A theorem of Hardy-Littlewood and removability for polyharmonic functions satisfying Hölder's condition

Dedicated to Professor M. Nakai on the occasion of his sixtieth birthday

Yoshihiro Mizuta
(Received November 10, 1993)

Abstract

One of our aims in this note is to give an extension of a result of Hardy-Littlewood [3, Theorems 40 and 41] for holomorphic functions on the unit disc. In fact we show that a polyharmonic function u on the unit ball \boldsymbol{B} satisfies Hölder's condition of exponent $\alpha, 0<\alpha \leqq 1$, if and only if $$
|\operatorname{grad} u(x)| \leqq M\left(1-|x|^{2}\right)^{\alpha-1} \quad \text { for any } \quad x \in \boldsymbol{B}
$$ by appealing to a mean-value inequality for polyharmonic functions. Next we discuss removable singularities for polyharmonic functions u satisfying $$
\left|D^{j} u(x+y)+D^{j} u(x-y)-2 D^{j} u(x)\right| \leqq M|y|^{\alpha-k}
$$ for all $x \in G, y$ with $x \pm y \in G$ and j with $|j|=k$, where G is an open set in R^{n} and k is the nonnegative integer such that $k<\alpha \leqq k+1$. Our goal is to derive a generalization of the recent result of Ullrich [12, Theorem 1].

1. Introduction

Let G be an open set in R^{n}. An infinitely differentiable function u on G is called polyharmonic of order m in G if $\Delta^{m} u=0$ holds in G; we say that u is polyharmonic in G if it is polyharmonic of order m in G for some positive integer m. In case $0<\alpha \leqq 1$, if a continuous function u on G satisfies

$$
\begin{equation*}
|u(x)-u(y)| \leqq M|x-y|^{\alpha} \quad \text { whenever } \quad x, y \in G \tag{1}
\end{equation*}
$$

for some constant M, then we say that u satisfies Hölder's condition of exponent α in G

In this paper let M denote various constants, whose value may change from one occurrence to the next. We denote by \boldsymbol{B} the unit ball of R^{n}.

Our first aim in this paper is to prove
Theorem 1. Let u be a polyharmonic function on \boldsymbol{B} and $0<\alpha \leqq 1$. Then
u satisfies Hölder's condition of exponent α in \boldsymbol{B} if and only if

$$
\begin{equation*}
|\nabla u(x)| \leqq M\left(1-|x|^{2}\right)^{\alpha-1} \quad \text { for any } x \in \boldsymbol{B}, \tag{2}
\end{equation*}
$$

where ∇ denotes the gradient and M is a positive constant.
This is an extension of Hardy-Littlewood's result [3, Theorems 40 and 41] for holomorphic functions on the unit disc (see also [2, Theorem 5.1]). It is easy to show that Theorem 1 is true for harmonic functions u on R^{n}. Further, as noted in section 15 of Krantz [7], harmonic functions can be replaced by solutions to any second order uniformly elliptic homogeneous partial differential equation.

We say that a continuous function h on the interval $[0, \infty)$ is a measure function if $h(0)=0, h(r)>0$ for $r>0, h$ is nondecreasing on $[0, \infty)$ and

$$
h(2 r) \leqq M h(r) \quad \text { for any } r>0 .
$$

Let H_{h} denote the Hausdorff measure with a measure function h. If $h(r)=r^{\alpha}$, then we write H_{α} for H_{h}.

Let $1 \leqq p \leqq \infty$ and $1 / p+1 / p^{*}=1$. We use $B(x, r)$ to denote the open ball centered at x with radius r. For a measure function h and a locally integrable function u on G, we define

$$
U_{m}(x)=\sup _{B} r^{-2 m-n / p} h(r)^{-1 / p^{*}} \inf _{v} \int_{B}|u(y)-v(y)| d y,
$$

where the supremum is taken over all open balls $B=B(z, r)$ such that $x \in B \subseteq G$, and the infimum is taken over all functions v polyharmonic of order m in B. Consider the set $S_{m}(u)$ of all points $x \in G$ such that

$$
\limsup _{r \rightarrow 0} r^{-2 m-n} \int_{B(x, r)}|u(y)-v(y)| d y>0
$$

for any function v polyharmonic of order m in a neighborhood of x. Note here that if u is polyharmonic of order m in a neighborhood of x, then $x \notin S_{m}(u)$.

