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Abstract

One of our aims in this note is to give an extension of a result of Hardy-Littlewood

[3, Theorems 40 and 41] for holomorphic functions on the unit disc. In fact we

show that a polyharmonic function u on the unit ball B satisfies Holder's condition

of exponent α, 0 < α ^ 1, if and only if

|gradiι(x)| ^ M(l - I * ! 2 ) " " 1 for any xeB

by appealing to a mean-value inequality for polyharmonic functions.

Next we discuss removable singularities for polyharmonic functions u satisfying

\Dju(x + y) + Dju(x -y)- 2Dju(x)\ ^ M|y|α" fc

for all xeG, y with x ± yeG and j with \j| = k, where G is an open set in Rn and

k is the nonnegative integer such that k < a ^ k + 1. Our goal is to derive a

generalization of the recent result of Ullrich [12, Theorem 1].

1. Introduction

Let G be an open set in Rn. An infinitely differentiable function u on

G is called polyharmonic of order m in G if Δmu = 0 holds in G; we say that

u is polyharmonic in G if it is polyharmonic of order m in G for some positive

integer m. In case 0 < α ^ 1, if a continuous function u on G satisfies

(1) \u(x) - u(y)\ ^ M\x — y\a whenever x,yeG

for some constant M, then we say that u satisfies Holder's condition of

exponent α in G

In this paper let M denote various constants, whose value may change

from one occurrence to the next. We denote by B the unit ball of Rn.

Our first aim in this paper is to prove

THEOREM 1. Let u be a polyharmonic function on B and 0 < α ^ 1. Then
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u satisfies Holder's condition of exponent a in B if and only if

(2) \Vu{x)\ ^ M(l - |x | 2 ) α -* for any xeB,

where V denotes the gradient and M is a positive constant.

This is an extension of Hardy-Littlewood's result [3, Theorems 40 and

41] for holomorphic functions on the unit disc (see also [2, Theorem 5.1]). It

is easy to show that Theorem 1 is true for harmonic functions u on

Rn. Further, as noted in section 15 of Krantz [7], harmonic functions can

be replaced by solutions to any second order uniformly elliptic homogeneous

partial differential equation.

We say that a continuous function h on the interval [0, oo) is a measure

function if /i(0) = 0, h{r) > 0 for r > 0, h is nondecreasing on [0, oo) and

h(2r) ^ Mh(r) for any r > 0.

Let Hh denote the Hausdorff measure with a measure function h. If h(r) = rα,

then we write Ha for Hh.

Let 1 ^ p 5̂  oo and 1/p + l/p* = 1. We use B(x, r) to denote the open

ball centered at x with radius r. For a measure function h and a locally

integrable function u on G, we define

Um(x) = supr-2m-n^h(r)-1^*mi ί \u(y) - υ{y)\dy9
B v

 JB

where the supremum is taken over all open balls B = B(z, r) such that

XEB g G, and the infimum is taken over all functions v polyharmonic of order

m in B. Consider the set Sm(u) of all points xeG such that

\u(y) - v(y)\dy > 0
B(x,r)

for any function v polyharmonic of order m in a neighborhood of x. Note here

that if u is polyharmonic of order m in a neighborhood of x9 then xφSm(u).

Now we state a result of removability for polyharmonic functions, as a

generalization of the results of Kaufman-Wu [6] and Mizuta [8] for harmonic

functions.

THEOREM 2. Let G be a bounded open set in Rn and let h be a measure

function. For a given locally integrable function u on G, suppose UmeLp(G).

( i ) If p < oo, l im r^ 0 r~nh{r) = oo and Hh{Sm{u)) < oo, then u can be

corrected on a set of measure zero to be polyharmonic of order m in G;

(ii) if p > 1 and Hh(Sm(u)) = 0, then u can be corrected on a set of

measure zero to be polyharmonic of order m in G;
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(iii) if p = 1 and Hn(Sm(u)) = 0, then u can be corrected on a set of

measure zero to be polyharmonic of order m in G.

For a positive number α, let k be the integer such that

k<oί ^ k + 1.

