r}>0(4 \leq j \leq n)$. Therefore, $\frac{d H_{3}}{d r}=\sum_{j=4}^{n} \frac{\partial H_{3}}{\partial x_{j}} \frac{d x_{j}}{d r}>0$.

In conclusion, we have

$$
\frac{d}{d r} M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right) \lesseqgtr 0 \Leftrightarrow r \lesseqgtr s
$$

Proof of Theorem 3: If $r<s$ and $r \in R_{3}$, then $l(r, s)=3$ and $M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)=2 H_{3}\left(x_{4}, 1, \ldots, 1\right)$. From Theorem 1, we have $\lim _{r \rightarrow+0} x_{4}(r)=1$, so that

$$
\lim _{r \rightarrow+0} M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)=2 H_{3}(1, \ldots, 1)
$$

On the other hand, if $r>s$ and $r \in R_{n}$, then $l(r, s)=n$ and $M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)=$ $2 H_{n}\left(x_{4}, \ldots, x_{n}\right)$. Since $\lim _{r \rightarrow \infty} x_{j}(r)=\lim _{r \rightarrow \infty} \omega_{j}^{+}(r) / \omega_{j-1}^{+}(r)=\omega_{j} / \omega_{j-1}$, we have

$$
\lim _{r \rightarrow \infty} M\left(\hat{\sigma}^{2}(r) ; \sigma^{2}, C\right)=2 H_{n}\left(\frac{\omega_{4}}{\omega_{3}}, \ldots, \frac{\omega_{n}}{\omega_{n-1}}\right) .
$$

Thus, we obtain (2.1) and (2.2). Furthermore, $M\left(\hat{\sigma}^{2}(+0) ; \sigma^{2}, C\right)-$ $M\left(\hat{\sigma}^{2}(\infty) ; \sigma^{2}, C\right)$ is a quadratic function of s with the positive coefficient of s^{2} and the negative constant term. Hence there exists an s_{0} satisfying (2.3).

References

[1] M. J. Buckley, G. K. Eagleson and B. W. Silverman, The estimation of residual variance in nonparametric regression, Biometrika, 75 (1988), 189-199.
[2] A. Demmler and C. Reinsch, Oscillation matrices with spline smoothing, Numer. Math., 24 (1975), 375-382.
[3] T. Fujioka, Notes on minimax approaches in nonparametric regression, Hiroshima Math. J., 24 (1994), 55-62.

Department of Mathematics
Faculty of Science
Hiroshima University