Now we state a result of removability for polyharmonic functions, as a generalization of the results of Kaufman-Wu [6] and Mizuta [8] for harmonic functions.

Theorem 2. Let G be a bounded open set in R^{n} and let h be a measure function. For a given locally integrable function u on G, suppose $U_{m} \in L^{p}(G)$.
(i) If $p<\infty, \lim _{r \rightarrow 0} r^{-n} h(r)=\infty$ and $H_{h}\left(S_{m}(u)\right)<\infty$, then u can be corrected on a set of measure zero to be polyharmonic of order m in G;
(ii) if $p>1$ and $H_{h}\left(S_{m}(u)\right)=0$, then u can be corrected on a set of measure zero to be polyharmonic of order m in G;
(iii) if $p=1$ and $H_{n}\left(S_{m}(u)\right)=0$, then u can be corrected on a set of measure zero to be polyharmonic of order m in G.

For a positive number α, let k be the integer such that

$$
k<\alpha \leqq k+1
$$

We denote by $\Lambda_{\alpha}(G)$ the Hölder space of all functions $f \in C^{k}(G)$ such that in case $\alpha<k+1$,

$$
\left|D^{j} f(x)-D^{j} f(y)\right| \leqq M|x-y|^{\alpha-k} \quad \text { whenever } \quad x, y \in G \text { and }|j|=k
$$

in case $\alpha=k+1$,

$$
\begin{aligned}
\mid D^{j} f(x+y)+ & D^{j} f(x-y)-2 D^{j} f(x)|\leqq M| y \mid \\
& \text { whenever } \quad x \in G, x \pm y \in G \text { and }|j|=k,
\end{aligned}
$$

where $D^{j}=(\partial / \partial x)^{j}=\left(\partial / \partial x_{1}\right)^{j_{1}} \cdots\left(\partial / \partial x_{n}\right)^{j_{n}}$ for $j=\left(j_{1}, \ldots, j_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$.
As a special case, Theorem 2 implies the following result, which gives a generalization of the recent result of Ullrich [12, Theorem 1 (i)].

Theorem 3. Let K be a compact subset of G, and let u be polyharmonic of order m in $G-K$. If $u \in \Lambda_{\alpha}(G), 2 m-n<\alpha<2 m$ and $H_{n+\alpha-2 m}(K)=0$, then u can be corrected on the set K to be polyharmonic of order m in G.

2. Proof of Theorem 1

For a proof of Theorem 1, we prepare two lemmas.
Lemma 1 (see Krantz [7, Theorem 15.7]). If u is a differentiable function on \boldsymbol{B} satisfying (2) with $0<\alpha \leqq 1$, then u satisfies (1).

Lemma 2 (cf. [9, Lemma 2.2]). If u is a polyharmonic function on $B(x, r)$, then

$$
\left|\nabla_{k} u(x)\right| \leqq M_{k} r^{-n-k} \int_{B(x, r)}|u(y)| d y
$$

for any nonnegative integer k, where ∇_{k} denotes the gradient iterated k times, that is,

$$
\left|\nabla_{k} u(x)\right|=\left(\sum_{|j|=k} \frac{k!}{j!}\left|D^{j} u(x)\right|^{2}\right)^{1 / 2} .
$$

Lemma 2 is well known in the harmonic case (see e.g. Stein [11, Appendix C.3]).

Proof of Lemma 2. For a function v and $r>0$, set

$$
A_{1}(v, x, r)=\frac{1}{|B(x, r)|} \int_{B(x, r)} v(y) d y,
$$

where $|B(x, r)|$ denotes the volume of the ball $B(x, r)$. Further, for each positive integer i, define

$$
A_{i+1}(v, x, r)=\frac{1}{r^{n+2 i}} \int_{0}^{r} A_{i}(v, x, t) t^{n+2 i-1} d t
$$

inductively. Suppose $\Delta^{m} u=0$ on $B\left(x, r_{0}\right)$. Then, in view of Théorème 1 in [10], u is of the form

$$
u(y)=\sum_{j=1}^{m}|y-x|^{2 j-2} v_{j}(y)
$$

where v_{j} are harmonic in $B\left(x, r_{0}\right)$; note here that $u(x)=v_{1}(x)$. Consequently,