We denote by ΛΛ(G) the Holder space of all functions feCk(G) such that in

case α < k + 1,

\Djf(x) - Djf(y)\ ^ M | x - y\a~k whenever x, y e G and | j | = fc;

in case α = fe + 1,

Djf(x -y)~ 2Djf(x)\ ^

whenever xeG, x ± yeG and | j | = k,

where D̂' = (d/dx)* = {d/dxji-id/dxj" for j = (ju...Jn) and x = (xu...,xj.

As a special case, Theorem 2 implies the following result, which gives a

generalization of the recent result of Ullrich [12, Theorem 1 (i)].

THEOREM 3. Let K be a compact subset of G, and let u be polyharmonic

of order m in G — K. If ueΛa(G), 2m — n < α < 2m and Hn+a_2m(K) = 0,

then u can be corrected on the set K to be polyharmonic of order m in G.

2. Proof of Theorem 1

For a proof of Theorem 1, we prepare two lemmas.

LEMMA 1 (see Krantz [7, Theorem 15.7]). If u is a dijferentiable function

on B satisfying (2) with 0 < α ̂  1, then u satisfies (1).

LEMMA 2 (cf. [9, Lemma 2.2]). If u is a polyharmonic function on B(x, r),

then

\Vku(x)\ ^Mkr~n~k \u{y)\dy
JB(x,r)

for any nonnegative integer k, where Vk denotes the gradient iterated k times,

that is,

k\ \ 1 / 2

\j\=k P )

Lemma 2 is well known in the harmonic case (see e.g. Stein [11, Appendix

C.3]).
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PROOF OF LEMMA 2. For a function v and r > 0, set

1
^v, x, r) =

\B(x,r)\JBiXtr:

v(y)dy,

where |B(x, r)\ denotes the volume of the ball #(x, r). Further, for each

positive integer Ϊ, define

Ai+1{υ, x, r) = - ^ I At(v, x, ήt' + ^dt,
r Jo

inductively. Suppose Amu = 0 on £(x, r0). Then, in view of Theorerne 1 in

[10], u is of the form

m

u{y) = X \y-χ\2j~2Vj(y),

where Vj are harmonic in B(x, r0); note here that u(x) = v^x). Consequently,

with bj = l/(n + 2/ - 2). We integrate both sides repeatedly and obtain

m

Ai(u, x, r) = n 2^ cjjr J vj(χ)>

where cjfi = bj bj+ x bj+i_1. Hence

nc

c =

Λjίw, x, r) c 2 t l

^ 2 (w, x, r) c 2 > 2

^m(w, x, r) c 2 ? m

c l , l C 2 , l " Cm,l

Cί,2
 C 2 , 2 " Cw,2

with

^

so that M is of the form

u(x) = £ CiAi(u9 x, r)

for 0 < r < r 0, where cf are constants. It follows that
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(3) |M(*)I ύ MA^lul, x, r) whenever 0 < r < r0.

For simplicity, let Dt = d/dyt. Since Am{Diu) = 0 on B(x, r 0), we find

DMx) = Σ CjAjiD^ x, t)
7 = 1

for 0 < t < r0. Noting that

tU, x, t) = —ί— ί

we have

Hence, multiplying both sides by tn + 1 and integrating them with respect to

t, we have

\u(y)\dy.
B(x,r)

This proves also

I |D i W( };)μy^M3r-1 | |u
J5(x,r) Jβ(Λ;,2r)

for 0 < r < ro/2. Using this repeatedly, we establish

I \Dλu(y)\dy^(M3r-ψ\ ! \u(y)\dy
JB(x,r) JB(x,2\*\r)

for any multi-index λ and any re(0, 2~ | Λ | r o ) . Hence (3) gives

for 0 < r < r 0, where M(ϊ) is a positive constant independent of x and r. Thus

Lemma 2 is proved.

PROOF OF THEOREM 1. First assume that (1) holds. For fixed xεB,

consider the function

u{ ) - w(x),

which is polyharmonic in B. Applying Lemma 2, we have

\Vu{x)\ ^ Mr'"'1 \u(y) - u(x)\dy
JB(x,r)
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whenever B(x, r) g B. If we take r = (1 - |x|)/2, then (1) gives (2).