$$
A_{1}(u, x, r)=n \sum_{j=1}^{m} b_{j} r^{2 j-2} v_{j}(x)
$$

with $b_{j}=1 /(n+2 j-2)$. We integrate both sides repeatedly and obtain

$$
A_{i}(u, x, r)=n \sum_{j=1}^{m} c_{j, i} r^{2 j-2} v_{j}(x)
$$

where $c_{j, i}=b_{j} \cdot b_{j+1} \cdots b_{j+i-1}$. Hence

$$
\begin{aligned}
v_{1}(x) & =\frac{1}{n c}\left|\begin{array}{cccc}
A_{1}(u, x, r) & c_{2,1} & \cdots & c_{m, 1} \\
A_{2}(u, x, r) & c_{2,2} & \cdots & c_{m, 2} \\
\cdots & & \cdots & \cdots \\
\cdots \\
A_{m}(u, x, r) & c_{2, m} & \cdots & c_{m, m}
\end{array}\right| \text { with } \\
c & =\left|\begin{array}{cccc}
c_{1,1} & c_{2,1} & \cdots & c_{m, 1} \\
c_{1,2} & c_{2,2} & \cdots & c_{m, 2} \\
\cdots & \cdots & \cdots & \cdots \\
c_{1, m} & c_{2, m} & \cdots & c_{m, m}
\end{array}\right| \neq 0,
\end{aligned}
$$

so that u is of the form

$$
u(x)=\sum_{i=1}^{m} c_{i} A_{i}(u, x, r)
$$

for $0<r<r_{0}$, where c_{i} are constants. It follows that

$$
\begin{equation*}
|u(x)| \leqq M A_{1}(|u|, x, r) \quad \text { whenever } \quad 0<r<r_{0} . \tag{3}
\end{equation*}
$$

For simplicity, let $D_{i}=\partial / \partial y_{i}$. Since $\Delta^{m}\left(D_{i} u\right)=0$ on $B\left(x, r_{0}\right)$, we find

$$
D_{i} u(x)=\sum_{j=1}^{m} c_{j} A_{j}\left(D_{i} u, x, t\right)
$$

for $0<t<r_{0}$. Noting that

$$
A_{1}\left(D_{i} u, x, t\right)=\frac{1}{|B(x, t)|} \int_{S(x, t)} u(y) \frac{x_{i}-y_{i}}{|x-y|} d S(y)
$$

we have

$$
\left|D_{i} u(x)\right| \leqq M_{1} \frac{1}{|B(x, t)|}\left(\int_{S(x, t)}|u(y)| d S(y)+t^{-1} \int_{B(x, t)}|u(y)| d y\right) .
$$

Hence, multiplying both sides by t^{n+1} and integrating them with respect to t, we have

$$
\left|D_{i} u(x)\right| \leqq M_{2} r^{-n-1} \int_{B(x, r)}|u(y)| d y
$$

This proves also

$$
\int_{B(x, r)}\left|D_{i} u(y)\right| d y \leqq M_{3} r^{-1} \int_{B(x, 2 r)}|u(y)| d y
$$

for $0<r<r_{0} / 2$. Using this repeatedly, we establish

$$
\int_{B(x, r)}\left|D^{\lambda} u(y)\right| d y \leqq\left(M_{3} r^{-1}\right)^{|\lambda|} \int_{B\left(x, 2^{|\lambda| r)}\right.}|u(y)| d y
$$

for any multi-index λ and any $r \in\left(0,2^{-|\lambda|} r_{0}\right)$. Hence (3) gives

$$
\left|\nabla_{i} u(x)\right| \leqq M(i) r^{-i} A_{1}(|u|, x, r)
$$

for $0<r<r_{0}$, where $M(i)$ is a positive constant independent of x and r. Thus Lemma 2 is proved.

Proof of Theorem 1. First assume that (1) holds. For fixed $x \in \boldsymbol{B}$, consider the function

$$
u(\cdot)-u(x)
$$

which is polyharmonic in B. Applying Lemma 2, we have

$$
|\nabla u(x)| \leqq M r^{-n-1} \int_{B(x, r)}|u(y)-u(x)| d y
$$

whenever $B(x, r) \subseteq \boldsymbol{B}$. If we take $r=(1-|x|) / 2$, then (1) gives (2).
The if part follows from Lemma 1, without assuming the polyharmonicity.
Proposition 1. Let u be a polyharmonic function on $\boldsymbol{B}, 0<\alpha \leqq 1$ and $1 \leqq p<\infty$. If

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}|\nabla u(y)|^{p} d y\right)^{1 / p} \leqq M r^{\alpha-1} \tag{4}
\end{equation*}
$$

for any open ball $B=B(x, r) \subseteq \boldsymbol{B}$, then u satisfies Hölder's condition of exponent α in \boldsymbol{B}, where $|B|$ denotes the n-dimensional Lebesgue measure of B.

In fact, we have only to see that (4) implies (2) on account of Lemma 2.
In view of the proof of Theorem 1, we can establish
Proposition 2. Let u be a polyharmonic function on \boldsymbol{B} and $0<\alpha<2$. Then

$$
\begin{align*}
& |u(x+y)+u(x-y)-2 u(x)| \leqq M|y|^{\alpha} \tag{5}\\
& \quad \text { for all } x \in \boldsymbol{B} \text { and } y \text { with } x \pm y \in \boldsymbol{B}
\end{align*}
$$

if and only if

$$
\begin{equation*}
\left|\nabla_{2} u(x)\right| \leqq M\left(1-|x|^{2}\right)^{x-2} \quad \text { for any } x \in \boldsymbol{B} \tag{6}
\end{equation*}
$$

In fact, if (5) holds, then we apply Lemma 2 with $k=2$ and the function $v(y)=u(x+y)+u(x-y)-2 u(x)$ on $B(0,1-|x|)$ to establish (6). For a proof of the implication (6) $\Rightarrow(5)$, see Krantz [7, Theorem 15.7].

3. Proofs of Theorems 2 and 3

For the proofs of Theorems 2 and 3, we need the following lemma.
Lemma 3 (cf. [4, Lemma 3.1], [11, p. 174]). Let $\left\{B\left(x_{i}, r_{i}\right)\right\}$ be a finite collection of open balls such that $\left\{B\left(x_{i}, r_{i} / 5\right)\right\}$ is mutually disjoint. Then there exists a family $\left\{\psi_{i}\right\} \subseteq C_{0}^{\infty}$ with the following properties:
(a) $\quad \psi_{i}=0 \quad$ outside $B\left(x_{i}, 2 r_{i}\right)$;
(b) $\quad \psi_{i} \geqq 0 \quad$ on R^{n};
(c) $\quad \sum_{i} \psi_{i} \leqq 1 \quad$ on R^{n};
(d) $\quad \sum_{i} \psi_{i}=1 \quad$ on $\bigcup_{i} B\left(x_{i}, r_{i}\right)$;
(e) $\quad\left|D^{j} \psi_{i}\right| \leqq M_{j} r_{i}^{-|j|}$ on R^{n} for any multi-index j.

Proof of Theorem 2. First we are concerned with the case (i). Now suppose $U_{m} \in L^{p}(G), p<\infty, \lim _{r \rightarrow 0} r^{-n} h(r)=\infty$ and $H_{h}\left(S_{m}(u)\right)<A<\infty$. Let
$0<\varepsilon<1$. By the definition of Hausdorff measure, there exists a countable covering $\left\{B\left(x_{i}, r_{i}\right)\right\}$ of $S_{m}(u)$ such that

$$
\begin{equation*}
\sum_{i} h\left(r_{i}\right)<A \tag{7}
\end{equation*}
$$

and, since $\lim _{r \rightarrow 0} r^{-n} h(r)=\infty$,

$$
\begin{equation*}
\sum_{i} r_{i}^{n}<\varepsilon . \tag{8}
\end{equation*}
$$

For each $z \in G-S_{m}(u)$ take $r(z)>0$ and a function v_{z} polyharmonic of order m in $B(z, 10 r(z))$ such that

$$
\int_{B(z, 10 r(z))}\left|u(y)-v_{z}(y)\right| d y \leqq \varepsilon r(z)^{n+2 m}
$$