The if part follows from Lemma 1, without assuming the polyharmonicity.

PROPOSITION 1. Let u be a polyharmonic function on B, 0 < α ^ 1 and

1 ^p< oo. If

— ί w<(4) l iϋJ/" ω r *7 ~Mr^
for any open ball B = B(x, r) g 2?, //ze« w satisfies Holder's condition of exponent

α in B, where \B\ denotes the n-dimensional Lebesgue measure of B.

In fact, we have only to see that (4) implies (2) on account of Lemma 2.

In view of the proof of Theorem 1, we can establish

PROPOSITION 2. Let u be a polyharmonic function on B and 0 < α < 2.

Then

(5) \u(x + y) + u{x -y)~ 2u{x)\ ^ M\y\a

for all xeB and y with x ± yeB

if and only if

(6) \V2u(x)\ ^ M(l - | x | 2 ) α " 2 for any xeB.

In fact, if (5) holds, then we apply Lemma 2 with k = 2 and the function

v(y) = u(x + y) + u(x - y) - 2u(x) on £(0, 1 - |x |) to establish (6). For a

proof of the implication (6)=>(5), see Krantz [7, Theorem 15.7].

3. Proofs of Theorems 2 and 3

For the proofs of Theorems 2 and 3, we need the following lemma.

LEMMA 3 (cf. [4, Lemma 3.1], [11, p. 174]). Let {B(xi9 η)} be a finite

collection of open balls such that {B(xh rJS)} is mutually disjoint. Then there

exists a family {φ^ g CQ with the following properties'.

(a)

(b)

(c)

(d)

(e)

Φi = 0
φi^O

ΣiΦi = x

Σi Φi = 1

IDψflgMyrf1

outside B(xh 2rt );
on Rn;

on Rn;

on \JiB(xi9 r f);
j | on Rn for any multi-index j .

PROOF OF THEOREM 2. First we are concerned with the case (i). Now

suppose UmeLp(G), p < oo, l im r ^ 0 r~nh(r) = oo and Hh(Sm(u)) < A < oo. Let
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0 < s < 1. By the definition of Hausdorff measure, there exists a countable

covering {B(xi9 rf)} of Sm(u) such that

(7)

and, since lim r_0 r~"h(r) = oo,

(8)

For each zeG — Sm(u) take r(z) > 0 and a function tλ, polyharmonic of order

m in B(z, 10r(z)) such that

ί. + 2m

Let φeCo(G) and denote the support of φ by K. Since K g ((j. 5(x ί ? rf))

U(UzeG-sw(u) ^fe y W)), we can find a finite family {fl,} g {B(xi9 r£)} U {5(z, r(z));

z e G - S m ( w ) } such that K g u ^ . By a covering lemma we can choose a

mutually disjoint subfamily {Br} such that K^[j5Br; here 5B = B(x, 5r)

when 5 = £(x, r). Now take {^} for {5£ r } in Lemma 3. If Bf, = B(zv, r{zv))

for zreG-Sm(u), then

^ Mεr(zv)
n

since ι?2., is polyharmonic of order m in B(zv, 10r(zΓ)); similarly, if β^' =

r , rΓ/), then

inf

Hence it follows from Holder's inequality that

u(y)lΔmφ(y)-\dy

ί MεΣr(zvY + MA"
\\M"B(xi",rv,)

Since Σ Γ r(zΓ)π ^ M | G | and | U r B(xr, rr)\ ̂  Mε by (8), this shows that
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L(9)

In case of (ii) we replace (7) by

(7') ΣWd<e

i

and obtain

r m i i p / r
]Uy Ψy y = + £

 \JG
 m}/ y

Thus (9) follows.

In case of (iii) we establish

u{y)lAmφ(y)-]dy ^ Mε\G\ + M Um(y)dy.

Instead of (7'), we need to note

Σ | B ( x r , r r ) l < M ε ,
i"

so that (9) also holds.