Let $\varphi \in C_{0}^{\infty}(G)$ and denote the support of φ by K. Since $K \subseteq\left(\bigcup_{i} B\left(x_{i}, r_{i}\right)\right)$ $\cup\left(\cup_{z \in G-S_{m}(u)} B(z, r(z))\right)$, we can find a finite family $\left\{B_{\ell}\right\} \subseteq\left\{B\left(x_{i}, r_{i}\right)\right\} \cup\{B(z, r(z))$; $\left.z \in G-S_{m}(u)\right\}$ such that $K \subseteq \cup B_{\ell}$. By a covering lemma we can choose a mutually disjoint subfamily $\left\{B_{\ell^{\prime}}\right\}$ such that $K \cong \cup 5 B_{\ell^{\prime}}$; here $5 B=B(x, 5 r)$ when $B=B(x, r)$. Now take $\left\{\psi_{\ell^{\prime}}\right\}$ for $\left\{5 B_{\ell^{\prime}}\right\}$ in Lemma 3. If $B_{\ell^{\prime}}=B\left(z_{i^{\prime}}, r\left(z_{i^{\prime}}\right)\right)$ for $z_{i^{\prime}} \in G-S_{m}(u)$, then

$$
\begin{aligned}
\left|\int u(y)\left[\Delta^{m}\left(\psi_{\ell^{\prime}} \varphi\right)(y)\right] d y\right| & =\left|\int\left[u(y)-v_{z_{i}}(y)\right]\left[\Delta^{m}\left(\psi_{\ell^{\prime}} \varphi\right)(y)\right] d y\right| \\
& \leqq M \varepsilon r\left(z_{i^{\prime}}\right)^{n}
\end{aligned}
$$

since $v_{z^{\prime}}$ is polyharmonic of order m in $B\left(z_{i^{\prime}}, 10 r\left(z_{i^{\prime}}\right)\right)$; similarly, if $B_{\ell^{\prime}}=$ $B\left(x_{i^{\prime \prime}}, r_{i^{\prime \prime}}\right)$, then

$$
\begin{aligned}
\left|\int u(y)\left[\Delta^{m}\left(\psi_{\ell^{\prime}} \varphi\right)(y)\right] d y\right| & \leqq M r_{i^{\prime \prime}}^{n / p} h\left(r_{i^{\prime \prime}}\right)^{1 / p^{*}} \inf _{y \in B\left(x_{i^{\prime}}, r_{i^{\prime \prime}}\right)} U_{m}(y) \\
& \leqq M h\left(r_{i^{\prime \prime}}\right)^{1 / p^{*}}\left(\int_{B\left(x_{i^{\prime \prime}}, r_{i^{\prime \prime}}\right)} U_{m}(y)^{p} d y\right)^{1 / p} .
\end{aligned}
$$

Hence it follows from Hölder's inequality that

$$
\begin{aligned}
\left|\int u(y)\left[\Delta^{m} \varphi(y)\right] d y\right| & =\left|\sum_{\ell^{\prime}} \int u(y)\left[\Delta^{m}\left(\psi_{\ell^{\prime}} \varphi\right)(y)\right] d y\right| \\
& \leqq M \varepsilon \sum_{i^{\prime}} r\left(z_{i^{\prime}}\right)^{n}+M A^{1 / p^{*}}\left(\int_{U_{i^{\prime \prime}} B\left(x_{i^{\prime \prime}}, r_{i^{\prime \prime}}\right)} U_{m}(y)^{p} d y\right)^{1 / p} .
\end{aligned}
$$

Since $\sum_{i^{\prime}} r\left(z_{i^{\prime}}\right)^{n} \leqq M|G|$ and $\left|\bigcup_{i^{\prime \prime}} B\left(x_{i^{\prime \prime}}, r_{i^{\prime \prime}}\right)\right| \leqq M \varepsilon$ by (8), this shows that

$$
\begin{equation*}
\int u(y)\left[\Delta^{m} \varphi(y)\right] d y=0 . \tag{9}
\end{equation*}
$$

In case of (ii) we replace (7) by

$$
\begin{equation*}
\sum_{i} h\left(r_{i}\right)<\varepsilon \tag{7'}
\end{equation*}
$$

and obtain

$$
\left|\int u(y)\left[\Delta^{m} \varphi(y)\right] d y\right| \leqq M \varepsilon|G|+M \varepsilon^{1 / p^{*}}\left(\int_{G} U_{m}(y)^{p} d y\right)^{1 / p} .
$$

Thus (9) follows.
In case of (iii) we establish

$$
\left|\int u(y)\left[\Delta^{m} \varphi(y)\right] d y\right| \leqq M \varepsilon|G|+M \int_{U_{i^{\prime \prime}} B\left(x_{i^{\prime}}, r_{i}^{\prime \prime}\right)} U_{m}(y) d y .
$$

Instead of (7^{\prime}), we need to note

$$
\sum_{i^{\prime \prime}}\left|B\left(x_{i^{\prime \prime}}, r_{i^{\prime \prime}}\right)\right|<M \varepsilon,
$$

so that (9) also holds.
Since (9) implies that $\Delta^{m} u=0$ on G in the distribution sense, one sees, from the regularity for the Laplace operator, that u is equal almost everywhere to a function polyharmonic of order m in G.

For a proof of Theorem 3, we note the following result, which is a part of alternative characterization of the space Λ_{α}.

Lemma 4 (cf. [5, Proposition 3 and Theorem 2 in Chapter III]). Let G be a bounded open set in R^{n}. If $u \in \Lambda_{\alpha}(G)$, then for any open ball B of radius r with closure in G, there exists a polynomial P_{B} of degree at most $[\alpha]$ such that

$$
\left|u(y)-P_{B}(y)\right| \leqq M r^{\alpha} \quad \text { for all } y \in B .
$$

Let u be as in Theorem 3, and consider the measure function $h(r)=r^{n+\alpha-2 m}$. In the present case, $p=\infty$ and $p^{*}=1$. It follows from Lemma 4 that $U_{m} \in L^{\infty}(G)$. Further note that $S_{m}(u) \subseteq K$. Therefore (ii) of Theorem 2 for $p=\infty$ yields the required conclusion of Theorem 3.

Finally we discuss the converse of Theorem 3.
Proposition 3. Let $\alpha<2 m \leqq n+k$ and K be a compact set in R^{n} such that $H_{n+\alpha-2 m}(K)>0$. Then there exists $u \in \Lambda_{\alpha}\left(R^{n}\right)$ such that u is polyharmonic
of order m in $R^{n}-K$ but u is not polyharmonic of order m in all of R^{n}.
One should compare this result with an example given by Uy [13].
Proof of Proposition 3. Let $R_{2 m}$ denote the Riesz kernel of order $2 m$ (see [11]). In view of [1, Theorem 1 in Section II], we can find a nonnegative measure μ on K such that $\mu(K)=1$ and

$$
\begin{equation*}
\mu(B(x, r)) \leqq M r^{n+\alpha-2 m} \quad \text { for any } x \in R^{n} \text { and any } r>0 . \tag{10}
\end{equation*}
$$

Case 1: $2 m<n$ or $2 m>n$ and n is odd. Consider the potential

$$
R_{2 m} \mu(x)=\int R_{2 m}(x-y) d \mu(y)
$$

If $|j|=k$, then we have for $z \in R^{n}$ and $r>0$,

$$
\begin{aligned}
& \int_{B(x, r)}\left|D^{j} R_{2 m}(x+z-y)\right| d \mu(y) \leqq M \int_{B(x, r)}|x+z-y|^{2 m-k-n} d \mu(y) \\
& \quad \leqq M \int_{B(x+z, r)}|x+z-y|^{2 m-k-n} d \mu(y)+M \int_{B(x, r)}|x-y|^{2 m-k-n} d \mu(y)
\end{aligned}
$$