Since (9) implies that Δmu = 0 on G in the distribution sense, one sees,

from the regularity for the Laplace operator, that u is equal almost everywhere

to a function polyharmonic of order m in G.

For a proof of Theorem 3, we note the following result, which is a part

of alternative characterization of the space ΛΛ.

LEMMA 4 (cf. [5, Proposition 3 and Theorem 2 in Chapter III]). Let G

be a bounded open set in Rn. If ueΛa(G), then for any open ball B of radius

r with closure in G, there exists a polynomial PB of degree at most [α] such that

I "GO - PB(y)\ ύ Mr" for all yeB.

Let u be as in Theorem 3, and consider the measure function

h(r) = rn+a~2m. In the present case, p = oo and p* = 1. It follows from

Lemma 4 that UmeLco{G). Further note that Sm(u) g K. Therefore (ii) of

Theorem 2 for p = oo yields the required conclusion of Theorem 3.

Finally we discuss the converse of Theorem 3.

PROPOSITION 3. Let oc < 2m ^ n + k and K be a compact set in Rn such

that Hn+a-2m(K) > 0. Then there exists ueΛa(Rn) such that u is polyharmonic
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of order m in R" — K but u is not polyharmonic of order m in all of Rn.

One should compare this result with an example given by Uy [13].

PROOF OF PROPOSITION 3. Let R2m denote the Riesz kernel of order 2m

(see [11]). In view of [1, Theorem 1 in Section II], we can find a nonnegative

measure μ on K such that μ(K) = 1 and

(10) μ(B(x, r)) ^ Mrn+"-2m for any xeR" and any r > 0.

Case 1: 2m < n or 2m > n and n is odd. Consider the potential

R2mμ(x)= \R2m(x-y)dμ{y).

If \j I = k, then we have for zeRn and r > 0,

ί \DJR2m(x + z - y)\dμ{y) ύ M f \x + z - y\2m-k~ndμ(y)
JB(x,r) JB(x,r)

C Γ
^ M \x + z- y\2m-k~ndμ(y) + M

JB(x + z,r) Jl

\x + z- y\2m-k~ndμ(y) + M \ \x - y\2m-k-"dμ(y).
B(x,r)

With the aid of (10) we find

\x-y\2 *-k-*dμ(y) = μ(B(x,r))r2m-k-n+\ μ(B(x,
J B{x,r) Jθ

so that

ί
JB(x,r)r)

here recall that k < α ^ k + 1. Further, letting r = 2 |z |, we see that

ί \WR2m(x + z - y) + D ^ 2 m ( x - z - y) - 2/VK2w(x - y)\dμ{y)
J Rn-B(x,r)

ί |x-y|2m-"-*-2dμCv)
Jκπ-β(Λ;,r)

^ Mr2 μ(B(x,
J r

S Mra~k.

In case α < k + 1, we obtain
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| I M . R 2 m ( x + z-y)- D}R2m(x - y)\ dμ(y)
Rn-B(x,r)

^Mr \x-y\2m-n~k-ιdμ{y)
J Rn-B(x,r)

^ Mra~k.

Thus it follows that R2mμeA<x(Rn). Now it is easy to show that R2mμ satisfies

all the required conditions.

Case 2: 2m ̂  n and n is even. In this case, DjR2m(x), \j\ = K is of the

form

with constants a 3 and by Now we need to modify the measure μ given as

above. Since μ has no point mass by (10), the support of μ contains at least

two points. Hence we can find two disjoint compact subsets Kl9 K2 of K

such that μ(Kf) > 0 for i = 1, 2. Define

μ(K2)

and consider

R2mv(x)= \R2m(x-y)dv(y),

where μ\K/ denotes the restriction of μ to K{. If \j\ = k, xeRn and r > 0,

then, writing

&R2mv(x) = -aj\ log(r/ |x - y\)dv(y),

we have by the above considerations

log (r/\x + z - y\)dv(y) ^ Mμ(B(x, r)) S Mr"-k

)B(x,r)

for any zeRn. The integration over Rn — B(x, r) with r = 2 |z | can be

estimated in the same way as in Case 1. Thus R2mv has all the required

properties.
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