With the aid of (10) we find

$$
\begin{aligned}
\int_{B(x, r)}|x-y|^{2 m-k-n} d \mu(y) & =\mu(B(x, r)) r^{2 m-k-n}+\int_{0}^{r} \mu(B(x, t)) d\left(-t^{2 m-k-n}\right) \\
& \leqq M r^{\alpha-k}
\end{aligned}
$$

so that

$$
\int_{B(x, r)}\left|D^{j} R_{2 m}(x+z-y)\right| d \mu(y) \leqq M r^{\alpha-k}
$$

here recall that $k<\alpha \leqq k+1$. Further, letting $r=2|z|$, we see that

$$
\begin{aligned}
& \int_{R^{n}-B(x, r)}\left|D^{j} R_{2 m}(x+z-y)+D^{j} R_{2 m}(x-z-y)-2 D^{j} R_{2 m}(x-y)\right| d \mu(y) \\
& \quad \leqq M r^{2} \int_{R^{n}-B(x, r)}|x-y|^{2 m-n-k-2} d \mu(y) \\
& \quad \leqq M r^{2} \int_{r}^{\infty} \mu(B(x, t)) d\left(-t^{2 m-n-k-2}\right) \\
& \quad \leqq M r^{\alpha-k} .
\end{aligned}
$$

In case $\alpha<k+1$, we obtain

$$
\begin{aligned}
& \int_{R^{n}-B(x, r)}\left|D^{j} R_{2 m}(x+z-y)-D^{j} R_{2 m}(x-y)\right| d \mu(y) \\
& \quad \leqq M r \int_{R^{n-B(x, r)}}|x-y|^{2 m-n-k-1} d \mu(y) \\
& \quad \leqq M r^{\alpha-k} .
\end{aligned}
$$

Thus it follows that $R_{2 m} \mu \in \Lambda^{\alpha}\left(R^{n}\right)$. Now it is easy to show that $R_{2 m} \mu$ satisfies all the required conditions.

Case $2: 2 m \geqq n$ and n is even. In this case, $D^{j} R_{2 m}(x),|j|=k$, is of the form

$$
D^{j} R_{2 m}(x)=a_{j} \log |x|+b_{j}
$$

with constants a_{j} and b_{j}. Now we need to modify the measure μ given as above. Since μ has no point mass by (10), the support of μ contains at least two points. Hence we can find two disjoint compact subsets K_{1}, K_{2} of K such that $\mu\left(K_{\ell}\right)>0$ for $\ell=1,2$. Define

$$
v=\frac{\left.\mu\right|_{K_{1}}}{\mu\left(K_{1}\right)}-\frac{\left.\mu\right|_{K_{2}}}{\mu\left(K_{2}\right)}
$$

and consider

$$
R_{2 m} v(x)=\int R_{2 m}(x-y) d v(y)
$$

where $\left.\mu\right|_{\boldsymbol{K}}$, denotes the restriction of μ to K_{ℓ}. If $|j|=k, x \in R^{n}$ and $r>0$, then, writing

$$
D^{j} R_{2 m} v(x)=-a_{j} \int \log (r /|x-y|) d v(y)
$$

we have by the above considerations

$$
\left|\int_{B(x, r)} \log (r /|x+z-y|) d v(y)\right| \leqq M \mu(B(x, r)) \leqq M r^{\alpha-k}
$$

for any $z \in R^{n}$. The integration over $R^{n}-B(x, r)$ with $r=2|z|$ can be estimated in the same way as in Case 1. Thus $R_{2 m} v$ has all the required properties.

References

[1] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[2] P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
[3] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math. Z., 34 (1932), 403-439.
[4] R. Harvey and J. C. Polking, Removable singularities of solutions of linear partial differential equations, Acta Math., 125 (1970), 39-56.
[5] A. Jonsson and H. Wallin, Function spaces on subsets of \mathbb{R}^{n}, Harwood Academic Publishers, London, 1984.
[6] R. Kaufman and J.-M. G. Wu, Removable singularities for analytic or harmonic functions, Ark. Mat., 18 (1980), 107-116.
[7] S. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math., 3 (1983), 193-260.
[8] Y. Mizuta, On removability of sets for holomorphic and harmonic functions, J. Math. Soc. Japan, 38 (1986), 509-513.
[9] Y. Mizuta, Boundary limits of polyharmonic functions in Sobolev-Orlicz spaces, to appear in Complex Variables, 21 (1995).
[10] M. M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. École Norm Sup., 52 (1935), 183-220.
[11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
[12] D. C. Ullrich, Removable sets for harmonic functions, Michigan Math. J., 38 (1991), 467-473.
[13] N. X. Uy, A removable set for Lipschitz harmonic functions, Michigan Math. J., 37 (1990), 45-51.

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences
Hiroshima University Higashi-Hiroshima 724, Japan

